JPS6139689B2 - - Google Patents

Info

Publication number
JPS6139689B2
JPS6139689B2 JP56072658A JP7265881A JPS6139689B2 JP S6139689 B2 JPS6139689 B2 JP S6139689B2 JP 56072658 A JP56072658 A JP 56072658A JP 7265881 A JP7265881 A JP 7265881A JP S6139689 B2 JPS6139689 B2 JP S6139689B2
Authority
JP
Japan
Prior art keywords
polyamide
imide
cresol
resin
solvent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56072658A
Other languages
Japanese (ja)
Other versions
JPS57187810A (en
Inventor
Kenji Asano
Shinichi Okada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP56072658A priority Critical patent/JPS57187810A/en
Publication of JPS57187810A publication Critical patent/JPS57187810A/en
Publication of JPS6139689B2 publication Critical patent/JPS6139689B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/14Extreme weather resilient electric power supply systems, e.g. strengthening power lines or underground power cables

Landscapes

  • Insulated Conductors (AREA)
  • Polymers With Sulfur, Phosphorus Or Metals In The Main Chain (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Organic Insulating Materials (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は課電耐湿性に優れた主塗膜クレゾール
系溶媒可溶ポリアミドイミド塗料を塗布、焼付け
して成る絶縁電線に関するものである。 〔従来の技術〕 電気機器の小型軽量化に伴ない、耐熱性を有す
る絶縁電線が多用化されてきており、その中でも
ポリアミドイミド樹脂を使用した絶縁電線は種々
の特性を兼備えたものとして注目されている。 しかしながら、従来からあるポリアミドイミド
樹脂は高価な極性溶媒にしか溶解しないため、安
価なクレゾール系溶媒に可溶なポリアミドイミド
樹脂について種々検討がなされてきている。 この中で、イソシアヌレート環含有ポリイソシ
アネート、芳香族ジイソシアネート、ラクタム、
および酸無水物基を含有するポリカルボン酸をク
レゾール系溶媒中で反応させて得られるクレゾー
ル系溶媒可能ポリアミドイミド樹脂を使用した絶
縁電線が提案されている。 この絶縁電線は従来の極性溶媒可溶ポリアミド
イミド樹脂を使用した絶縁電線と種々の面におい
て同等あるいはそれ以上の特性を有するものであ
るが、課電下の耐湿性においてやや劣ることが本
発明者の実験によりわかつた。 〔発明が解決しようとする問題点〕 本発明はかかる点に立つて為されたものであつ
て、その目的とするところは前記した従来技術の
欠点を解消し、課電耐湿性が優れたクレゾール系
溶媒可溶ポリアミドイミド系の絶縁電線を提供す
ることにある。 〔問題点を解決するための手段〕 本発明の要旨とすることころは、導体直上に極
性溶媒可溶ポリアミドイミド塗料を塗布、焼付し
て成る下塗りポリアミドイミド層と、該下塗りポ
リアミドイミド層の上層に、クレゾール系溶媒可
溶ポリアミドイミド塗料を塗布、焼付けして成る
上塗りポリアミドイミド層から成る絶縁電線にお
いて、前記上塗りポリアミドイミド層はクレゾー
ル溶媒中で、酸無水物基を含有するポリカルボン
酸を1.00当量、イソシアヌレート環含有ポリイソ
シアネートを0.01〜0.30当量、芳香族ジイソシア
ネートとイソシアヌレート環含有ポリイソシアネ
ートの当量の和を0.80〜1.50当量、ラクタムを0.3
〜0.9当量の比で反応して成るクレゾール系溶媒
可溶ポリアミドイミド樹脂100重量部に対して、
アミノ銃樹脂およびフエノール樹脂をそれぞれ
0.1〜15重量部添加してなるポリアミド樹脂組成
物から成り、しかも前記下塗りポリアミドイミド
層は1μ以上であるように構成して成ることを特
徴とする絶縁電線にある。 本発明において使用されるクレゾール系溶媒可
溶ポリアミドイミド樹脂の原料となるイソシアヌ
レート環含有ポリイソシアネートはポリイソシア
ネート化合物の三量化によつて得られ、この反応
はイソシアネート基と反応しない溶剤の存在下
で、フエノール、ラクタム類のようなイソシアネ
ート基と反応する成分を加えずに行われ、反応を
効率的に進めるためには、ポリイソシアネート化
合物の三量化触媒を使用することが望ましい。 溶剤としては、原料としてのポリイソシアネー
ト化合物を溶解するものであれば、脂肪族および
芳香族炭化水素、ハロゲン化芳香族炭化水素、エ
ステル系、ケトン系、エーテル系、エチレングリ
コールトモノアルキルモノアセテート系溶剤、ジ
メチルスルホオキサイド等の中から任意に選択で
きる。 ポリイソシアネーート化合物の三量化触媒とし
ては、アルカリ金属アセテート、鉄、マグネシウ
ム、ニツケル、亜鉛、錫、鉛、バナジウム、チタ
ン等の金属塩および有機化合物、N―メチルモル
ホリン、1,8―ジアザビンクロ(5,4,0)
ウンデカン―7,2―(ジメチルアミノメチル)
―4,6―ジメチルフエノールなどのフエノール
のマンニツヒ塩基、2―ジメチルアミノエタノー
ル等の第三級アミンなどが使用できる。 ポリイソシアネート化合物の三量化の反応温度
は例えば50〜160℃の範囲で行行われる。 イソシアヌレート環含有ポリイソシアネートの
原料としては、脂肪族、脂環族、芳香族いずれの
ジイソシアネート化合物でもよいが、芳香族ジイ
ソシアネート、特に4,4′―ジフエニルメタンジ
イソシアネート、トリレンジイソシアネート、キ
シリレンジイソシアネート、4,4′―ジフエニル
エーテルジイソシアネート等が好ましい。イソシ
アネート環含有ポリイソシアネートは耐熱性、可
撓性の点から残存イソシアネート基の含有量は10
〜70%の範囲が好ましい(原料イソシアネート中
のイソシアネート基合有量を100とする)。また、
イソシアヌレート環含有ポリイソシアネートは全
イソシアネート成分に対して0.01〜0.30当量用い
ることが耐熱性、可撓性の点で好ましい。クレゾ
ール系溶媒可溶化の重要な原料であるラクタムと
しては、一般的にはクレゾール系溶媒中でイソシ
アネート基または酸無水物基と反応して、クレゾ
ール系溶媒に可溶なものであれば何でもよいが、
溶解性、反応性および価格の面を考慮すればε―
カプロラクタムが好ましい。ラクタムの使用量は
耐熱性、可撓性および溶解性の点で全イソシアネ
ート当量の0.30〜0.90当量(ε―カプロラクタム
を2官能と考える)が好ましい。 芳香族ジイソシアネートとしては、4,4′―ジ
フエニルメタンジイソシアネート、4,4′―ジフ
エニルエーテルジソイシアネート、トリレンジイ
ソシアネート、キシリレンジイソシアネートなど
が好ましい。 酸無水物基を含有するポリカルボナ酸として
は、耐熱性、価格の点でトリメツト酸無水物が好
ましい。 イソシアネート成分と酸成分の使用量は、カル
ボキシル基および酸無水物基に対するイソシアネ
ート基の比が1.5〜0.8になるように選定するのが
耐熱性の点で好ましい。 絶縁電線の特性上好ましい高分子量の樹脂を得
るためにはカルボキシル基および酸化無水物基に
対するイソシアネート基の比を1.0付近にするこ
とが特に好ましい。 クレゾール系溶媒としてはクレゾールの他フエ
ノール、キシノール等が使用でき、混合溶媒でも
よい。 合成は全イソシアネート成分、ラクタムおよび
クレゾール系溶媒を仕込んで160〜190℃で1〜3
時間反応させた後、酸無水物含有ポリカルボン酸
を加え、200〜220℃で10〜20時間さらに反応を続
けて行われる。 このようにして得られたポリアミドシミド樹脂
はジメチルホルムアミド中で測定した環元比粘度
が0.15以上のものが特に絶縁電線としての特性が
良い。 ポリアミドイミド樹脂はその後クレゾール系溶
媒で樹脂分20〜40重量%に希釈されて絶縁電線用
ワニスとして使用される。 本発明におけるポリアミドイミド樹脂は単独で
も耐熱性、機械的特性、耐フロン性に優れたエナ
メル皮膜を形成するが、高速焼付時における硬化
性、作業性はフエノールホルムアルデヒド樹脂、
アルコキシ変性アミノ樹脂、エポキシ樹脂、ポリ
イソシアネート樹脂、フエノキシ樹脂などの二次
樹脂の1種または2種以上を添加することによつ
て格段と向上する。その添加量はポリアミドイミ
ド樹脂100重量部に対して二次樹脂が0.1〜30重量
部であり、この飯囲を越えるとエナメル線の可撓
性が低下する。 特に、ポリアミドイミド樹脂100重量部に対し
てアミノ樹脂およびフエノール樹脂をそれぞれ
0.1〜15重量部を添加してなる樹脂組成物を用い
ると、外観、可撓性に優れた絶縁皮膜が得られ
る。 本発明において使用される極性溶媒可溶ポリア
ミドイミド樹脂としては、三塩基酸無水物ハライ
ドと芳香族ジアミンをジメチルアセトアミドのよ
うな極性溶媒中で反応させたもの、あるいは芳香
族ジイソシアネートとトリメリツト酸無水物を極
性溶媒中で反応させたものなどがある。 極性溶媒可溶ポリアミドイミツド樹脂よりなる
皮膜層は上層とし、しかも十分な課電耐湿性を得
るには極性溶媒皮膜層を1μ以上の厚さとする必
要がある。 〔作 用〕 本発明の絶縁電線は、クレゾール系溶媒可溶ポ
リアミドイミドの特徴であるクレゾール可溶性を
保持しながら、その欠点である耐課電耐湿性を効
果的に改善したものである。 即ち、イソシアヌレート環含有ポリイソシアネ
ートを0.01〜0.30当量%とラクタムを0.3〜0.9当
量%配合することによりクレゾール可溶性と耐課
電耐湿性を保持させ、更に、アミノ樹脂とフエノ
ール樹脂を0.1〜15重量部配合することにより塗
膜の熱硬化反応を進めて侵水、高湿下における水
分透過を抑止し、更に、下層に極性溶媒可溶ポリ
アミドイミド層を設けることにより導体直上に水
分の透過、侵入を阻止して金属イオンの発生を抑
え、これらが相乗的に作用して優れた耐課電耐湿
性を発揮するものである。 〔実施例〕 以下本発明の具体的実施例を比較例と対比しな
がら説明する。 比較例 1 (1) 芳香族ジイソシアネート三量体の合成 成 分 グラム トリレンジイソシアネート 600 キシレン 600 2―ジメチルアミノエタノール(触媒) 1.8 上記成分を温度計、撹拌機を供えた4つ口フラ
スコにいれ、窒素気流中で140℃に昇温し、同温
度でイソシアネート基の含有量(初期濃度48重量
%)が25重量%になるまで反応を進めた。 (2) クレゾール系溶媒可溶ポリアミドイミド樹脂
の合成
[Industrial Field of Application] The present invention relates to an insulated wire formed by coating and baking a main coating of cresol-based solvent-soluble polyamide-imide paint which has excellent resistance to applied moisture. [Conventional technology] As electrical equipment becomes smaller and lighter, heat-resistant insulated wires are being used more frequently, and insulated wires made of polyamide-imide resin are attracting attention as they have a variety of properties. has been done. However, since conventional polyamide-imide resins are only soluble in expensive polar solvents, various studies have been made on polyamide-imide resins that are soluble in inexpensive cresol solvents. Among these, isocyanurate ring-containing polyisocyanates, aromatic diisocyanates, lactams,
An insulated wire using a cresol solvent-compatible polyamideimide resin obtained by reacting a polycarboxylic acid containing an acid anhydride group in a cresol solvent has been proposed. Although this insulated wire has characteristics equivalent to or better than conventional insulated wire using polar solvent-soluble polyamide-imide resin in various aspects, the inventors have found that it is slightly inferior in moisture resistance under electric charge. We found this out through experiments. [Problems to be Solved by the Invention] The present invention has been made based on the above points, and its purpose is to solve the above-mentioned drawbacks of the prior art and to provide a cresol with excellent resistance to static electricity and moisture. An object of the present invention is to provide a solvent-soluble polyamide-imide insulated wire. [Means for Solving the Problems] The gist of the present invention is to provide an undercoat polyamideimide layer formed by coating and baking a polar solvent-soluble polyamideimide paint directly on a conductor, and an upper layer of the undercoat polyamideimide layer. In an insulated wire comprising a top-coat polyamide-imide layer formed by coating and baking a cresol-based solvent-soluble polyamide-imide paint, the top-coat polyamide-imide layer contains 1.00% polycarboxylic acid containing an acid anhydride group in a cresol solvent. equivalent, 0.01 to 0.30 equivalent of isocyanurate ring-containing polyisocyanate, 0.80 to 1.50 equivalent of the sum of equivalents of aromatic diisocyanate and isocyanurate ring-containing polyisocyanate, and 0.3 equivalent of lactam.
For 100 parts by weight of cresol-based solvent-soluble polyamide-imide resin reacted at a ratio of ~0.9 equivalents,
amino gun resin and phenolic resin respectively
The insulated wire is made of a polyamide resin composition containing 0.1 to 15 parts by weight, and the undercoat polyamide-imide layer has a thickness of 1 μm or more. The isocyanurate ring-containing polyisocyanate, which is the raw material for the cresol solvent-soluble polyamideimide resin used in the present invention, is obtained by trimerizing a polyisocyanate compound, and this reaction is carried out in the presence of a solvent that does not react with isocyanate groups. In order to carry out the reaction without adding components that react with isocyanate groups such as phenols, lactams, etc., and to proceed with the reaction efficiently, it is desirable to use a trimerization catalyst of polyisocyanate compounds. Examples of solvents include aliphatic and aromatic hydrocarbons, halogenated aromatic hydrocarbons, ester-based, ketone-based, ether-based, and ethylene glycol monoalkyl monoacetate-based solvents, as long as they dissolve the polyisocyanate compound as a raw material. , dimethyl sulfoxide, and the like. Trimerization catalysts for polyisocyanate compounds include alkali metal acetates, metal salts such as iron, magnesium, nickel, zinc, tin, lead, vanadium, titanium, etc., and organic compounds, N-methylmorpholine, 1,8-diazabinchro( 5,4,0)
Undecane-7,2-(dimethylaminomethyl)
Mannitz bases of phenols such as -4,6-dimethylphenol and tertiary amines such as 2-dimethylaminoethanol can be used. The reaction temperature for trimerizing the polyisocyanate compound is, for example, in the range of 50 to 160°C. The raw material for the isocyanurate ring-containing polyisocyanate may be any aliphatic, alicyclic, or aromatic diisocyanate compound, but aromatic diisocyanates, especially 4,4'-diphenylmethane diisocyanate, tolylene diisocyanate, and xylylene diisocyanate, are preferred. , 4,4'-diphenyl ether diisocyanate and the like are preferred. Polyisocyanate containing isocyanate rings has a residual isocyanate group content of 10% from the viewpoint of heat resistance and flexibility.
The range is preferably 70% (assuming the amount of isocyanate groups combined in the raw material isocyanate is 100). Also,
It is preferable to use the isocyanurate ring-containing polyisocyanate in an amount of 0.01 to 0.30 equivalents based on the total isocyanate components in terms of heat resistance and flexibility. Lactams, which are important raw materials for cresol solvent solubilization, can generally be anything that reacts with isocyanate groups or acid anhydride groups in cresol solvents and is soluble in cresol solvents. ,
Considering solubility, reactivity and price, ε-
Caprolactam is preferred. The amount of lactam to be used is preferably 0.30 to 0.90 equivalents (considering ε-caprolactam to be difunctional) based on the total isocyanate equivalents in terms of heat resistance, flexibility and solubility. Preferred aromatic diisocyanates include 4,4'-diphenylmethane diisocyanate, 4,4'-diphenyl ether disocyanate, tolylene diisocyanate, and xylylene diisocyanate. As the polycarbonic acid containing an acid anhydride group, trimethic anhydride is preferable in terms of heat resistance and cost. From the viewpoint of heat resistance, it is preferable to select the amounts of the isocyanate component and acid component so that the ratio of isocyanate groups to carboxyl groups and acid anhydride groups is 1.5 to 0.8. In order to obtain a resin with a high molecular weight that is preferable in view of the characteristics of an insulated wire, it is particularly preferable that the ratio of isocyanate groups to carboxyl groups and oxidized anhydride groups is around 1.0. As the cresol solvent, in addition to cresol, phenol, xynol, etc. can be used, and a mixed solvent may also be used. Synthesis is carried out by charging all isocyanate components, lactam and cresol solvent and heating at 160 to 190℃ for 1 to 3 hours.
After reacting for an hour, an acid anhydride-containing polycarboxylic acid is added, and the reaction is further continued at 200-220°C for 10-20 hours. The polyamide cymide resin thus obtained has particularly good properties as an insulated wire if it has a ring specific viscosity of 0.15 or more when measured in dimethylformamide. The polyamide-imide resin is then diluted with a cresol solvent to a resin content of 20 to 40% by weight and used as a varnish for insulated wires. The polyamide-imide resin in the present invention forms an enamel film with excellent heat resistance, mechanical properties, and fluorocarbon resistance even when used alone, but the phenol formaldehyde resin has poor hardenability and workability during high-speed baking.
Significant improvement can be achieved by adding one or more secondary resins such as alkoxy-modified amino resins, epoxy resins, polyisocyanate resins, and phenoxy resins. The amount of the secondary resin added is 0.1 to 30 parts by weight per 100 parts by weight of the polyamide-imide resin, and if this amount is exceeded, the flexibility of the enameled wire decreases. In particular, amino resin and phenol resin are added to 100 parts by weight of polyamide-imide resin, respectively.
When a resin composition containing 0.1 to 15 parts by weight is used, an insulating film with excellent appearance and flexibility can be obtained. The polar solvent-soluble polyamide-imide resin used in the present invention is prepared by reacting tribasic acid anhydride halide and aromatic diamine in a polar solvent such as dimethylacetamide, or aromatic diisocyanate and trimellitic anhydride. There are also those made by reacting in a polar solvent. The coating layer made of a polar solvent-soluble polyamide imide resin is the upper layer, and the polar solvent coating layer must have a thickness of 1 μm or more in order to obtain sufficient electrical resistance to moisture. [Function] The insulated wire of the present invention maintains the cresol solubility, which is a characteristic of cresol-based solvent-soluble polyamideimide, while effectively improving its shortcomings in resistance to electricity and moisture. That is, by blending 0.01 to 0.30 equivalent % of isocyanurate ring-containing polyisocyanate and 0.3 to 0.9 equivalent % of lactam, cresol solubility and resistance to electric charge and humidity are maintained, and furthermore, 0.1 to 15% by weight of amino resin and phenol resin are blended. By adding 100% of the polyamide-imide layer, the thermosetting reaction of the coating film is promoted to prevent water intrusion and moisture permeation under high humidity conditions.Furthermore, by providing a polar solvent-soluble polyamide-imide layer as the lower layer, moisture permeation and intrusion are prevented directly above the conductor. This prevents the generation of metal ions, and these act synergistically to exhibit excellent resistance to electrical charges and moisture. [Examples] Specific examples of the present invention will be described below in comparison with comparative examples. Comparative Example 1 (1) Components for synthesis of aromatic diisocyanate trimer Gram tolylene diisocyanate 600 Xylene 600 2-dimethylaminoethanol (catalyst) 1.8 Place the above ingredients in a four-necked flask equipped with a thermometer and a stirrer. The temperature was raised to 140°C in a nitrogen stream, and the reaction was allowed to proceed at the same temperature until the content of isocyanate groups (initial concentration: 48% by weight) reached 25% by weight. (2) Synthesis of cresol solvent-soluble polyamideimide resin

【表】 トリメリツト酸無水物を除く上記成分を温度
計、撹拌機、分留管を備えた4つフラスコに入
れ、窒素気流中で温度を180℃に上昇し、90分間
反応を行う。次いでトリメリツト酸無水物を添加
して210℃に昇温し、このままの温度で15時間反
応を進めた。 次いでクレゾールで樹脂分濃度30重量%に調整
してワワニスを得た。このワニスの粘度は250ボ
アズであり、また樹脂のジメチルホルムアミド中
で測定した還元比粘度は0.23であつた。 上記の如くして得られたポリアミドイミド樹脂
ワニスを1.0mmφの導体上に塗布焼付してエナメ
ル線を得た。 比較例 2 比較例1におけるクレゾール系系溶媒可溶ポリ
アミドイミド樹脂100重量部に対してPR―1501
(日立化成(株)製フエノールホルムアルデヒド樹
脂)およびメラン―20(日立化成(株)製アルコキシ
変性アミノ樹脂)をそれぞれ5重量部ずつ添加
し、クレゾールで樹脂分濃度30%に調整してポリ
アミドイミド樹脂組成物とし、これを1.0mmφの
導体上に塗布焼付してエナメル線を得た。 比較例 3 極性溶剤可溶ポリアミド樹脂の合成 成 分 グラム トリメリツト酸無水物 192(1モル) 4,4′―ジイソシアネート 250(1モル) ジフエニルメタン ジメチルアセトアミド 400 上記成分を4つ口フラスコ中で120〜150℃で反
応を進め、樹脂のジメチルアセトアミド中での還
元比粘度が0.4になつた時反応を止め、次いでジ
メチルアセトアミドで樹脂分濃度30%に調整して
ワニスを得た。 このワニスを外層、比較例1におけるクレゾー
ル系溶媒可溶ポリアミドイミド樹脂ワニスを内層
とし、外層と内層の皮膜厚が別表の通りになるよ
うに1.0mmφの導体上に塗布焼付してダブルコー
トエナメル線を得た。 比較例 4 比較例3ならびに実施例1における極性溶媒可
溶ポリアミドイミド樹脂ワニスを外層、比較例2
におけるクレゾール系溶媒可溶ポリアミドイミド
樹脂組成物ワニスを内層とし、外層と内層の皮膜
厚が別表の通りになるように1.0mmφの導体上に
塗布焼付してダブルコートエナメル線を得得た。 比較例 5 比較例3における極性溶媒可溶ポリアミドイミ
ド樹脂ワニスを内層、比較例2におけるクレゾー
ル系溶媒可溶ポリアミドイミド樹脂組成物ワニス
を外層し、内層と外層の皮膜厚が別表の通りにな
るように1.0mmφの導体上に塗布焼付してダブル
コートエナメル線を得た。 実施例 1 比較例3における極性溶媒可溶ポリアミドイミ
ド樹脂ワニスを内層、比較例2におけるクレゾー
ル系溶媒可溶ポリアミドイミド樹脂組成物ワニス
を外層とし、内層と外層の皮膜厚が別表の通りに
なるように1.0mmφの導体上に塗布焼付してダブ
ルコートエナメルル線を得た。 実施例 2 同様に比較例3における極性溶媒可溶ポリアミ
ドイミド樹脂ワニスを内層、比較例2におけるク
レゾール系溶媒可溶ポリアミドイミド樹脂組成物
ワニスを外層とし、内層と外層の皮膜厚が別表の
通りになるように1.0mmφの導体上に塗布焼付し
てダブルコートエナメルル線を得た。 実施例 3 同様に比較例3における極性溶媒可溶ポリアミ
ドイミド樹脂ワニスを内層、比較例2におけるク
レゾール系溶媒可溶ポリアミドイミド樹脂組成物
ワニスを外層とし、内層と外層の皮膜厚が別表の
通りになるように1.0mmφの導体上に塗布焼付し
てダブルコートエナメルル線を得た。 かくして得た上記比較例および実施例における
エナメル線の特性は第1表の通りである。
[Table] Place the above ingredients except trimellitic anhydride into four flasks equipped with a thermometer, a stirrer, and a fractionating tube, raise the temperature to 180°C in a nitrogen stream, and react for 90 minutes. Next, trimellitic anhydride was added, the temperature was raised to 210°C, and the reaction was continued at this temperature for 15 hours. Next, the resin concentration was adjusted to 30% by weight with cresol to obtain a wa varnish. The viscosity of this varnish was 250 boads, and the reduced specific viscosity of the resin measured in dimethylformamide was 0.23. The polyamide-imide resin varnish obtained as described above was applied and baked on a 1.0 mm diameter conductor to obtain an enameled wire. Comparative Example 2 PR-1501 for 100 parts by weight of the cresol solvent-soluble polyamide-imide resin in Comparative Example 1
(phenol formaldehyde resin manufactured by Hitachi Chemical Co., Ltd.) and Melan-20 (alkoxy-modified amino resin manufactured by Hitachi Chemical Co., Ltd.) were added in an amount of 5 parts by weight each, and the resin concentration was adjusted to 30% with cresol to form a polyamide-imide resin. A composition was prepared, and this was coated and baked on a 1.0 mmφ conductor to obtain an enameled wire. Comparative Example 3 Synthetic components of polar solvent-soluble polyamide resin Gram trimellitic anhydride 192 (1 mol) 4,4'-diisocyanate 250 (1 mol) Diphenylmethane dimethylacetamide 400 The above components were mixed in a four-necked flask at 120 ml. The reaction was allowed to proceed at ~150°C, and the reaction was stopped when the reduced specific viscosity of the resin in dimethylacetamide reached 0.4.Then, the resin concentration was adjusted to 30% with dimethylacetamide to obtain a varnish. This varnish was used as an outer layer, and the cresol-based solvent-soluble polyamide-imide resin varnish in Comparative Example 1 was used as an inner layer, and the film was coated and baked on a 1.0 mmφ conductor so that the film thicknesses of the outer layer and inner layer were as shown in the attached table. I got it. Comparative Example 4 The polar solvent-soluble polyamideimide resin varnish in Comparative Example 3 and Example 1 was used as the outer layer, Comparative Example 2
A double-coated enameled wire was obtained by applying and baking the cresol-based solvent-soluble polyamide-imide resin composition varnish as an inner layer onto a 1.0 mmφ conductor so that the film thicknesses of the outer layer and inner layer were as shown in the attached table. Comparative Example 5 The polar solvent-soluble polyamide-imide resin varnish of Comparative Example 3 was used as the inner layer, and the cresol-based solvent-soluble polyamide-imide resin composition varnish of Comparative Example 2 was used as the outer layer, so that the film thicknesses of the inner and outer layers were as shown in the attached table. A double-coated enamelled wire was obtained by coating and baking on a 1.0 mmφ conductor. Example 1 The polar solvent-soluble polyamide-imide resin varnish in Comparative Example 3 was used as the inner layer, and the cresol-based solvent-soluble polyamide-imide resin composition varnish in Comparative Example 2 was used as the outer layer, so that the film thicknesses of the inner layer and the outer layer were as shown in the attached table. A double-coated enamel wire was obtained by coating and baking it on a 1.0 mmφ conductor. Example 2 Similarly, the polar solvent-soluble polyamide-imide resin varnish in Comparative Example 3 was used as the inner layer, and the cresol-based solvent-soluble polyamide-imide resin composition varnish in Comparative Example 2 was used as the outer layer, and the film thicknesses of the inner and outer layers were as shown in the attached table. A double-coated enamel wire was obtained by coating and baking on a 1.0 mmφ conductor. Example 3 Similarly, the polar solvent-soluble polyamide-imide resin varnish in Comparative Example 3 was used as the inner layer, and the cresol-based solvent-soluble polyamide-imide resin composition varnish in Comparative Example 2 was used as the outer layer, and the film thicknesses of the inner and outer layers were as shown in the attached table. A double-coated enamel wire was obtained by coating and baking on a 1.0 mmφ conductor. The characteristics of the enamelled wires thus obtained in the comparative examples and examples are shown in Table 1.

〔発明の効果〕〔Effect of the invention〕

本発明の絶縁電線は主塗膜としてクレゾール系
溶剤に可溶のポリアミドイミド塗料を塗布、焼付
けしたものであるにもかかわらず、優れた耐課電
耐湿性を有するものであり、高湿度雰囲気あるい
は水中で使用するモータ等のマグネツトワイヤと
して有用である。
Although the insulated wire of the present invention is coated with a polyamide-imide paint soluble in a cresol solvent as the main coating and baked, it has excellent resistance to electricity and moisture, and can be used in high humidity environments or It is useful as a magnet wire for motors used underwater.

Claims (1)

【特許請求の範囲】[Claims] 1 導体直上に極性溶媒可溶ポリアミドイミド塗
料を塗布、焼付して成る下塗りポリアミドイミド
層と、該下塗りポリアミドイミド層の上層に、ク
レゾール系溶媒可溶ポリアミドイミド塗料を塗
布、焼付けして成る上塗りポリアミドイミド層か
ら成る絶縁電線において、前記上塗りポリアミド
イミド層はクレゾール溶媒中で、酸無水物基を含
有するポリカルボン酸を1.00当量、イソシアヌレ
ート環含有ポリイソシアネートを0.01〜0.30当
量、芳香族ジイソシアネートとイソシアヌレート
環含有ポリイソシアネートの当量の和を0.80〜
1.50当量、ラクタムを0.3〜0.9当量の比で反応し
て成るクレゾール系溶媒可溶ポリアミドイミド樹
脂100重量部に対してアミノ樹脂およびフエノー
ル樹脂をそれぞれ0.1〜15重量部添加してあるポ
リアミドイミド樹脂組成物から成り、しかも前記
下塗りポリアミドイミド層は1μ以上であるよう
に構成して成ることを特徴とする絶縁電線。
1 An undercoat polyamide-imide layer formed by applying a polar solvent-soluble polyamide-imide paint directly on the conductor and baking it, and an overcoat polyamide layer formed by applying a cresol-based solvent-soluble polyamide-imide paint on the upper layer of the undercoat polyamide-imide layer and baking it. In the insulated wire comprising an imide layer, the top coated polyamide-imide layer contains 1.00 equivalents of a polycarboxylic acid containing an acid anhydride group, 0.01 to 0.30 equivalents of an isocyanurate ring-containing polyisocyanate, and an aromatic diisocyanate and an isocyanate in a cresol solvent. The sum of equivalent weights of nurate ring-containing polyisocyanate is 0.80~
A polyamide-imide resin composition in which 0.1 to 15 parts by weight of an amino resin and a phenolic resin are added to 100 parts by weight of a cresol-based solvent-soluble polyamide-imide resin obtained by reacting 1.50 equivalents and a lactam in a ratio of 0.3 to 0.9 equivalents. 1. An insulated wire, characterized in that the undercoat polyamide-imide layer has a thickness of 1μ or more.
JP56072658A 1981-05-14 1981-05-14 Insulated wire Granted JPS57187810A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56072658A JPS57187810A (en) 1981-05-14 1981-05-14 Insulated wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56072658A JPS57187810A (en) 1981-05-14 1981-05-14 Insulated wire

Publications (2)

Publication Number Publication Date
JPS57187810A JPS57187810A (en) 1982-11-18
JPS6139689B2 true JPS6139689B2 (en) 1986-09-05

Family

ID=13495687

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56072658A Granted JPS57187810A (en) 1981-05-14 1981-05-14 Insulated wire

Country Status (1)

Country Link
JP (1) JPS57187810A (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2032075C3 (en) * 1970-06-29 1980-06-26 Bayer Ag, 5090 Leverkusen Multilayer insulation materials

Also Published As

Publication number Publication date
JPS57187810A (en) 1982-11-18

Similar Documents

Publication Publication Date Title
US7122244B2 (en) Polyamide-imide resin solution and the use thereof for producing wire enamels
US4448844A (en) Heat resistant resin and process for producing the same
US4294952A (en) Polyamide-imide resin and its production
JPS5880326A (en) Production of polyamide-imide resin
US3518230A (en) Imide modified amide imide wire enamel
US3493540A (en) Polyimides which are soluble in organic solvents
JPH0114643B2 (en)
CA2261770A1 (en) Wire enamels, comprising polyesterimides and/or polyamideimides with polyoxyalkylenediamines as molecular building blocks
US4113706A (en) Aromatic imino acids and resins derived therefrom
US4740576A (en) Preparation of polyamidoimide coatings having a long shelf life
JPS6139689B2 (en)
CA1318431C (en) High temperature resistant fast soldering wire enamel
EP0365877B1 (en) Polyamideimide insulated wire
JPS6213767B2 (en)
US4332925A (en) Modified polyamideimide resins
JPS6213768B2 (en)
US4429072A (en) Preparation of aqueous thermosetting electrical insulating varnishes, and use of the varnishes
US5126422A (en) Coating compositions and coated heat-resistant substrates prepared therefrom
JPS6351196B2 (en)
JPS58104925A (en) Polyamide-imide resin composition and its preparation
JPS5855168B2 (en) Polyamideimide resin composition and method for producing the same
JPH0345728B2 (en)
JPS6245644B2 (en)
JPS59204609A (en) Polyamide-imide based resin composition
JPS6018513A (en) Polyamide imide resin composition