JPS58104925A - Polyamide-imide resin composition and its preparation - Google Patents

Polyamide-imide resin composition and its preparation

Info

Publication number
JPS58104925A
JPS58104925A JP56204626A JP20462681A JPS58104925A JP S58104925 A JPS58104925 A JP S58104925A JP 56204626 A JP56204626 A JP 56204626A JP 20462681 A JP20462681 A JP 20462681A JP S58104925 A JPS58104925 A JP S58104925A
Authority
JP
Japan
Prior art keywords
diisocyanate
derivative
acid
resin composition
polyamide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56204626A
Other languages
Japanese (ja)
Inventor
Misao Wake
操 和気
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SWCC Corp
Original Assignee
Showa Electric Wire and Cable Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Electric Wire and Cable Co filed Critical Showa Electric Wire and Cable Co
Priority to JP56204626A priority Critical patent/JPS58104925A/en
Publication of JPS58104925A publication Critical patent/JPS58104925A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the titled resin composition having improved resistance to heat softening, by reacting a polycarboxylic acid containing citric acid with a diisocyanate and a lactam. CONSTITUTION:A resin composition obtained by reacting a polycarboxylic acid containing 10mol% or more citric acid and/or a derivative thereof, preferably an aromatic tricarboxylic acid, particularly trimellitic acid, with a diisocyanate and/or a derivative thereof, preferably an aromatic diisocyanate and/or the aromatic diisocyanate masked with a phenol, particularly 4,4'-diphenylmethane diisocyanate, and a lactam, e.g. epsilon-caprolactam, in a phenolic solvent, and adding 5-150pts.wt., expressed in terms of polyisocyanate based on 100pts.wt. resultant resin content in the reaction product, polyisocyanate compound masked with a phenol to the reaction product.

Description

【発明の詳細な説明】 本発明は新規なポリアミドイミド樹脂組成物およびその
製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a novel polyamideimide resin composition and a method for producing the same.

電気機器に用いられる有機絶縁材料としては、絶縁電線
、塗料、フィルム、積層板、含浸樹脂、接着剤等の用途
に応じてフェノール樹脂、ポリビニルホルマール樹脂、
ポリ王ステル樹脂、アルキッド樹脂、エポキシ樹脂、ポ
リエステルイミド樹脂、ポリアミドイミド樹脂、%ポリ
イミド樹脂等が汎用されている。
Organic insulating materials used in electrical equipment include phenol resins, polyvinyl formal resins,
Polyester resins, alkyd resins, epoxy resins, polyesterimide resins, polyamideimide resins, % polyimide resins, etc. are commonly used.

近年、省資源、省エネルギーの必要性と周辺機器の小型
化、軽量化に伴ない電気機器自体の高性能、小型化が進
められているためポリアミドイミド樹脂、ポリイミド樹
脂等の耐熱性の優れた有機材料の重要性が増加している
In recent years, with the need for resource and energy conservation and the miniaturization and weight reduction of peripheral equipment, the high performance and miniaturization of electrical equipment itself has been progressing. The importance of materials is increasing.

絶縁塗料の分野においても、比較的実用的な耐熱性、機
械特性、電気特性および経済性のバランスがとれている
ため従来多用されていたポリエステル樹脂塗料に代って
、近年、より耐熱性の向上したポリエステルイミド、ポ
リアミドイミド、ポリイミド等のイミド基含有樹脂塗料
の使用が増加している。
In the field of insulating paints, polyester resin paints have been widely used in recent years due to their relatively practical balance of heat resistance, mechanical properties, electrical properties, and economic efficiency. The use of imide group-containing resin coatings such as polyesterimide, polyamideimide, and polyimide is increasing.

イミド基含有樹脂の中ではポリアミドイミド樹脂が耐熱
性、機械特性、電気特性、化学特性のバランスが最もよ
いものとして知られている。
Among imide group-containing resins, polyamide-imide resin is known to have the best balance of heat resistance, mechanical properties, electrical properties, and chemical properties.

しかし従来の芳香族ポリアミドイミド樹脂は、高価格な
N−メチル−2−ピロリドン、ジメチルアセトアミド等
の有機極性溶剤(=しか溶解しない:′1ま ため、樹脂塗料、・9価格が高くなる難点があった。
However, conventional aromatic polyamide-imide resins only dissolve in expensive organic polar solvents such as N-methyl-2-pyrrolidone and dimethylacetamide. there were.

1・1 更に有機極性溶剤は吸湿性が強いため、これを溶剤とし
た塗料は保管や使用時の管理が困難であるという難点も
有していた。
1.1 Furthermore, since organic polar solvents have strong hygroscopic properties, paints using them as solvents also have the disadvantage of being difficult to manage during storage and use.

このため絶縁電線の分野では耐熱性を犠牲にしてフェノ
ール、クレゾール、キシレノール等の比較的安価なフェ
ノール系溶剤に溶解するようにしたポリエステルイミド
樹脂塗料を使用した絶縁電線やポリエステル樹脂、ポリ
エステルイミド樹脂塗料を下層に、ポリアミドイミド樹
脂塗料を上層に塗布焼付けた二重被覆電線が主に使用さ
れるようになってきたが、ポリアミドイミド樹脂塗料を
使用した絶縁電線はど各特性のバランスが取れていない
ため現在の電気機器の諸要求を満足するに至っていない
For this reason, in the field of insulated wires, insulated wires and polyester imide resin paints are used, which sacrifice heat resistance and are soluble in relatively inexpensive phenolic solvents such as phenol, cresol, and xylenol. Double-coated wires, in which the lower layer is coated and baked with polyamide-imide resin paint on the upper layer, are now mainly used, but insulated wires using polyamide-imide resin paint do not have a good balance of characteristics. Therefore, it has not yet reached the point where it satisfies the various requirements of current electrical equipment.

そこで原材料にアミノ酸、ラクタム等を使用することに
より一部脂肪族変性を行ない有機溶剤に対する溶解性の
優れたポリアミド樹脂の提案が数多くなされている(例
えば特公昭56−17374、特公昭56−2233(
) 、特公昭56−34210 )。
Therefore, many proposals have been made for polyamide resins that are partially aliphatic modified and have excellent solubility in organic solvents by using amino acids, lactams, etc. as raw materials (for example, Japanese Patent Publication No. 56-17374, Japanese Patent Publication No. 56-2233).
), Special Publication No. 56-34210).

しかしラクタムを用いた場合のように、メチレン鎖が分
子内に導入される脂肪族変性を行なうと耐熱性、特に絶
縁電線とした時の耐熱軟化温度が芳香族ポリアミドイミ
ド樹脂と比較して劣るため、総合的なバランスのとれた
樹脂が出現していないのが実情である。
However, when aliphatic modification is performed in which a methylene chain is introduced into the molecule, as is the case with lactam, the heat resistance, especially the heat softening temperature when used as an insulated wire, is inferior to that of aromatic polyamide-imide resin. The reality is that a resin with a comprehensive balance has not yet emerged.

本発明者は、溶解性の優れたポリアミドイミド樹脂組成
物について鋭意検討を続けた結果、従来耐熱性樹脂の材
料としては殆んど顧みられなかったクエン酸を使用する
ことにより、従来の芳香族ポリアミドイミド樹脂よりも
耐熱軟化特性に優れ、更に有機溶剤に対する溶解性も著
しく高められたポリアミドイミド樹脂組成物が得られる
ことを見出し先に特許出願した。
As a result of intensive research into polyamide-imide resin compositions with excellent solubility, the inventors of the present invention have discovered that by using citric acid, which has rarely been considered as a material for heat-resistant resins, They discovered that it was possible to obtain a polyamide-imide resin composition that had better heat softening properties than polyamide-imide resins and also had significantly improved solubility in organic solvents, and filed a patent application.

しかしてクエン酸を含むポリアミドイミド樹脂組成物に
つき更に検討を進めたところ、少なくともクエン酸を1
0モル%以上含有したポリカルボン酸を用いるとラクタ
ムを併用しても耐熱性が殆んど低下させることなく樹脂
分濃度を高めることのできるポリアミドイミド樹脂組成
物が得られることを見出した。
However, when we further investigated polyamide-imide resin compositions containing citric acid, we found that at least 1 citric acid was added to the polyamide-imide resin composition.
It has been found that when a polycarboxylic acid containing 0 mol% or more is used, a polyamide-imide resin composition can be obtained in which the resin concentration can be increased without substantially reducing the heat resistance even when a lactam is used in combination.

本発明はかかる知見に基づきなされたもので、クエン酸
を含むポリカルボン酸および/又はその誘導体とラクタ
ムとを反応させて成ることを特徴とするポリアミドイミ
ド樹脂組成物と、更にそれにフェノール類でマスクされ
たポリイソシアネート化合物を加えてなることを特徴と
するポリアミドイミド樹脂組成物およびそれらの製造方
法を提供しようとするものである。
The present invention was made based on this knowledge, and includes a polyamide-imide resin composition characterized by reacting a polycarboxylic acid containing citric acid and/or its derivative with a lactam, and a mask using phenols. The present invention aims to provide a polyamide-imide resin composition characterized in that it contains a polyisocyanate compound as described above, and a method for producing the same.

本発明に使用するクエン酸は結晶水を有するものでも有
しないものでも使用することができるが、ジアミンとの
反応が脱水を伴う反応であるので、反応効率の面から結
晶水を有しない無水クエン酸を使用することが望ましい
The citric acid used in the present invention can be used with or without water of crystallization, but since the reaction with diamine involves dehydration, from the viewpoint of reaction efficiency, citric acid with no water of crystallization can be used. It is preferable to use acids.

クエン酸を除いたポリカルボン酸および/又はその誘導
体にはトリカルボン酸、テトラカルボン酸、ジカルボン
酸および/又はその誘導体があるが、トリカルボン酸お
よび/又はその誘導体は、例えば式(■)、(2)で示
される芳香族トリカルボン酸、芳香族トリカルボン酸エ
ステル、芳香族トリカルボン酸無水物等が単独又は温容
して用いられる。
Polycarboxylic acids and/or their derivatives other than citric acid include tricarboxylic acids, tetracarboxylic acids, dicarboxylic acids and/or their derivatives. ) Aromatic tricarboxylic acids, aromatic tricarboxylic acid esters, aromatic tricarboxylic acid anhydrides, etc. shown in (1) are used alone or in a heated state.

1:、1+1 CI)             (u)ここでR,=
H,アルキル基、フェニル基一般的には、耐熱性、高い
反応性、経済性等によりトリメリット酸無水物が好適で
ある。
1:, 1+1 CI) (u) where R,=
H, alkyl group, phenyl group Generally, trimellitic anhydride is preferred due to its heat resistance, high reactivity, economical efficiency, etc.

またイミド結合比率を多くし、更に耐熱性を上げる目的
でテトラカルボン酸を併用すること%望ましく、それら
のテトラカルボン酸の例としてはピロメリット酸、3.
3’、4.4’−ベンゾフェノンテトラカルボン酸、ブ
タンテトラカルボン酸、3゜3’、 4 、4’−ジフ
ェ・:・ニルテトラカルボン酸、2.2’。
In addition, it is desirable to use tetracarboxylic acids in combination for the purpose of increasing the imide bond ratio and further increasing heat resistance. Examples of these tetracarboxylic acids include pyromellitic acid, 3.
3',4,4'-benzophenonetetracarboxylic acid, butanetetracarboxylic acid, 3゜3',4,4'-diphe-:-nyltetracarboxylic acid, 2.2'.

::: 3.3′−ジフェ三炊テトラカルボン酸、ビシクロ〔2
・2・2〕−オクト−(7)−エン−2:3.5:6テ
トラカルボン酸、3 、3’、 4 、4’−シフ、ニ
ルエーテルテトラカルボン酸、2.2’、3.3’−ジ
フェニルエーテルテトラカルボン酸、1,4,5.8−
ナフタレンテトラカルボン酸、2,3,6.7−ナフタ
レンテトラカルボン酸、1,2.5.6−ナフタレンテ
トラカルボン酸、2,2−ビス−(3゜4−ジカルボキ
シフェニル)プロパン、ビス−(3,4−ジカルボキシ
フェニル)スルホン、2゜5−ビス(3,4−ジカルボ
キシフェニル)1゜3.4オキサジアゾール又はこれら
の無水物、エステル化物等の誘導体がある。
::: 3.3'-Diphetritetracarboxylic acid, bicyclo[2
・2.2]-Oct-(7)-ene-2:3.5:6 tetracarboxylic acid, 3,3',4,4'-Schiff, nylethertetracarboxylic acid, 2.2',3. 3'-diphenyl ether tetracarboxylic acid, 1,4,5.8-
Naphthalenetetracarboxylic acid, 2,3,6.7-naphthalenetetracarboxylic acid, 1,2.5.6-naphthalenetetracarboxylic acid, 2,2-bis-(3゜4-dicarboxyphenyl)propane, bis- Examples include (3,4-dicarboxyphenyl)sulfone, 2°5-bis(3,4-dicarboxyphenyl)1°3.4 oxadiazole, and derivatives such as anhydrides and esters thereof.

これらの中でピロメリット酸無水物、3.3’、4゜4
′−ベンゾフェノンテトラカルボン酸無水物、ブタンテ
トラカルボン酸、3.3’、4.4’−ジフェニルテト
ラカルボン酸無水物が耐熱性、溶解性、経済性よりみて
より好適である。
Among these, pyromellitic anhydride, 3.3', 4゜4
'-benzophenonetetracarboxylic anhydride, butanetetracarboxylic acid, and 3.3',4.4'-diphenyltetracarboxylic acid anhydride are more preferred in view of heat resistance, solubility, and economical efficiency.

ポリカルボン酸の中でジカルボン酸の例としては、テレ
フタル酸、イソフタル酸、シュウ酸、マロン酸、コハク
酸、グルタル酸、アジピン酸、ピメリン酸、スペリン酸
、アゼライン酸等の芳香族又は脂肪族二塩基酸又はその
誘導体がある。
Examples of dicarboxylic acids among polycarboxylic acids include aromatic or aliphatic dicarboxylic acids such as terephthalic acid, isophthalic acid, oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, speric acid, and azelaic acid. There are basic acids or their derivatives.

本発明でポリカルボン酸と併用できる適当なラクタムの
例としてはε−カプロラクタム、γ−ブチロラクタム、
−一パレロラクタム、ω−ラウリンラクタム等がある。
Examples of suitable lactams that can be used in combination with polycarboxylic acids in the present invention include ε-caprolactam, γ-butyrolactam,
--parerolactam, ω-laurinlactam, etc.

溶解性、反応性、経済性よりε−カプロラクタムが好適
である。
ε-caprolactam is preferable in terms of solubility, reactivity, and economical efficiency.

ポリカルボン酸および/又はその誘導体中に占めるクエ
ン酸と芳香族トリカルボン酸および/又はその誘導体は
有機溶剤に対する溶解性と耐熱性とから少なくとも10
モル%のクエン酸を含む芳香族トリカルボン酸および/
又はその誘導体を20モル%以上含むことが望ましい。
Citric acid and aromatic tricarboxylic acid and/or its derivatives occupy at least 10% in the polycarboxylic acid and/or its derivatives in terms of solubility in organic solvents and heat resistance.
Aromatic tricarboxylic acids containing mol% citric acid and/or
It is desirable to contain 20 mol % or more of the compound or its derivative.

上記クエン酸および芳香族トリカルボン酸および/又は
その誘導体のモル%はポリカルボン酸全体に対するパー
セントを表わす(以下同じ)。
The mol% of the citric acid and aromatic tricarboxylic acid and/or its derivatives represents the percentage based on the total polycarboxylic acid (the same applies hereinafter).

芳香族トリカルボン酸および/又はその誘導体が20モ
ル%未満で、かつクエン酸が10モル%未満であるとフ
ェノール系溶剤に対する溶解性と耐熱性が低下し、実用
的な樹脂組成物を得ることができない。
If the aromatic tricarboxylic acid and/or its derivative is less than 20 mol% and the citric acid is less than 10 mol%, the solubility in phenolic solvents and heat resistance will decrease, making it difficult to obtain a practical resin composition. Can not.

ポリカルボン酸および/又はその誘導体と併用されるラ
クタムの比率はトリカルボン酸および/又はその誘導体
のモルパーセントと同じか又はそれ以下で、かつ全ポリ
カルボン酸中10モル%以上が望ましい。
The proportion of the lactam used in combination with the polycarboxylic acid and/or its derivative is preferably the same as or less than the mole percent of the tricarboxylic acid and/or its derivative, and is preferably 10 mole % or more based on the total polycarboxylic acid.

ラクタムの比率が10モル%以下であると高濃度の樹脂
溶液が得られず、またトリカルボン酸および/又はその
誘導体のモルパーセントを′超えると耐熱性、特に耐熱
軟化温度が低下するようになるため好ましくない。
If the lactam ratio is less than 10 mol%, a highly concentrated resin solution cannot be obtained, and if it exceeds the mol% of tricarboxylic acid and/or its derivatives, the heat resistance, especially the heat softening temperature, will decrease. Undesirable.

本発明に使用するジイソシアネートおよび/又はその誘
導体としては脂肪族、脂環族、芳香族いずれのジイソシ
アネートおよび/又はその誘導体でもよい。
The diisocyanate and/or its derivative used in the present invention may be any aliphatic, alicyclic, or aromatic diisocyanate and/or its derivative.

このようなジイソシアネートの例としては、エチレンジ
イソシアネート、トリメチレンジイソシアネート、テト
ラメチレンジイソシアネート、ペンタメテレンジイソシ
アネニ、ト、ヘプタメチレンジイソシアネート、ヘプタ
メチレンジイソシアネート、オクタメチレンジイソシア
ネート、ノナメチレンジイソシアネート、デカメチレン
ジ゛イソシアネート、トリメチルへキサメチレンジイソ
シアネート、モルフォリンジイソシアネート、シクロヘ
キサンジイソシアネー)、3.9−ビス(3−イソシア
ン酸プロピル)2,4,8.10−テトラオキサスピロ
〔5・5〕ウンデカン等の脂肪族、脂環族ジイソシアネ
ート類、4.4′−ジフェニルメタンジイソシアネート
、4.4’−ジフェニルエーテルジイソシアネート、4
.4’−ジフェニルブロバンジイソシアネー)、4.4
’−ジフェニルスルホンジイソシアネート、3.3′−
ジフェニルスルホンジイソシアネート、4.4’−ジフ
ェニルスルフイツトジイソシアネート、3.3’−ジメ
チル−4゜4′−ジフェニルメタンジイソシアネート、
3.3’−ジクロロ−4、4’−ジフェニルメタンジイ
ソシアネート、3.3′−ジメチル−4,4′−ビスフ
ェニルジイソシアネート、3.3′−ジメトキV−4゜
:、、1 4′−ビスフェニルジイソシアネート、4.4’−とス
フェニルジイソシアネート、m−フェニレンジイソシア
ネート、p−フェニレンジイソシアネート、2.4− 
)リレンジイソシアネート、2.6−トリレンジイソシ
アネート、m−キシリレンジイソシアネート、p−キシ
リレンジイソシアネート、等の芳香族ジイソシアネート
類があり、これらは単独又は混合して使用できる。
Examples of such diisocyanates include ethylene diisocyanate, trimethylene diisocyanate, tetramethylene diisocyanate, pentamethylene diisocyanate, heptamethylene diisocyanate, heptamethylene diisocyanate, octamethylene diisocyanate, nonamethylene diisocyanate, decamethylene diisocyanate, and trimethyl diisocyanate. Aliphatic and alicyclic compounds such as xamethylene diisocyanate, morpholine diisocyanate, cyclohexane diisocyanate), 3.9-bis(3-propyl isocyanate) 2,4,8.10-tetraoxaspiro[5.5]undecane, etc. Group diisocyanates, 4.4'-diphenylmethane diisocyanate, 4.4'-diphenyl ether diisocyanate, 4
.. 4'-diphenylbroban diisocyanate), 4.4
'-Diphenylsulfone diisocyanate, 3.3'-
diphenylsulfone diisocyanate, 4.4'-diphenylsulfite diisocyanate, 3.3'-dimethyl-4°4'-diphenylmethane diisocyanate,
3.3'-dichloro-4,4'-diphenylmethane diisocyanate, 3.3'-dimethyl-4,4'-bisphenyl diisocyanate, 3.3'-dimethoxyV-4°:,,1 4'-bisphenyl Diisocyanate, 4.4'- and sphenyl diisocyanate, m-phenylene diisocyanate, p-phenylene diisocyanate, 2.4-
) There are aromatic diisocyanates such as lylene diisocyanate, 2,6-tolylene diisocyanate, m-xylylene diisocyanate, and p-xylylene diisocyanate, which can be used alone or in combination.

またジイソシアネートのイソシアネート基をフェノール
、クレ゛ゾール、キシレノール等のフェノール類でマス
クしたジイソシアネート誘導体も使用することができる
Further, diisocyanate derivatives in which the isocyanate groups of diisocyanate are masked with phenols such as phenol, cresol, and xylenol can also be used.

ジイソシアネートおよび/又はその誘導体の一部を4 
、4’、 4’−トリイソシアネート−トリフェニルメ
タン、2.2’、5,5’−テトライソシアネート−4
、4’−ジメチルジフェニルメタン等の3価以上のポリ
イソシアネートで置変えることもできる。
Part of the diisocyanate and/or its derivative 4
, 4', 4'-triisocyanate-triphenylmethane, 2.2', 5,5'-tetraisocyanate-4
, 4'-dimethyldiphenylmethane and the like can also be substituted with trivalent or higher polyisocyanates.

これらのイソシアネート化合物の中で耐熱性、絶縁皮膜
の機械特性、経済性を考慮すれば、4゜4′−シフ、ニ
ルメタンジイソシアネート、2,4−トリレンジイソシ
アネート、2.6−)リレンジイソシアネート、m−キ
νリレンジイソνアネ−)、P−キシリレンジイソシア
ネート、4,4′−ジフェニルエーテルジイソシアネー
ト等を単独又は混合して使用することが特に好ましい。
Among these isocyanate compounds, 4°4'-Schiff, nylmethane diisocyanate, 2,4-tolylene diisocyanate, 2.6-)lylene diisocyanate, considering heat resistance, mechanical properties of the insulating film, and economical efficiency. It is particularly preferable to use m-xylylene diisocyanate, 4,4'-diphenyl ether diisocyanate, etc. alone or in combination.

クエン酸を含むポリカルボン酸および/又はその誘導体
とジイソシアネートおよび/′又はその誘導体とラクタ
ムとの反応における温度および時間は、出発原料、溶液
反応か無溶剤反応かの反応形態でも異なるが一般的には
反応温度が60〜350℃、反応時間が数時間から数拾
時間で行なわれる。
The temperature and time for the reaction of polycarboxylic acids including citric acid and/or their derivatives with diisocyanates and/or their derivatives and lactams vary depending on the starting materials and the type of reaction, solution reaction or solvent-free reaction, but in general The reaction temperature is 60 to 350°C and the reaction time is from several hours to several tens of hours.

溶液反応の場合、用いられる溶剤、出発原料仕込時の固
型分、触媒の有無等、多くの要因によって影響を受ける
が、ポリカルボン酸又はその誘導体とラクタムとジイソ
シアネートとの脱炭酸反応が約70℃付近より始まり、
またこの反応で一般的に用いることのできる溶剤の沸点
範囲より考慮して好ましい温度範囲は70〜250℃で
ある。
In the case of a solution reaction, it is affected by many factors such as the solvent used, the solid content when charging the starting materials, and the presence or absence of a catalyst, but the decarboxylation reaction between polycarboxylic acid or its derivative, lactam, and diisocyanate is approximately 70% Starting from around ℃,
Further, in consideration of the boiling point range of solvents that can generally be used in this reaction, the preferred temperature range is 70 to 250°C.

反応時間は極端に長くなるとイソシアネート基と溶剤、
イソシアネート基どうしの反応等の副反応を起すため好
ましくなく数時間から30時間が好適である。
If the reaction time is extremely long, the isocyanate group and the solvent,
Since side reactions such as reactions between isocyanate groups occur, this is not preferable, and the preferred time is several hours to 30 hours.

本発明は無溶剤でも行なうことができ、その場合は一般
に溶剤反応よりも低い温度、短かい時間で反応させるこ
とができる。
The present invention can be carried out without a solvent, and in that case, the reaction can generally be carried out at a lower temperature and in a shorter time than in a solvent reaction.

しかし希望とする高重合体の得られ易さ、樹脂組成物の
使われ方等の条件より考慮して溶液反応がより好ましい
However, solution reaction is more preferable in consideration of conditions such as ease of obtaining the desired high polymer and how the resin composition is used.

溶液反応に用いられる溶剤としては、本発明の樹脂組成
物が溶解性に優れているため、多くの有機溶剤を用いる
ことができる。
As the solvent used in the solution reaction, many organic solvents can be used since the resin composition of the present invention has excellent solubility.

本発明に好適な溶剤としては、フェノール、0−クレゾ
ール、n−クレゾール、p−クレゾール各種のキシレノ
ール酸、各種のクロルフェノール類、ニトロベンゼン、
N−メチル−2−ピロリドン、N、N’−ジメチルホル
ムアミド、N 、 N’−ジメチルアセトアミド、ヘキ
サメチルホスホルアミド、ジメチルスルホキサイド等が
あり、これらと併用できる。溶剤としてはベンゼン、艷
ルエン、キシレン、高沸点の芳香族炭化尿素類(例えば
丸善11 石油製、スワゾール$ 1000’″・ミスワゾール1
500、日本石油製日石へイゾール100.8石ハイゾ
ール150等)、モノメデルアセテート等がある。
Suitable solvents for the present invention include phenol, 0-cresol, n-cresol, p-cresol, various xylenolic acids, various chlorophenols, nitrobenzene,
Examples include N-methyl-2-pyrrolidone, N,N'-dimethylformamide, N,N'-dimethylacetamide, hexamethylphosphoramide, dimethylsulfoxide, etc., and these can be used in combination. Examples of solvents include benzene, toluene, xylene, and aromatic hydrocarbon ureas with high boiling points (for example, Maruzen 11 Petroleum Co., Ltd., Swazol $ 1000''', Miswazol 1
500, Nippon Oil Co., Ltd.'s Nippon Seki Heizol 100.8 Koku Hysol 150, etc.), Monomedel Acetate, etc.

特ζ二好ましい溶剤組成は得られる樹脂溶液の安定性、
成膜性、経済性等からフェノール、クレゾール、キシレ
ノール等のフェノール系溶剤と高沸点の芳香族炭化水素
系溶剤の混合である。
The preferred solvent composition is the stability of the resulting resin solution,
It is a mixture of a phenolic solvent such as phenol, cresol, xylenol, etc. and a high boiling point aromatic hydrocarbon solvent from the viewpoint of film forming properties and economic efficiency.

反応時の固型分濃度は特に制限はないが、35%未満で
は反応に長い時間を要し、副反応が起り易くなり高重合
の樹脂組成物を得ることが困難となるので35%以上が
より好ましい。
There is no particular restriction on the solid content concentration during the reaction, but if it is less than 35%, the reaction will take a long time, side reactions will easily occur, and it will be difficult to obtain a highly polymerized resin composition, so it should be 35% or more. More preferred.

イソシアネート化合物の反応に通常用いられる触媒によ
り本発明の反応を促進することができる。
The reaction of the present invention can be promoted by a catalyst commonly used for the reaction of isocyanate compounds.

適当な触媒の例としては一酸化鉛、ホウ酸、ナフテン酸
鉛、ナフテン酸亜鉛等のナフテン酸の金属塩、リン酸、
ポリリン酸、テトラブチルチタネート、トリエタノール
アミンチタネート等の有機チタン化合物、トリエチルア
ミン、1,8−ジアザ−ビンクロ(5・4・0)ウンデ
セン−7(この酸付加物を含むj::11.)等がある
Examples of suitable catalysts include lead monoxide, boric acid, metal salts of naphthenic acids such as lead naphthenate, zinc naphthenate, phosphoric acid,
Polyphosphoric acid, organic titanium compounds such as tetrabutyl titanate and triethanolamine titanate, triethylamine, 1,8-diaza-vinchlo(5.4.0) undecene-7 (j::11. including this acid adduct), etc. There is.

好適な使用量は・、仕込時の固型分当り0.01〜5重
量%であり、添加順、方法の制限は特にない。
The preferred amount used is 0.01 to 5% by weight based on the solid content at the time of preparation, and there are no particular restrictions on the order or method of addition.

クエン酸を含むポリカルボン酸および/又はその誘導体
とジイソレアネートおよび/又はそq誘導体とラクタム
は反応開始より同時に仕込んでも良く、また−成分を溶
解させておき、他の成分を一時(二又は数回に分けて仕
込むこともでき、特に仕込方法において制限はない。
The polycarboxylic acid containing citric acid and/or its derivative, the diisoleanate and/or its derivative, and the lactam may be charged at the same time from the start of the reaction. It can also be prepared separately, and there are no particular restrictions on the preparation method.

反応は発生する炭酸ガスの発泡および反応水の溜出程度
、さらには溶液の粘度の観察で制御できる。
The reaction can be controlled by observing the bubbling of generated carbon dioxide and the degree of distillation of reaction water, as well as the viscosity of the solution.

このようにして得られた樹脂組成物に対しフェノール類
でマスクされたポリイソシアネートを加えることが、絶
縁塗料として好適である。
Adding a phenol-masked polyisocyanate to the resin composition thus obtained is suitable as an insulating coating.

マスクされたポリイソシアネートはポリアミドイミド樹
脂組成物を得るとき使用した化合物がそのまま使用でき
る。
As the masked polyisocyanate, the compound used to obtain the polyamideimide resin composition can be used as is.

使用量は樹脂組成物の樹脂分100重量部に対し5〜1
50重量部が好ましい。
The amount used is 5 to 1 per 100 parts by weight of the resin content of the resin composition.
50 parts by weight is preferred.

5重量部未満であると絶縁電線を得る際の作業性や耐熱
軟化性に劣り、150重量部を越えると耐摩耗性に劣る
ようになる。
If it is less than 5 parts by weight, the workability and heat softening resistance when obtaining an insulated wire will be poor, and if it exceeds 150 parts by weight, the wear resistance will be poor.

本発明の樹脂組成物は必要(=応じ他の樹脂を更にブレ
ンドすることもできる。
The resin composition of the present invention may be further blended with other resins as necessary.

また、他の官能性化合物、例えばポリオール、ポリアミ
ン、ポリカルボン酸を加えて更に反応させることにより
変性ポリアミドイミド樹脂組成物を作ることもできる。
Furthermore, a modified polyamide-imide resin composition can also be prepared by adding other functional compounds such as polyols, polyamines, and polycarboxylic acids and further reacting them.

本発明の樹脂組成物はクエン酸を必須成分とするトリカ
ルボン酸および/又はその誘導体の使用によりフェノー
ル系溶剤にも極めて優れた溶解性を示し、かつ従来の有
機極性溶剤のみにしか溶解しなかった芳香族ポリアミド
イミド樹脂よりも耐熱性に優れているため、絶縁塗料以
外に含浸樹脂、積層板、フィルム、接着剤の電気絶縁材
料の分野には勿論、耐熱塗料、繊維又は成型樹脂の分野
にも応用でき実用上極めて有用である。
The resin composition of the present invention exhibits extremely excellent solubility even in phenolic solvents due to the use of tricarboxylic acid and/or its derivatives, including citric acid as an essential component, and is only soluble in conventional organic polar solvents. Because it has better heat resistance than aromatic polyamide-imide resin, it can be used not only in the field of electrical insulation materials such as impregnated resins, laminates, films, and adhesives, but also in the fields of heat-resistant paints, fibers, and molded resins. It is applicable and extremely useful in practice.

以下実施例により本発明を説明する。The present invention will be explained below with reference to Examples.

実施例1 温度針、攪拌器、冷却管、窒素導入管をっけた314ツ
ロフラスコに無水クエン酸19.277 (0,1モル
)とトリメリット酸無水物76.811(0,4モル)
とアジピン酸73.0 、!ii’ (0−5モル)と
C−カプロラクタム56.517 (0,5モル)と4
.4′−ジフェニルメタンジイソシアネート250.3
9 (1,Qモル)とm−クレゾール350gを仕込み
窒素気流中で約1時間かけて200℃に昇温した。
Example 1 Citric anhydride 19.277 (0.1 mol) and trimellitic anhydride 76.811 (0.4 mol) were placed in a 314 Turow flask equipped with a temperature needle, stirrer, cooling tube, and nitrogen inlet tube.
and adipic acid 73.0,! ii' (0-5 mol) and C-caprolactam 56.517 (0.5 mol) and 4
.. 4'-diphenylmethane diisocyanate 250.3
9 (1,Q mol) and 350 g of m-cresol were charged and the temperature was raised to 200° C. over about 1 hour in a nitrogen stream.

70℃付近より著しい発泡が、160℃より溜出水がみ
られた。
Significant foaming was observed from around 70°C, and distilled water was observed from 160°C.

クレゾールの還流温度(200〜210 ℃)で16時
間反応を続けたところ透明で粘調な樹脂溶液となった。
When the reaction was continued for 16 hours at the reflux temperature of cresol (200-210°C), a transparent and viscous resin solution was obtained.

次いでクレゾール350 Iiを加え充分に攪拌して不
揮発分(200℃X 1.5 H) 34.8%、粘度
(25℃)62ボイズの赤褐色透明な樹脂溶液を得た。
Next, Cresol 350 Ii was added and thoroughly stirred to obtain a reddish brown transparent resin solution having a non-volatile content (200°C x 1.5H) of 34.8% and a viscosity (25°C) of 62 voids.

得られた樹脂溶液を0.1m厚さの銅板上に200℃で
20分間、250℃で30分間焼付けて得られた塗膜は
充分な可撓性を有し、その赤外線吸収スペクトルには1
780醜−1にイミド基、1650ffi”−’  に
アミド基の吸収が各々認められた。
The resulting resin solution was baked on a 0.1 m thick copper plate at 200°C for 20 minutes and at 250°C for 30 minutes.The resulting coating film had sufficient flexibility, and its infrared absorption spectrum showed 1.
Imide group absorption was observed at 780 ugi-1, and amide group absorption was observed at 1650ffi''-'.

また得られた樹脂溶液を′1.0WOの銅線上に塗布焼
付けて得られた絶縁電線の特性は表に示す通りであった
The properties of the insulated wire obtained by coating and baking the obtained resin solution on a 1.0 WO copper wire were as shown in the table.

実施例2 温度計、攪拌器、冷却管、窒素導入管をつけた314ツ
ロフラスコに無水クエン酸19.217 (0,1モル
)、トリメリット酸無水物76.8 g(0,4モル)
、3 、3’、 4 、4’−ベンゾフェノンテトラカ
ルポン酸無水物161.09 (0,5モル)、ε−カ
プロラクタム56.5 g(0,5モル)、4,4′−
ジアミノジフェニルメタ/ 250.3 J? (1,
0モル)、m−rtzゾール400 gを仕込み、窒素
気流中で約1時間かけて210℃に昇温した。
Example 2 19.217 g (0.1 mol) of citric acid anhydride and 76.8 g (0.4 mol) of trimellitic anhydride were placed in a 314-turoh flask equipped with a thermometer, stirrer, cooling tube, and nitrogen inlet tube.
, 3,3', 4,4'-benzophenonetetracarboxylic anhydride 161.09 (0.5 mol), ε-caprolactam 56.5 g (0.5 mol), 4,4'-
Diaminodiphenyl meta/250.3 J? (1,
0 mol) and m-rtz sol (400 g) were charged, and the temperature was raised to 210°C over about 1 hour in a nitrogen stream.

70℃付近より著しい発泡が、160℃付近より溜出水
がみられた。
Significant foaming was observed at around 70°C, and distilled water was observed at around 160°C.

210℃で6時間反応を続は次いでm−クレゾール30
0 g、ソルベントナフサ(丸善石油製スワゾール10
00 )  180.9を加えて充分攪拌して不揮発分
(200℃X”1.5 H) 35.0%、粘度(25
℃)84ボイズの赤褐勢透明な樹脂溶液を得た。
The reaction was continued at 210°C for 6 hours, and then m-cresol 30
0 g, solvent naphtha (Maruzen Sekiyu Swasol 10
00) 180.9 was added and stirred thoroughly to reduce the non-volatile content (200℃ x 1.5H) to 35.0%, viscosity (25
℃) A reddish-brown transparent resin solution with 84 voids was obtained.

得られた樹脂溶液を0.1m厚さの銅板上に200℃で
20分間、250℃で30分間焼付けて得られた塗膜は
充分な可撓性を有し、その赤外線吸収スペクトルには1
730m″″1 にイミド基、16501m−’  4
mアミド基の吸収が各々認められた。
The resulting resin solution was baked on a 0.1 m thick copper plate at 200°C for 20 minutes and at 250°C for 30 minutes.The resulting coating film had sufficient flexibility, and its infrared absorption spectrum showed 1.
Imide group at 730m''1, 16501m-'4
Absorption of m amide group was observed in each case.

また得られた樹脂溶液を1.05m5zrの銅線上に塗
布焼付けて得られた絶縁電線の特性は、表に示す通りで
あった。
Further, the properties of an insulated wire obtained by coating and baking the obtained resin solution on a 1.05 m5zr copper wire were as shown in the table.

実施例3 温度計、攪拌器、冷却管、窒素導入管をつけた3ノ4ツ
ロフラスコに無水クエン酸96.09 (0,5モル)
、トリメリット酸無水物76.81i (0,4モル)
、ブタンテトラカルボン酸23.49 (0,1モル)
、ε−カプロラクタム45.2.9 (0,4モル)、
4 、4’ −ジフェニルメタンジイソシアネート25
0.3 fl (1,0モル)、m−クレゾール350
9を加え窒素気流中で約1時間かけて210℃に昇温し
た。
Example 3 Anhydrous citric acid 96.09 (0.5 mol) was placed in a 3-4 flask equipped with a thermometer, stirrer, cooling tube, and nitrogen inlet tube.
, trimellitic anhydride 76.81i (0.4 mol)
, butanetetracarboxylic acid 23.49 (0.1 mol)
, ε-caprolactam 45.2.9 (0.4 mol),
4,4'-diphenylmethane diisocyanate 25
0.3 fl (1,0 mol), m-cresol 350
9 was added thereto, and the temperature was raised to 210°C over about 1 hour in a nitrogen stream.

210℃で10時間、発生する炭酸ガス、溜出水を溜去
しながら反応を続けた。
The reaction was continued at 210° C. for 10 hours while the generated carbon dioxide gas and distilled water were distilled off.

次いでm−クレゾール250 Fを加えて充分攪拌して
不揮発分(250℃X i、5 H)  39.0%、
粘度(25℃)65ボイズの赤褐色透明な樹脂溶液を得
た。
Next, m-cresol 250 F was added and thoroughly stirred to obtain a non-volatile content (250°C X i, 5 H) of 39.0%.
A reddish-brown transparent resin solution with a viscosity (25° C.) of 65 voids was obtained.

得られた樹脂溶液を0.1B厚さの銅板上に200℃で
20分間、更に250℃で30分間焼付けて得られた塗
膜は充分な可撓性を有し、その赤外線吸収スペクトルに
は1780 cm  にイミド基、1640〜1680
 C11−”  にかけてブロードなアミド基の吸収が
各々認められた。
The resulting resin solution was baked on a 0.1B thick copper plate at 200°C for 20 minutes and then at 250°C for 30 minutes.The resulting coating film had sufficient flexibility, and its infrared absorption spectrum Imide group at 1780 cm, 1640-1680
Broad absorption of amide groups was observed toward C11-''.

また得られた樹脂溶液を1.0■グの銅線上に塗布焼付
けて得られた絶縁電線の特性は表に示す通りであった。
Further, the properties of the insulated wire obtained by coating and baking the obtained resin solution on a 1.0-inch copper wire were as shown in the table.

実施例4 温度計、攪拌器、冷却管、窒素導入管をっけた314ツ
ロフラスコに無水クエン酸38.4 N (0,2モル
)、トリメリット酸無水物38.49(4,2モル)、
ブタンテトラカルボン酸117.0 N (0,5モル
)、イソフタル酸16.69 (0,1モル)、ε−カ
プロラクタム22.69 (0,2モル)、4,4′−
ジフェニルメタンジイソシアネート275.0.9 (
1,1モル)、m−クレゾール35011を仕込み、窒
素気流中で約1時間かけて210℃に昇温した。
Example 4 In a 314 Turow flask equipped with a thermometer, stirrer, cooling tube, and nitrogen inlet tube, 38.4 N (0.2 mol) of citric acid anhydride, 38.49 N (4.2 mol) of trimellitic anhydride,
Butanetetracarboxylic acid 117.0 N (0.5 mol), isophthalic acid 16.69 (0.1 mol), ε-caprolactam 22.69 (0.2 mol), 4,4'-
Diphenylmethane diisocyanate 275.0.9 (
1.1 mol) and m-cresol 35011 were charged, and the temperature was raised to 210°C over about 1 hour in a nitrogen stream.

210℃で8時間、発生する炭酸ガス、溜出水を溜去し
ながら反応を続けた。
The reaction was continued at 210° C. for 8 hours while the generated carbon dioxide gas and distilled water were distilled off.

次いでm−クレゾール250gを加え充分攪拌して不揮
発分(250℃X 1.5 H) 39.5%、粘度(
25℃)70ボイズの赤褐色透明な樹脂溶液を得た。
Next, 250 g of m-cresol was added and thoroughly stirred to obtain a mixture with a non-volatile content (250°C x 1.5 H) of 39.5% and a viscosity (
A reddish-brown transparent resin solution with 70 voids (25° C.) was obtained.

得られた樹脂溶液を0.1fl厚さの銅板上に200℃
で20分、250℃で30分間焼付けて得られた塗膜は
充分な可撓性を有し、その赤外線吸収スペクトル(二は
1780C1l−”  lニイミド基、1650 am
−”  ニアミド基の吸収が各々認められた。
The obtained resin solution was heated at 200°C on a 0.1 fl thick copper plate.
The coating film obtained by baking for 20 minutes at 250°C and 30 minutes at 250°C has sufficient flexibility, and its infrared absorption spectrum (2 is 1780 C1l-"l Niimide group, 1650 am
-” Absorption of the niamide group was observed in each case.

また得られた樹脂溶液を1.0fi、1の銅線上に塗布
焼付けて得られた絶縁電線の特性は表ζ:示す通りであ
った。
The properties of the insulated wire obtained by coating and baking the obtained resin solution on a 1.0 fi, 1 copper wire were as shown in Table ζ.

実施例5 実施例1で得られた樹脂溶液100gに参考例で得られ
たマスクされたジイソシアネート化合物a4.S#(ジ
イソシアネート轡算で50重量部)を加え80℃で30
分間攪拌し均一に溶解させた。
Example 5 Masked diisocyanate compound a4. obtained in Reference Example was added to 100 g of the resin solution obtained in Example 1. Add S# (50 parts by weight based on diisocyanate count) and heat at 80℃ for 30 minutes.
The mixture was stirred for a minute to ensure uniform dissolution.

得られた樹脂溶液を1.0謳ダの銅線上4=塗布焼付け
て得られた絶縁電線の特性は表に示す通りであった。
The properties of the insulated wire obtained by coating and baking the obtained resin solution on a copper wire of 1.0 mm were as shown in the table.

実施例6 実施例2で得られた樹脂溶液ioo Iiに参考例で得
られたマスクされたジイソシアネート化合物7g(ジイ
ソシアネート換算で10重量部)を加え120℃で30
分間攪拌し均一に溶解させた。
Example 6 7 g (10 parts by weight in terms of diisocyanate) of the masked diisocyanate compound obtained in Reference Example was added to the resin solution ioo Ii obtained in Example 2, and the mixture was heated at 120°C for 30 minutes.
The mixture was stirred for a minute to ensure uniform dissolution.

得られた樹脂溶液を1.Qm$の銅線上に塗布焼付けて
得られた絶縁電線の特性は表に示す通りであった。
The obtained resin solution was added to 1. The properties of the insulated wire obtained by coating and baking on a Qm$ copper wire were as shown in the table.

実施例7 実施例4で得られた樹脂溶液100gに参考例で得られ
たマスクされたジイソシアネート化合物94、s、9(
ジイソシアネート換算120重量部)、m−クレゾール
8077を加え60℃で20分間攪拌して均一に溶解さ
せた。
Example 7 Masked diisocyanate compound 94, s, 9 (obtained in Reference Example) was added to 100 g of the resin solution obtained in Example 4.
120 parts by weight (calculated as diisocyanate) and m-cresol 8077 were added and stirred at 60°C for 20 minutes to uniformly dissolve.

得られた樹脂溶液を1.0w$の銅線上に塗布焼付けて
得られたm、、縁電線の特性は表に示す通りであった。
The resulting resin solution was coated and baked on a 1.0 w$ copper wire, and the characteristics of the rim wire were as shown in the table.

参考例 (マスクされたジイソシアネートの製造)温度針、攪拌
器、冷却管、窒素導入管をつけた314ツロフラスコ書
=4,4′−ジフェニルメタンジイソシアネート250
.3 #とm−クレゾール250.3gを仕込み200
℃で30分間反応させた。
Reference example (manufacture of masked diisocyanate) 314 Tulo flask with temperature needle, stirrer, cooling tube, and nitrogen inlet tube = 4,4'-diphenylmethane diisocyanate 250
.. 3 Prepare 250.3g of # and m-cresol and 200g
The reaction was carried out at ℃ for 30 minutes.

内容物を一部取出し、その赤外線吸収スペクトルを測定
したところ22600IL−”  のイソシアネート基
の吸収が認められずm−クレゾールでマスクされたジイ
ソシアネート化合物の生成が確認できた。
When a portion of the contents was taken out and its infrared absorption spectrum was measured, no absorption of the isocyanate group of 22600IL-'' was observed, and the formation of a diisocyanate compound masked with m-cresol was confirmed.

更に10分間反応させた後、室温に冷却し塊状の樹脂を
得た。
After reacting for an additional 10 minutes, the mixture was cooled to room temperature to obtain a lumpy resin.

以下余白Margin below

Claims (1)

【特許請求の範囲】 1、クエン酸を含むポリカルボン酸および/又はその誘
導体と、ジイソシアネートおよび/又はその誘導体と、
ラクタムとを反応させて成ることを特徴とするポリアミ
ドイミド樹脂組成物。 2、クエン酸を含むポリカルボン酸および/又はその誘
導体が少なくとも10モル%のクエン酸を含む芳香族ト
リカルボン酸および/又はその誘導体を20モル%以上
含むポリカルボン酸である特許請求の範囲第1項記載の
ポリアミドイミド樹脂組成物。 3、芳香族トリカルボン酸および/又はその誘導体がト
リメリット酸無水物である特許請求の範囲第1項又は第
2項記載のポリアミドイミド樹脂組成物。 4、ジイソシアネートおよび/又はその誘導体が芳香族
ジイソシアネートおよび/又はフェノール類でマスクさ
れた芳香族ジイソシアネートである特許請求の範囲第1
項ないし第3項のいずれか1項記載のポリアミドイミド
樹脂組成物。 5、ラクタムが8−カプロラクタムである特許請求の範
囲第1項ないし第4項のいずれか1項記載のポリアミド
イミド樹脂組成物。 6、少なくとも10モル%以上のクエン酸を含む芳香族
トリカルボン酸および/又はその誘導体を20モル%以
上含むポリカルボン酸および/又はその誘導体と、芳香
族ジイソシアネートおよび/又はその誘導体と、ラクタ
ムとの反応生成物に、フェノール類でマスクされたポリ
イソレアネート化合物を、反応生成物の樹脂分100重
量部に対し、ポリイソシアネートに換算して5〜150
重量部加えて成ることを特徴とするポリアミドイミド樹
脂組成物。 7、少なくとも10モル%以上のクエン酸を含む芳香族
トリカルボン酸および/又はその誘導体を20モル%以
上含むポリカルボン酸および/又はその誘導体と芳香族
ジイソシアネートおよび/又はその誘導体とラクタムと
をフェノール系溶剤中で反応させて得られた反応生成物
にフェノール類でマスクされたポリイソシアネート化合
物を、反応生成物の樹脂分100重量部に対し、ポリイ
ソシアネートに換算して5〜150重量部加えることを
特徴とするポリアミドイミド樹脂の製造方法。
[Claims] 1. A polycarboxylic acid containing citric acid and/or a derivative thereof, and a diisocyanate and/or a derivative thereof;
A polyamide-imide resin composition characterized by reacting with a lactam. 2. Claim 1, wherein the polycarboxylic acid containing citric acid and/or its derivative is a polycarboxylic acid containing at least 10 mol% of an aromatic tricarboxylic acid containing citric acid and/or its derivative at 20 mol% or more. The polyamide-imide resin composition described in . 3. The polyamide-imide resin composition according to claim 1 or 2, wherein the aromatic tricarboxylic acid and/or its derivative is trimellitic anhydride. 4. Claim 1, wherein the diisocyanate and/or its derivative is an aromatic diisocyanate and/or an aromatic diisocyanate masked with a phenol.
The polyamide-imide resin composition according to any one of Items 1 to 3. 5. The polyamide-imide resin composition according to any one of claims 1 to 4, wherein the lactam is 8-caprolactam. 6. Aromatic tricarboxylic acid containing at least 10 mol% or more of citric acid and/or a polycarboxylic acid and/or its derivative containing 20 mol% or more of its derivative, an aromatic diisocyanate and/or its derivative, and a lactam. In the reaction product, a polyisoleanate compound masked with phenols is added in an amount of 5 to 150 parts by weight in terms of polyisocyanate per 100 parts by weight of the resin content of the reaction product.
A polyamide-imide resin composition comprising: 7. Aromatic tricarboxylic acid containing at least 10 mol% or more of citric acid and/or polycarboxylic acid and/or its derivative containing 20 mol% or more of its derivative, aromatic diisocyanate and/or its derivative, and lactam in a phenol-based A polyisocyanate compound masked with phenols is added to the reaction product obtained by the reaction in a solvent, in an amount of 5 to 150 parts by weight in terms of polyisocyanate, based on 100 parts by weight of the resin content of the reaction product. Characteristic method for producing polyamide-imide resin.
JP56204626A 1981-12-18 1981-12-18 Polyamide-imide resin composition and its preparation Pending JPS58104925A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56204626A JPS58104925A (en) 1981-12-18 1981-12-18 Polyamide-imide resin composition and its preparation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56204626A JPS58104925A (en) 1981-12-18 1981-12-18 Polyamide-imide resin composition and its preparation

Publications (1)

Publication Number Publication Date
JPS58104925A true JPS58104925A (en) 1983-06-22

Family

ID=16493582

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56204626A Pending JPS58104925A (en) 1981-12-18 1981-12-18 Polyamide-imide resin composition and its preparation

Country Status (1)

Country Link
JP (1) JPS58104925A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6038244U (en) * 1983-08-23 1985-03-16 株式会社吉野工業所 detergent container
JPS6072914A (en) * 1983-09-06 1985-04-25 バイエル・アクチエンゲゼルシヤフト Polyamideimides and use
JPS6072913A (en) * 1983-09-06 1985-04-25 バイエル・アクチエンゲゼルシヤフト Manufacture of polyamideimides
JPS6099123A (en) * 1983-09-06 1985-06-03 バイエル・アクチエンゲゼルシヤフト Use of polyamideimides as thermoplastics

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6038244U (en) * 1983-08-23 1985-03-16 株式会社吉野工業所 detergent container
JPS6072914A (en) * 1983-09-06 1985-04-25 バイエル・アクチエンゲゼルシヤフト Polyamideimides and use
JPS6072913A (en) * 1983-09-06 1985-04-25 バイエル・アクチエンゲゼルシヤフト Manufacture of polyamideimides
JPS6099123A (en) * 1983-09-06 1985-06-03 バイエル・アクチエンゲゼルシヤフト Use of polyamideimides as thermoplastics

Similar Documents

Publication Publication Date Title
JPS5818926B2 (en) Method for producing polycondensates containing imide groups
JP2004506796A (en) Polyamide-imide resin solution and its use for producing wire enamel
US4477624A (en) Heat-resistant synthetic resin composition
JPS58104925A (en) Polyamide-imide resin composition and its preparation
US3682860A (en) Thermally stable polymers and method of their production
US3560446A (en) Process for the production of high molecular weight polyimides from urethanes
JPH0131773B2 (en)
JPS5880325A (en) Polyamide-imide resin composition and its production
JPH0327577B2 (en)
JPS5893726A (en) Polyamide-imide resin composition and its production
JPS58101117A (en) Polyamide-imide resin composition and its manufacture
JPS61275327A (en) Polyamide resin composition and its production
JPS61130323A (en) Polyamide-imide resin composition and its production
JPH0327578B2 (en)
JPS6241606B2 (en)
JPS58183749A (en) Polyamide-imide resin composition and preparation thereof
JPS58157823A (en) Polyamide-imide resin composition and is preparation
JPS59127313A (en) Insulated wire
JPS5851409A (en) Insulated wire
JPS61152733A (en) Polyamide-imide resin composition and production thereof
JPS60210620A (en) Manufacture of fatty-aromatic polyamide-imide
JPS61278522A (en) Polyamide resin composition and its production
JPS61130321A (en) Polyamide-imide resin composition and its production
JPS6164714A (en) Polyamideimide containing modified terminal group
JPS61152732A (en) Polyamide-imide resin composition and production thereof