JPH0131773B2 - - Google Patents

Info

Publication number
JPH0131773B2
JPH0131773B2 JP7460582A JP7460582A JPH0131773B2 JP H0131773 B2 JPH0131773 B2 JP H0131773B2 JP 7460582 A JP7460582 A JP 7460582A JP 7460582 A JP7460582 A JP 7460582A JP H0131773 B2 JPH0131773 B2 JP H0131773B2
Authority
JP
Japan
Prior art keywords
acid
mol
reaction
polyamide
diamine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP7460582A
Other languages
Japanese (ja)
Other versions
JPS58191746A (en
Inventor
Misao Wake
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SWCC Corp
Original Assignee
Showa Electric Wire and Cable Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Electric Wire and Cable Co filed Critical Showa Electric Wire and Cable Co
Priority to JP7460582A priority Critical patent/JPS58191746A/en
Publication of JPS58191746A publication Critical patent/JPS58191746A/en
Publication of JPH0131773B2 publication Critical patent/JPH0131773B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Polymers With Sulfur, Phosphorus Or Metals In The Main Chain (AREA)
  • Paints Or Removers (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔発明の技術分野〕 本発明は、新規なポリアミドイミド樹脂組成物
の製造方法に関する。 〔発明の技術的背景〕 電気機器に用いられる有機絶縁材料としては、
絶縁電線、塗料、フイルム、積層板、含浸樹脂、
接着剤等用いられる形態によつても異なるが、フ
エノール樹脂、ポリビニルホルマール樹脂、ポリ
エステル樹脂、アルキツド樹脂、エポキシ樹脂、
ポリエステルイミド樹脂、ポリアミドイミド樹
脂、ポリイミド樹脂等が汎用されている。 近年、省資源、省エネルギーの必要性と周辺機
器の小型化、軽量化に伴ない電気機器自体の高性
能、小型化が進められているため、ポリアミドイ
ミド樹脂、ポリイミド樹脂等の耐熱性の優れた有
機材料の重要性が増加している。 絶縁塗料の分野においても、従来比較的実用的
な耐熱性、機械特性、電気特性、経済性のバラン
スがとれているため多用されていたポリエステル
樹脂塗料に代つて、近年、より耐熱性の向上した
ポリエステルイミド、ポリアミドイミド、ポリイ
ミド等のイミド基含有樹脂塗料の使用が増加して
いる。 イミド基含有樹脂の中ではポリアミドイミド樹
脂が耐熱性、機械特性、電気特性、化学特性のバ
ランスが最もよくとれているものとして知られて
いる。 〔背景技術の問題点〕 しかし従来の芳香族ポリアミドイミド樹脂は、
高価格なN―メチル―2―ピロリドン、ジメチル
アセトアミド等の有機極性溶剤にしか溶解しない
ため、樹脂塗料の価格が高くなる難点があつた。 更に、有機極性溶剤は吸湿性が強いため、これ
を溶剤とした塗料は保管や使用時の管理が困難で
あるという難点も有していた。 このため絶縁塗料を用いる絶縁電線の分野で
は、耐熱性を犠性にしてフエノール、クレゾー
ル、キシレノール等の比較的安価なフエノール系
溶剤に溶解するようにしたポリエステルイミド樹
脂塗料を使用した絶縁電線や、ポリエステル樹
脂、ポリエステルイミド樹脂塗料を下層に、ポリ
アミドイミド樹脂塗料を上層に塗布焼付けた二重
被覆電線が主に使用されるようになつてきたが、
ポリアミドイミド樹脂塗料を使用した絶縁電線ほ
ど各特性のバランスがとれていないため現在の電
気機器の苛酷な要求を満足するに至つていない。 そこで原材料に、アミノ酸、ラクタム等を使用
することにより一部脂肪族変性を行ない有機溶剤
に対する溶解性を向上させたポリアミドイミド樹
脂の提案が数多くなされている(例えば特公昭56
−17374、特公昭56−22330、特公昭56−34210)。 しかし、ラクタムを用いた場合のようにメチレ
ン鎖が分子内に導入される脂肪族変性を行なうと
耐熱性、特に絶縁電線としたときの耐熱軟化温度
が芳香族ポリアミドイミド樹脂と比較して劣ると
いう難点を有していた。 〔発明の概要〕 本発明者は溶解性に優れ、かつイミド成分を多
く含んだポリアミドイミド樹脂組成物を開発すべ
く鋭意研究をすすめた結果、従来耐熱性樹脂の材
料としては殆んど顧みられなかつたクエン酸を多
価カルボン酸成分の一部として使用し、これをジ
アミンと反応させることにより、従来の芳香族ポ
リアミドイミド樹脂よりも耐熱性に優れ、更に有
機溶剤に対する溶解性も著しく高められたポリア
ミドイミド樹脂組成物が得られることを見出し
た。 本発明はかかる知見に基づきなされたもので、
(1)(A)(イ)少なくとも5モル%以上のクエン酸を含む
トリカルボン酸および/又はその誘導体の10〜90
モル%と、(ロ)芳香族テトラカルボン酸および/又
はその誘導体の90〜10モル%とからなる酸成分
と、(B)ジアミンとを、(A)成分と(B)成分とがほぼ等
モル(いずれか一方の成分が10モル%以下の範囲
で過剰な場合を含む)となるよう配合して、フエ
ノール系溶剤中で反応させることを特徴とするポ
リアミドイミド樹脂組成物の製造方法。を提供し
ようとするものである。 本発明に使用するクエン酸は結晶水を有するも
のでも、有しないものでも使用可能であるが、ジ
アミンとの反応が脱水を伴なう反応であるので、
反応効率の面から結晶水を有しない無水クエン酸
を使用することが好ましい。 クエン酸以外のトリカルボン酸および/又はそ
の誘導体としては、例えば()、()で示され
る芳香族トリカルボン酸、芳香族トリカルボン酸
エステル、芳香族トリカルボン酸無水物等が単独
又は2種以上混合して用いられる。 R2−(COOR13 ……() ここでR1=H、アルキル基、フエニル基、
[Technical Field of the Invention] The present invention relates to a method for producing a novel polyamide-imide resin composition. [Technical background of the invention] Organic insulating materials used in electrical equipment include:
Insulated wires, paints, films, laminates, impregnated resins,
Although it varies depending on the form of adhesive used, phenolic resin, polyvinyl formal resin, polyester resin, alkyd resin, epoxy resin,
Polyesterimide resin, polyamideimide resin, polyimide resin, etc. are commonly used. In recent years, due to the need for resource and energy conservation and the miniaturization and weight reduction of peripheral equipment, the high performance and miniaturization of electrical equipment itself has been progressing. The importance of organic materials is increasing. In the field of insulating paints, polyester resin paints, which have traditionally been widely used due to their relatively practical balance of heat resistance, mechanical properties, electrical properties, and economic efficiency, have recently been replaced by paints with improved heat resistance. The use of imide group-containing resin coatings such as polyesterimide, polyamideimide, and polyimide is increasing. Among imide group-containing resins, polyamide-imide resin is known to have the best balance of heat resistance, mechanical properties, electrical properties, and chemical properties. [Problems with background technology] However, conventional aromatic polyamide-imide resins
Since it is only soluble in expensive organic polar solvents such as N-methyl-2-pyrrolidone and dimethylacetamide, it has the disadvantage of increasing the price of the resin paint. Furthermore, since organic polar solvents have strong hygroscopic properties, paints using organic polar solvents as solvents also have the disadvantage of being difficult to manage during storage and use. For this reason, in the field of insulated wires that use insulating paints, there are insulated wires that use polyesterimide resin paints that are soluble in relatively inexpensive phenolic solvents such as phenol, cresol, and xylenol, at the expense of heat resistance. Double-coated wires, in which a polyester resin or polyester imide resin paint is coated on the lower layer and a polyamide-imide resin paint is applied and baked on the upper layer, are now mainly used.
Insulated wires using polyamide-imide resin paints do not have a good balance of characteristics, so they do not meet the harsh demands of current electrical equipment. Therefore, many proposals have been made for polyamide-imide resins whose solubility in organic solvents has been improved through partial aliphatic modification by using amino acids, lactams, etc. as raw materials (for example,
−17374, Special Publication 56-22330, Special Publication 1987-34210). However, when aliphatic modification is performed in which methylene chains are introduced into the molecule, as is the case with lactam, the heat resistance, especially the heat softening temperature when used as an insulated wire, is inferior to that of aromatic polyamide-imide resins. It had its drawbacks. [Summary of the Invention] The present inventor conducted intensive research to develop a polyamide-imide resin composition that has excellent solubility and contains a large amount of imide component, and as a result, discovered a polyamide-imide resin composition that has been hardly considered as a material for heat-resistant resins in the past. By using dehydrated citric acid as part of the polyhydric carboxylic acid component and reacting it with diamine, it has superior heat resistance than conventional aromatic polyamide-imide resins, and also has significantly increased solubility in organic solvents. It has been found that a polyamide-imide resin composition can be obtained. The present invention was made based on this knowledge,
(1)(A)(a) 10-90% of tricarboxylic acid and/or its derivatives containing at least 5 mol% or more of citric acid
(b) an acid component consisting of 90 to 10 mol% of an aromatic tetracarboxylic acid and/or its derivative, and (B) a diamine, in which the (A) component and (B) component are approximately equal. 1. A method for producing a polyamide-imide resin composition, which comprises blending the components so as to have a mol ratio (including cases in which one component is in excess of 10 mol % or less) and reacting in a phenolic solvent. This is what we are trying to provide. The citric acid used in the present invention can be used with or without water of crystallization, but since the reaction with diamine involves dehydration,
From the viewpoint of reaction efficiency, it is preferable to use anhydrous citric acid that does not contain water of crystallization. Examples of tricarboxylic acids other than citric acid and/or derivatives thereof include aromatic tricarboxylic acids, aromatic tricarboxylic acid esters, aromatic tricarboxylic acid anhydrides, etc. shown in () and () alone or in combination of two or more. used. R 2 − (COOR 1 ) 3 ... () Here R 1 =H, alkyl group, phenyl group,

【式】【formula】

【式】【formula】

【式】【formula】

【式】 (但しX=―CH2―、―CO―、―SO2―、 ―C(CH32―、―O―) 一般的には、耐熱性、高い反応性、経済性等よ
りトリメリツト酸無水物が好適である。 無水クエン酸を含むトリカルボン酸および/又
はその誘導体と併用して用いられるテトラカルボ
ン酸又はその誘導体としては、芳香族、脂環族、
脂肪族のものがある。 このようなテトラカルボン酸の例としては、ピ
ロメリツト酸、3,3′,4,4′―ベンゾフエノン
テトラカルボン酸、ブタンテトラカルボン酸、
3,3′,4,4′―ジフエニルテトラカルボン酸、
2,2′,3,3′―ジフエニルテトラカルボン酸、
ビシクロ〔2,2,2〕―オクト―(7)―エン―
2,3,5,6―テトラカルボン酸、3,3′,
4,4′―ジフエニルエーテルテトラカルボン酸、
2,2′,3,3′―ジフエニルエーテルテトラカル
ボン酸、1,4,5,8―ナフタレンテトラカル
ボン酸、2,3,6,7―ナフタレンテトラカル
ボン酸、1,2,5,6―ナフタレンテトラカル
ボン酸、2,2―ビス―(3,4―ジカルボキシ
フエニル)スルホン、2,5―ビス(3,4―ジ
カルボキシフエニル)1,3,4―オキサジアゾ
ール又はこれらの無水物、エステル化物等の誘導
体があげられる。 これらのテトラカルボン酸又はその誘導体のう
ちピロメリツト酸無水物、3,3′,4,4′―ベン
ゾフエノンテトラカルボン酸無水物、ブタンテト
ラカルボン酸は、これを使用して得られるポリア
ミドイミド樹脂が耐熱性、溶解性および経済性に
優れており、本発明に好適している。 耐熱性を低下させない範囲内でアミド結合を増
加させたい場合には、テレフタル酸、イソフタル
酸、シユウ酸、マロン酸、コハク酸、グルタル
酸、アジピン酸、ピメリン酸、スベリン酸、アゼ
ライン酸等の芳香族又は脂肪族の二塩基酸を酸成
分の一部として使用することもできる。 有機溶剤に対する溶解性と耐熱性のバランスよ
り、トリカルボン酸および/又はその誘導体中に
占めるクエン酸の比率は5モル%以上であること
が望ましく、かつトリカルボン酸および/又はそ
の誘導体とテトラカルボン酸および/又はその誘
導体からなる酸成分中に占めるトリカルボン酸お
よび/又はその誘導体の比率は10モル%以上であ
ることが望ましい。 クエン酸がトリカルボン酸および/又はその誘
導体中で5モル%未満であつたり、トリカルボン
酸および/又はその誘導体が酸成分中の10モル%
未満であつたりするとポリアミドイミド樹脂組成
物の有機溶剤、特にフエノール系溶剤に対する溶
解性が低下し、実用的な樹脂組成物を得るのが困
難となる。 また、テトラカルボン酸および/又はその誘導
体が酸成分中の10モル%未満であるとイミド成分
が少なくなり、ポリアミドイミド樹脂組成物の耐
熱性が低下するようになる。 本発明に使用するジアミンとしては脂肪族、脂
環族、芳香族いずれかのジアミンでも良い。 適当なジアミンとしては、エチレンジアミン、
トリメチレンジアミン、テトラメチレンジアミ
ン、ペンタメチレンジアミン、ヘキサメチレンジ
アミン、ヘプタメチレンジアミン、オクタメチレ
ンジアミン、ノナメチレンジアミン、デカメチレ
ンジアミン、トリメチルヘキサメチレンジアミ
ン、モルフオリンジアミン、シクロヘキサン―
1,4―ジアミン、3,9―ビス(3―アミノプ
ロピル)―2,4,8,10―テトラオキサスピロ
〔5・5〕ウンデカン等の脂肪族、脂環族ジアミ
ン類、4,4′―ジアミノジフエニルメタン、4,
4′―ジアミノジフエニルエーテル、4,4′―ジア
ミノジフエニルプロパン、4,4′―ジアミノジフ
エニルスルホン、3,3′―ジアミノジフエニルス
ルホン、4,4′―ジアミノジフエニルスルフイル
ド、3,3′―ジメチル―4,4′―ジアミノジフエ
ニルメタン、3,3′―ジクロロ―4,4′―ジアミ
ノジフエニルメタン、3,3′―ジメトキシ―4,
4′―ジアミノジフエニル、3,3′―ジメチル―
4,4′―ジアミノジフエニル、4,4′―ジアミノ
ジフエニル、m―フエニレンジアミン、p―フエ
ニレンジアミン、2,4―ジアミノトルエン、
2,6―ジアミノトルエン、m―キシリレンジア
ミン、p―キシリレンジアミン等の芳香族ジアミ
ン類があり、これらは単独又は混合して使用でき
る。 ジアミンの一部を架橋成分を増やす目的で3,
3′,4′―トリアミノジフエニルメタン、3,3′,
4,4′―テトラアミノジフエニルメタン等の3価
以上のポリアミンで置換えることも出来る。 前記ジアミンの中で耐熱性、絶縁皮膜の機械特
性の面から特に芳香族ジアミンが好適である。 (A)、(B)各反応成分の反応温度および時間は、出
発原料、溶液反応か無溶剤反応かによつても異な
るが一般的には反応温度は90〜350℃、反応時間
は数時間から数10時間が適当である。 溶液反応の場合、用いる溶剤、出発原料仕込時
の固型分、触媒の有無等多くの要因によつて影響
を受けるが、カルボン酸又はその誘導体とジアミ
ンとの反応は100℃を超えると開始し、またこの
反応で一般的に用いられる溶剤の沸点範囲より考
慮して好ましい温度範囲は100〜250℃である。 反応時間は、得られる樹脂が高分子量体を特に
必要とするかどうかによつて決定され特に制限は
ない。 本発明における反応は無溶剤で行なうことも可
能であり、その場合は一般に溶剤反応よりも低い
温度、短かい時間で反応させることができる。 しかし希望とする高重合体の得られ易さおよび
得られる樹脂組成物の使用形態の点から溶液反応
がより好ましい。 溶液反応に用いられる溶剤としては、出発原料
と反応するものは好ましくないが、反応生成物の
樹脂組成物が溶解性に優れているため多くの有機
溶剤を用いることができる。 適当な溶剤の例としては、フエノール、o―ク
レゾール、m―クレゾール、p―クレゾール、各
種のキシレノール類、各種のクロルフエノール類
等があり、これらと併用できる溶剤としては、ベ
ンゼン、トルエン、キシレン、高沸点の芳香族炭
化水素類(例えば丸善石油製、スワゾール
#1000、スワゾール1500、日本石油製、日石ハイ
ゾール100、日石ハイゾール150等)、エチレング
リコールモノメチルエーテルアセテート等があ
る。 特に好ましい溶剤組成は得られる樹脂溶液の安
定性、成膜性、経済性等からフエノール、クレゾ
ール、キシレノール等のフエノール系溶剤と高沸
点の芳香族炭化水素系溶剤の混合系である。 反応時の固型分濃度は特に制限はないが、35%
未満では反応に長い時間を要し、副反応が起りや
すくなり高重合度の樹脂組成物を得ることが困難
となるので35%以上がより好ましい。 アミド化、イミド化の反応に通常用いられる触
媒により本発明の反応を促進することができる。 適当な触媒の例としては一酸化鉛、ホウ酸、ナ
フテン酸鉛、ナフテン酸亜鉛等のナフテン酸の金
属塩、リン酸、ポリリン酸、テトラブチルチタネ
ート、トリエタノールアミンチタネート等の有機
チタン化合物、トリエチルアミン、1,8―ジア
ザ―ビシクロ(5,4,0)ウンデセン―7(こ
の酸付加物を含む)等がある。 好適な使用量は仕込時の固型分当り0.01〜5%
であり、添加順、方法の制限は特にない。 酸成分とジアミン成分の反応モル比はほぼ1:
1が好ましいが、必要に応じてどちらか一方を10
モル%以下の範囲で過剰としてもよい。各反応成
分は反応開始より同時に仕込んでもよく、また一
成分を溶剤に溶解させておき、この溶液中に他の
成分を一時に又は数回に分けて仕込むようにして
もよく、特に仕込方法において制限はない。 しかしながらトリメリツト酸無水物の如き酸無
水物基を持つトリカルボン酸誘導体を使用する場
合には、酸無水物基とジアミンとの高い反応性に
より反応の初期段階で沈澱物を生成するおそれが
あるため、クエン酸とジアミンを前もつて充分反
応させた後、トリメリツト酸無水物を後から加え
る仕込方法がより好ましい。 反応は反応水の溜出程度、溶液の粘度の観察で
制御することができる。 本発明の樹脂組成物には必要に応じて他の樹脂
をブレンドすることもできる。 又他の官能性化合物、例えばポリオール、ポリ
アミン、ポリカルボン酸を加えて更に反応させる
ことにより変性ポリアミドイミド樹脂を作ること
もできる。 本発明により得られたポリアミドイミド樹脂組
成物はクエン酸を含むトリカルボン酸および/又
はその誘導体の使用によりフエノール系溶剤にも
極めて優れた溶解性を示し、かつ従来の有機極性
溶剤のみにしか溶解しなかつた芳香族ポリアミド
イミド樹脂よりも耐熱性に優れており、絶縁塗
料、含浸樹脂、積層板、フイルム、接着剤等の電
気絶縁材料の用途はもちろん耐熱塗料、繊維又は
成型樹脂の分野にも応用でき実用上極めて有用で
ある。 以下実施例により本発明を説明する。 実施例 1 温度計、撹拌器、冷却管、窒素導入管をつけた
34ツ口フラスコに無水クエン酸19.2g(0.1
モル)、トリメリツト酸無水物153.7g(0.8モ
ル)、3,3′,4,4′―ベンゾフエノンテトラカ
ルボン酸無水物32.2g(0.1モル)、4,4′―ジア
ミノジフエニルエーテル200.2g(1.0モル)、m
―クレゾール400gを仕込み窒素気流中で約1時
間かけて200℃に昇温した。 140℃より溜出水が出始め、150〜160℃にかけ
盛んに溜出した。 200℃の温度で5時間反応を続けた後m―クレ
ゾール700gを追加して充分に撹拌し不揮発分
(200℃×1.5H)24.8%、粘度(25℃)53ポイズの
赤褐色透明な樹脂溶液を得た。 得られた樹脂溶液を0.1mm厚さの銅板上に200℃
で20分間、更に250℃で30分間焼付けて得られた
塗膜は充分な可撓性を有し、その赤外線吸収スペ
クトルには1780cm-1にイミド基、1640〜1680cm-1
にかけブロードなアミド基の吸収が認められた。 また得られた樹脂溶液を1.0mmφの銅線上に塗
布焼付けて得られた絶縁電線の特性は第1表に示
す通りであつた。 実施例 2 温度計、撹拌器、冷却管、窒素導入管をつけた
34ツ口フラスコに無水クエン酸38.4g(0.2
モル)、トリメリツト酸無水物19.2g(0.1モル)、
ブタンテトラカルボン酸163.9g(0.7モル)、4,
4′―ジアミノジフエニルメタン198.2g(1.0モ
ル)、m―クレゾール300gを仕込み窒素気流中で
約1時間かけて190℃に昇温した。 140℃より溜出水が出始め、150〜160℃にかけ
盛んに溜出した。 190℃の温度で5時間反応を続けた後m―クレ
ゾール400g、ソルベントナフサ130gを加え充分
撹拌して不揮発分(200℃×1.5H)30.0%、粘度
(25℃)89ポイズの赤褐色透明な樹脂溶液を得た。 得られた樹脂溶液を0.1mm厚さの銅板上に200℃
で20分間、250℃で30分間焼付けて得られた塗膜
は充分な可撓性を有し、その赤外線吸収スペクト
ルには1780cm-1にイミド基、1640〜1680cm-1にか
けブロードなアミド基の吸収が各々認められた。 また得られた樹脂溶液を1.0mmφの銅線上に塗
布焼付けて得られた絶縁電線の特性は第1表に示
す通りであつた。 実施例 3 温度計、撹拌器、冷却管、窒素導入管をつけた
34ツ口フラスコに無水クエン酸96.1g(0.5
モル)、4,4′―ジアミノジフエニルメタン198.2
g(1.0モル)、m―クレゾール300gを加え室素
気流中で1時間かけて190℃に昇温した。 140〜170℃にかけて脱水反応がみられ190℃で
内容物は透明となつた。 190℃で1時間反応させた後、内温をいつたん
100℃に下げ、3,3′,4,4′―ベンゾフエノン
テトラカルボン酸無水物161g(0.5モル)、m―
クレゾール500gを加え再び30分かけて190℃に昇
温した。 その間更に脱水反応がみられた。 190℃で5時間反応させた後、m―クレゾール
850gを加え充分撹拌して不揮発分(200℃×
1.5H)20.0%、粘度(25℃)43ポイズの赤褐色透
明な樹脂溶液を得た。 得られた樹脂溶液を0.1mm厚さの銅板上に200℃
で20分間、250℃で30分間焼付けて得られた塗膜
は充分な可撓性を有し、その赤外線吸収スペクト
ルには1780cm-1にイミド基、1650cm-1にアミド基
の吸収が各々認められた。 また得られた樹脂溶液を1.0mmφの銅線上に塗
布焼付けて得られた絶縁電線の特性は第1表に示
す通りであつた。 実施例 4 温度計、撹拌器、冷却管、窒素導入管をつけた
34ツ口フラスコに無水クエン酸19.2g(0.1
モル)、3,3′,4,4′―ベンゾフエノンテトラ
カルボン酸無水物161.1g(0.5モル)、ブタンテ
トラカルボン酸93.7g(0.4モル)、4,4′―ジア
ミノジフエニルエーテル200.2g(1.0モル)、(m
―クレゾール500gを加え窒素気流中で約1時間
かけて180℃に昇温した。 140〜170℃にかけて脱水反応がみられた。 180℃の温度で6時間反応を続けた後m―クレ
ゾール750g、ソルベントナフサ200gを追加し、
充分撹拌して不揮発分(200℃×1.5H)、23.0%、
粘度(25℃)51.0ポイズの赤褐色透明な樹脂溶液
を得た。 得られた樹脂溶液を0.1mm厚さの銅板上に200℃
で20分間、250℃で30分間焼付けて得られた塗膜
は充分な可撓性を有し、その赤外線吸収スペクト
ルには1780cm-1にイミド基、1650cm-1にアミド基
の吸収が各々認められた。 また得られた樹脂溶液を1.0mmφの銅線上に塗
布焼付けて得られた絶縁電線の特性は第1表に示
す通りであつた。
[Formula] (However, X = -CH 2 -, -CO-, -SO 2 -, -C(CH 3 ) 2 -, -O-) Generally, due to heat resistance, high reactivity, economic efficiency, etc. Trimellitic anhydride is preferred. Tetracarboxylic acids or derivatives thereof used in combination with tricarboxylic acids and/or derivatives thereof including citric anhydride include aromatic, alicyclic,
There are aliphatic ones. Examples of such tetracarboxylic acids include pyromellitic acid, 3,3',4,4'-benzophenonetetracarboxylic acid, butanetetracarboxylic acid,
3,3',4,4'-diphenyltetracarboxylic acid,
2,2′,3,3′-diphenyltetracarboxylic acid,
Bicyclo [2, 2, 2] - Octo - (7) - En -
2,3,5,6-tetracarboxylic acid, 3,3',
4,4′-diphenyl ether tetracarboxylic acid,
2,2',3,3'-diphenyl ethertetracarboxylic acid, 1,4,5,8-naphthalenetetracarboxylic acid, 2,3,6,7-naphthalenetetracarboxylic acid, 1,2,5,6 -naphthalenetetracarboxylic acid, 2,2-bis-(3,4-dicarboxyphenyl) sulfone, 2,5-bis(3,4-dicarboxyphenyl) 1,3,4-oxadiazole or these Examples include derivatives such as anhydrides and esters of. Among these tetracarboxylic acids or derivatives thereof, pyromellitic anhydride, 3,3',4,4'-benzophenonetetracarboxylic anhydride, and butanetetracarboxylic acid can be used to produce polyamide-imide resins. has excellent heat resistance, solubility, and economical efficiency, and is suitable for the present invention. If you want to increase the number of amide bonds without reducing heat resistance, use aromatic acids such as terephthalic acid, isophthalic acid, oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, etc. Group or aliphatic dibasic acids can also be used as part of the acid component. In view of the balance between solubility in organic solvents and heat resistance, it is desirable that the proportion of citric acid in tricarboxylic acid and/or its derivatives is 5 mol% or more, and the ratio of citric acid in tricarboxylic acid and/or its derivatives to tetracarboxylic acid and It is desirable that the proportion of tricarboxylic acid and/or its derivative in the acid component consisting of tricarboxylic acid and/or its derivative is 10 mol% or more. Citric acid is less than 5 mol% in the tricarboxylic acid and/or its derivative, or tricarboxylic acid and/or its derivative is 10 mol% in the acid component.
If it is less than this, the solubility of the polyamide-imide resin composition in organic solvents, especially phenolic solvents will decrease, making it difficult to obtain a practical resin composition. Moreover, if the tetracarboxylic acid and/or its derivative is less than 10 mol % in the acid component, the imide component will decrease, and the heat resistance of the polyamide-imide resin composition will decrease. The diamine used in the present invention may be any of aliphatic, alicyclic, and aromatic diamines. Suitable diamines include ethylenediamine,
Trimethylene diamine, tetramethylene diamine, pentamethylene diamine, hexamethylene diamine, heptamethylene diamine, octamethylene diamine, nonamethylene diamine, decamethylene diamine, trimethylhexamethylene diamine, morpholine diamine, cyclohexane
Aliphatic and alicyclic diamines such as 1,4-diamine, 3,9-bis(3-aminopropyl)-2,4,8,10-tetraoxaspiro[5.5]undecane, 4,4' -diaminodiphenylmethane, 4,
4'-diaminodiphenyl ether, 4,4'-diaminodiphenylpropane, 4,4'-diaminodiphenyl sulfone, 3,3'-diaminodiphenyl sulfone, 4,4'-diaminodiphenyl sulfide, 3 , 3'-dimethyl-4,4'-diaminodiphenylmethane, 3,3'-dichloro-4,4'-diaminodiphenylmethane, 3,3'-dimethoxy-4,
4'-diaminodiphenyl, 3,3'-dimethyl-
4,4'-diaminodiphenyl, 4,4'-diaminodiphenyl, m-phenylenediamine, p-phenylenediamine, 2,4-diaminotoluene,
There are aromatic diamines such as 2,6-diaminotoluene, m-xylylene diamine, and p-xylylene diamine, which can be used alone or in combination. Part of the diamine was added to 3 for the purpose of increasing the crosslinking component.
3′,4′-triaminodiphenylmethane, 3,3′,
It can also be replaced with a trivalent or higher valent polyamine such as 4,4'-tetraaminodiphenylmethane. Among the diamines, aromatic diamines are particularly preferred from the viewpoint of heat resistance and mechanical properties of the insulating film. (A), (B) The reaction temperature and time for each reaction component vary depending on the starting materials and whether it is a solution reaction or a solvent-free reaction, but generally the reaction temperature is 90 to 350°C and the reaction time is several hours. Several 10 hours is appropriate. In the case of a solution reaction, it is affected by many factors such as the solvent used, the solid content when charging the starting materials, and the presence or absence of a catalyst, but the reaction between a carboxylic acid or its derivative and a diamine starts when the temperature exceeds 100°C. Also, in consideration of the boiling point range of the solvent generally used in this reaction, the preferable temperature range is 100 to 250°C. The reaction time is determined depending on whether the resulting resin particularly requires a polymer and is not particularly limited. The reaction in the present invention can also be carried out without a solvent, and in that case, the reaction can generally be carried out at a lower temperature and in a shorter time than in a solvent reaction. However, solution reaction is more preferable from the viewpoint of ease of obtaining the desired high polymer and usage form of the resulting resin composition. As the solvent used in the solution reaction, it is not preferable to use a solvent that reacts with the starting materials, but since the resin composition of the reaction product has excellent solubility, many organic solvents can be used. Examples of suitable solvents include phenol, o-cresol, m-cresol, p-cresol, various xylenols, and various chlorophenols.Solvents that can be used in combination with these include benzene, toluene, xylene, High boiling point aromatic hydrocarbons (for example, Maruzen Oil Co., Ltd., Swazol #1000, Swazol 1500, Nippon Oil Co., Ltd., Nisseki Hisol 100, Nisseki Hisol 150, etc.), ethylene glycol monomethyl ether acetate, and the like. Particularly preferred solvent composition is a mixed system of a phenolic solvent such as phenol, cresol, xylenol, etc. and a high boiling point aromatic hydrocarbon solvent in view of the stability of the resulting resin solution, film-forming properties, economic efficiency, etc. There is no particular limit to the solid content concentration during the reaction, but 35%
If it is less than 35%, the reaction will take a long time, side reactions will easily occur, and it will be difficult to obtain a resin composition with a high degree of polymerization, so it is more preferably 35% or more. The reaction of the present invention can be promoted by a catalyst commonly used for amidation and imidization reactions. Examples of suitable catalysts include lead monoxide, boric acid, metal salts of naphthenic acids such as lead naphthenate, zinc naphthenate, phosphoric acid, polyphosphoric acid, organotitanium compounds such as tetrabutyl titanate, triethanolamine titanate, triethylamine. , 1,8-diaza-bicyclo(5,4,0)undecene-7 (including this acid adduct), and the like. The preferred usage amount is 0.01 to 5% based on the solid content at the time of preparation.
There are no particular restrictions on the order or method of addition. The reaction molar ratio of acid component and diamine component is approximately 1:
1 is preferable, but either one can be set to 10 if necessary.
It may be in excess within the range of mol% or less. Each reaction component may be added at the same time from the start of the reaction, or one component may be dissolved in a solvent and the other components may be added into this solution at once or in several batches; there are no particular restrictions on the method of preparation. do not have. However, when using a tricarboxylic acid derivative having an acid anhydride group such as trimellitic anhydride, there is a risk of forming a precipitate in the early stage of the reaction due to the high reactivity between the acid anhydride group and the diamine. More preferred is a preparation method in which citric acid and diamine are sufficiently reacted in advance and then trimellitic acid anhydride is added afterwards. The reaction can be controlled by observing the degree of distillation of reaction water and the viscosity of the solution. Other resins can also be blended into the resin composition of the present invention, if necessary. Furthermore, a modified polyamide-imide resin can also be produced by adding other functional compounds, such as polyols, polyamines, and polycarboxylic acids, and further reacting. The polyamide-imide resin composition obtained by the present invention exhibits extremely excellent solubility in phenolic solvents due to the use of tricarboxylic acids including citric acid and/or derivatives thereof, and is soluble only in conventional organic polar solvents. It has better heat resistance than traditional aromatic polyamide-imide resin, and can be used not only in electrical insulation materials such as insulating paints, impregnated resins, laminates, films, and adhesives, but also in the fields of heat-resistant paints, fibers, and molded resins. This is extremely useful in practice. The present invention will be explained below with reference to Examples. Example 1 19.2 g of anhydrous citric acid (0.1
mol), trimellitic anhydride 153.7 g (0.8 mol), 3,3',4,4'-benzophenonetetracarboxylic anhydride 32.2 g (0.1 mol), 4,4'-diaminodiphenyl ether 200.2 g (1.0 mol), m
- 400 g of cresol was charged and the temperature was raised to 200°C over about 1 hour in a nitrogen stream. Distilled water began to come out at 140°C, and was actively distilled at 150-160°C. After continuing the reaction at a temperature of 200℃ for 5 hours, 700g of m-cresol was added and thoroughly stirred to form a reddish-brown transparent resin solution with a non-volatile content (200℃ x 1.5H) of 24.8% and a viscosity (25℃) of 53 poise. Obtained. The resulting resin solution was heated at 200°C on a 0.1 mm thick copper plate.
The coating film obtained by baking for 20 minutes at 250℃ and 30 minutes at 250℃ has sufficient flexibility, and its infrared absorption spectrum contains imide groups at 1780 cm -1 and 1640 to 1680 cm -1
A fairly broad absorption of amide groups was observed. The properties of the insulated wire obtained by coating and baking the obtained resin solution on a copper wire of 1.0 mm diameter were as shown in Table 1. Example 2 38.4 g of anhydrous citric acid (0.2
mol), trimellitic anhydride 19.2g (0.1 mol),
Butanetetracarboxylic acid 163.9g (0.7mol), 4,
198.2 g (1.0 mol) of 4'-diaminodiphenylmethane and 300 g of m-cresol were charged, and the temperature was raised to 190° C. over about 1 hour in a nitrogen stream. Distilled water began to come out at 140°C, and was actively distilled at 150-160°C. After continuing the reaction at a temperature of 190℃ for 5 hours, 400g of m-cresol and 130g of solvent naphtha were added and thoroughly stirred to produce a reddish-brown transparent resin with a non-volatile content (200℃ x 1.5H) of 30.0% and a viscosity (25℃) of 89 poise. A solution was obtained. The resulting resin solution was heated at 200°C on a 0.1 mm thick copper plate.
The coating film obtained by baking for 20 minutes at 250℃ and 30 minutes at 250℃ has sufficient flexibility, and its infrared absorption spectrum includes an imide group at 1780 cm -1 and a broad amide group from 1640 to 1680 cm -1 . Absorption was observed in each case. The properties of the insulated wire obtained by coating and baking the obtained resin solution on a copper wire of 1.0 mm diameter were as shown in Table 1. Example 3 96.1 g of anhydrous citric acid (0.5
mole), 4,4'-diaminodiphenylmethane 198.2
(1.0 mol) and 300 g of m-cresol were added thereto, and the temperature was raised to 190° C. over 1 hour in a room with a stream of nitrogen air. A dehydration reaction was observed between 140 and 170°C, and the contents became transparent at 190°C. After reacting at 190℃ for 1 hour, the internal temperature was
The temperature was lowered to 100°C, and 161 g (0.5 mol) of 3,3',4,4'-benzophenonetetracarboxylic anhydride, m-
500 g of cresol was added and the temperature was again raised to 190°C over 30 minutes. During this time, further dehydration reaction was observed. After reacting at 190℃ for 5 hours, m-cresol
Add 850g and stir well to remove non-volatile matter (200℃
A reddish-brown transparent resin solution with a viscosity (25°C) of 43 poise was obtained. The resulting resin solution was heated at 200°C on a 0.1 mm thick copper plate.
The coating film obtained by baking for 20 minutes at 250℃ and 30 minutes at 250℃ has sufficient flexibility, and its infrared absorption spectrum shows imide group absorption at 1780 cm -1 and amide group absorption at 1650 cm -1 . It was done. The properties of the insulated wire obtained by coating and baking the obtained resin solution on a copper wire of 1.0 mm diameter were as shown in Table 1. Example 4 19.2 g of anhydrous citric acid (0.1
mol), 3,3',4,4'-benzophenonetetracarboxylic anhydride 161.1g (0.5 mol), butanetetracarboxylic acid 93.7g (0.4 mol), 4,4'-diaminodiphenyl ether 200.2g (1.0 mol), (m
- 500 g of cresol was added and the temperature was raised to 180°C over about 1 hour in a nitrogen stream. A dehydration reaction was observed between 140 and 170°C. After continuing the reaction at a temperature of 180℃ for 6 hours, 750g of m-cresol and 200g of solvent naphtha were added.
Stir thoroughly to remove non-volatile content (200℃ x 1.5H), 23.0%,
A reddish-brown transparent resin solution with a viscosity (25°C) of 51.0 poise was obtained. The resulting resin solution was heated at 200°C on a 0.1 mm thick copper plate.
The coating film obtained by baking for 20 minutes at 250℃ and 30 minutes at 250℃ has sufficient flexibility, and its infrared absorption spectrum shows imide group absorption at 1780 cm -1 and amide group absorption at 1650 cm -1 . It was done. The properties of the insulated wire obtained by coating and baking the obtained resin solution on a copper wire of 1.0 mm diameter were as shown in Table 1.

【表】【table】

【表】【table】

Claims (1)

【特許請求の範囲】[Claims] 1 (A)(イ)少なくとも5モル%以上のクエン酸を含
むトリカルボン酸および/又はその誘導体の10〜
90モル%と、(ロ)芳香族テトラカルボン酸および/
又はその誘導体の90〜10モル%とからなる酸成分
と、(B)ジアミンとを、(A)成分と(B)成分とがほぼ等
モル(いずれか一方の成分が10モル%以下の範囲
で過剰な場合を含む)となるよう配合して、フエ
ノール系溶剤中で反応させることを特徴とするポ
リアミドイミド樹脂組成物の製造方法。
1 (A) (a) Tricarboxylic acids and/or derivatives thereof containing at least 5 mol% or more of citric acid.
90 mol% and (b) aromatic tetracarboxylic acid and/or
An acid component consisting of 90 to 10 mol% of a derivative thereof, and (B) diamine, in which the (A) component and the (B) component are approximately equimolar (within a range in which one of the components is 10 mol% or less). 1. A method for producing a polyamide-imide resin composition, which comprises blending the polyamide-imide resin composition so that the polyamide-imide resin composition is reacted in a phenolic solvent.
JP7460582A 1982-05-06 1982-05-06 Polyamide-imide resin composition and its preparation Granted JPS58191746A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7460582A JPS58191746A (en) 1982-05-06 1982-05-06 Polyamide-imide resin composition and its preparation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7460582A JPS58191746A (en) 1982-05-06 1982-05-06 Polyamide-imide resin composition and its preparation

Publications (2)

Publication Number Publication Date
JPS58191746A JPS58191746A (en) 1983-11-09
JPH0131773B2 true JPH0131773B2 (en) 1989-06-28

Family

ID=13551959

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7460582A Granted JPS58191746A (en) 1982-05-06 1982-05-06 Polyamide-imide resin composition and its preparation

Country Status (1)

Country Link
JP (1) JPS58191746A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0383564U (en) * 1989-12-16 1991-08-26

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60130647A (en) * 1983-12-17 1985-07-12 Toshiba Chem Corp Heat-resistant resin composition
JPS61162525A (en) * 1985-01-04 1986-07-23 ゼネラル エレクトリツク カンパニイ New copolyamideimide, its production and prepolymer thereof and its production
US4728697A (en) * 1985-09-27 1988-03-01 General Electric Company Novel copolyamideimides, prepolymers therefor and method for their preparation

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0383564U (en) * 1989-12-16 1991-08-26

Also Published As

Publication number Publication date
JPS58191746A (en) 1983-11-09

Similar Documents

Publication Publication Date Title
KR20000029890A (en) Wire enamels containing polyester imides and/or polyamide imides with polyoxyalkylene diamines as molecular elements
US4004062A (en) Aqueous polyester coating composition
JPH0131773B2 (en)
JPS58104925A (en) Polyamide-imide resin composition and its preparation
JPS61275327A (en) Polyamide resin composition and its production
JPS5880325A (en) Polyamide-imide resin composition and its production
JPH0327577B2 (en)
JPS61152733A (en) Polyamide-imide resin composition and production thereof
JPH0357944B2 (en)
JPS585207B2 (en) Polyamideimide resin composition
JPS61130323A (en) Polyamide-imide resin composition and its production
GB2080316A (en) Polyetheramideimide Resins and Electrical Conductors Insulated Therewith
JPS6241606B2 (en)
JPH0327578B2 (en)
JPS61152732A (en) Polyamide-imide resin composition and production thereof
JPS5893726A (en) Polyamide-imide resin composition and its production
JPS61152734A (en) Polyamide-imide resin composition and production thereof
JPH0218343B2 (en)
JPS59232149A (en) Heat-resistant paint
JPS58183749A (en) Polyamide-imide resin composition and preparation thereof
JPS5851409A (en) Insulated wire
JPS61285224A (en) Polyamide imide resin composition
JPS61130321A (en) Polyamide-imide resin composition and its production
JPS61152735A (en) Polyamide-imide resin composition and production thereof
JPS61278522A (en) Polyamide resin composition and its production