JPS6350992B2 - - Google Patents

Info

Publication number
JPS6350992B2
JPS6350992B2 JP55111083A JP11108380A JPS6350992B2 JP S6350992 B2 JPS6350992 B2 JP S6350992B2 JP 55111083 A JP55111083 A JP 55111083A JP 11108380 A JP11108380 A JP 11108380A JP S6350992 B2 JPS6350992 B2 JP S6350992B2
Authority
JP
Japan
Prior art keywords
spirulina
solution
algae
nitrogen content
liquefied
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55111083A
Other languages
Japanese (ja)
Other versions
JPS5736981A (en
Inventor
Takaharu Asazuma
Tooru Fujii
Kyohisa Minagawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON SUPIRURINA KK
Original Assignee
NIPPON SUPIRURINA KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON SUPIRURINA KK filed Critical NIPPON SUPIRURINA KK
Priority to JP11108380A priority Critical patent/JPS5736981A/en
Publication of JPS5736981A publication Critical patent/JPS5736981A/en
Publication of JPS6350992B2 publication Critical patent/JPS6350992B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳现な説明】[Detailed description of the invention]

本発明は液化スピルリナからなる溶液組成物お
よびその補造方法に関するものである。 さらに詳しくは、本発明は動物甚逌料に察しお
混和含浞し易い䞊に、䜓内における消化吞収性を
䞀局向䞊した成長促進性を瀺す溶液組成物および
その補造方法にかかるものである。 緑藻類のクロレラ藻䜓䞭には未知の生理掻性物
質が含たれ、藍藻類のスピルリナ藻䜓䞭にも動物
に察し成長促進䜜甚を有する栞酞系の成長因子が
含たれおいるず掚定され、珟圚それらの究明が急
がれおいる。 スピルリナ藻䜓は匷固な现胞壁を有するクロレ
ラ藻䜓ず比范しお動物䜓内においお、藻䜓に含有
される栄逊源や他の有効成分の消化吞収率のよい
こずは呚知である。しかし、クロレラに぀いおは
生理掻性物質を抜出分離する研究がなされ、これ
を溶液状態で利甚するこずが開発されおきた。 䟋えばクロレラ藻䜓䞭に含たれおいる未知の生
理掻性物質即ち、クロレラ゚キスに぀いお乳酞
菌、原生動物、怍物等に成長促進効果があるず知
られおおり、このようなクロレラ゚キスの補造法
ずしお、也燥クロレラを熱氎抜出凊理するか、あ
るいはアルカリ氎溶液で抜出凊理する方法および
倖郚より酵玠を䜜甚させお、䟋えばトリプシンを
PH7.2〜8.4で䜜甚させるか、セルラヌれをPH〜
で䜜甚させるか、あるいは玍豆菌プロテアヌれ
をPHで䜜甚させお消化した埌、抜出分離するな
どの方法が知られおいる。 しかし、スピルリナの堎合にはクロレラず同様
の抜出凊理を盎ちに適甚するこずは困難である。
すなわち、有効成分を取埗するためスピルリナ藻
䜓を熱氎抜出凊理したのでは豊富に含有されるビ
タミン矀の劂き有効成分が著しく枛少し、たた倖
郚より酵玠を䜜甚させる凊理方法では酵玠補剀が
高䟡であるため抜出液を動物甚䟋えば魚類甚の逌
料添加剀等に適甚できるものではない。 本発明の目的は藻䜓䞭の゚キス成分を抜出分離
するのではなく、スピルリナ藻䜓䞭に含たれる栄
逊成分およびその他の有効成分を総䜓的に枛少せ
ずに、藻䜓の堎合よりも䞀局消化吞収性を向䞊し
た液化スピルリナからなる溶液組成物およびその
補造法を提䟛するにある。 本発明者らは動物甚ずりわけ逊殖甚の仔皚魚類
のみならず成長過皋にある20〜30mm以䞊の魚類に
察しおもスピルリナを逌料甚に適応させるため䜎
枩床で液化する研究を広範囲に倉化した条件䞋で
行な぀たずころ、垞枩近蟺の高アルカリ性氎溶液
䞭で自己消化せしめるこずにより目的を達成し埗
るこずを芋出した。たた、スピルリナの培逊は無
菌的には行われおいないが、自己消化の起るこず
を確認するために過滅菌した培逊液で玫倖線照
射した無菌の皮スピルリナを培逊し、これを無菌
箱䞭で無菌的に別しおスピルリナを也燥重量換
算で玄回収し、0.5モル濃床の炭酞ナトリり
ム−重炭酞ナトリりムの緩衝溶液PH10100ml
に分散し、トル゚ン0.5mlを加えお30℃で24時間
静眮した。この分散液の郚を採り顕埮鏡芳察を
行぀たずころ、糞状䜓は完党に分断され埮小な粒
子のみが芳察された。たた、この分散液の非蛋癜
態窒玠含量の党窒玠含量に察する割合が65を瀺
し、スピルリナが自己の酵玠により分解が起぀た
こずが瀺された。これず同時に非無菌的に培逊さ
れたスピルリナに぀いおも同様の操䜜を行い、同
様の結果が埗られた。 本発明はこのような研究過皋においお埗られた
知芋に基づいおいるものである。 本発明においお利甚されるスピルリナ藻䜓に぀
いおはさたざたな公知文献によ぀お知るこずがで
きる。 䟋えば、培逊法に぀いおは特開昭56−64482号
公報発明の名称埮现藻類の培逊方法および装
眮および特公昭45−29430号公報発明の名
称藻類の培逊方法および培逊槜蚘茉の方法に
よるごずく、栄逊塩類を溶解した培逊液にスピル
リナを接皮しお回転䜓による回転又は炭酞ガス含
有空気の吹蟌み、駆動力で培逊液を埪環せしめな
がら光照射するこずにより、容易にスピルリナを
増殖し収穫するこずができる。たた、珟圚このよ
うな工業的培逊法で培逊されおいる比范的圢態の
倧型なスピルリナずしおは、スピルリナプラテン
シスSpirulina Platensisおよびスピルリナマ
キシマSpirulina maximaの皮が知られお
おり、その圢態的特城の詳现に぀いおは、特公昭
50−32996号公報発明の名称魚の飌育方法
にみるこずができる。その他、スピルリナメゞダ
ヌS.major、スピルリナプリンセスS.
princeps、スピルリナラキシシマS.
laxissima、スピルリナスブチルシマS.
subtillsima、スピルリナカルダリアS.
caldaria、スピルリナキナアタS.curtaおよ
びスピルリナスピルリシマS.spirulissimaな
ども知られおいる。埓぀おスピルリナ藻䜓の培逊
法および圢態的特城に぀いお、ここでは詳しくは
觊れないが、珟圚迄に確認されおいるスピルリナ
藻䜓䞭の成分組成を第衚にずりたずめ、蛋癜質
構成䞻芁アミノ酞組成を第衚に瀺した。 なお、第衚および第衚には比范のために緑
藻類のクロレラの組成も付加した。
The present invention relates to a solution composition comprising liquefied spirulina and a method for producing the same. More specifically, the present invention relates to a solution composition that is easily mixed and impregnated into animal feed and exhibits growth-promoting properties that further improve digestibility and absorption in the body, and a method for producing the same. Chlorella, a green alga, contains unknown physiologically active substances, and Spirulina, a blue-green alga, is estimated to contain nucleic acid-based growth factors that have a growth-promoting effect on animals. There is an urgent need to investigate. It is well known that Spirulina algae have a higher rate of digestion and absorption of nutrients and other active ingredients contained in the algae in animal bodies than Chlorella algae, which have strong cell walls. However, research has been conducted to extract and separate physiologically active substances from chlorella, and the use of this in a solution state has been developed. For example, it is known that chlorella extract, an unknown physiologically active substance contained in chlorella algae, has a growth-promoting effect on lactic acid bacteria, protozoa, plants, etc. Chlorella is extracted with hot water or an alkaline aqueous solution, and an enzyme is applied externally, such as trypsin.
Either act at PH7.2~8.4 or use cellulase at PH4~
Methods are known, such as digestion with Bacillus natto protease at pH 5 or pH 7, followed by extraction and separation. However, in the case of Spirulina, it is difficult to immediately apply the same extraction process as for Chlorella.
In other words, when Spirulina algae are subjected to hot water extraction to obtain the active ingredients, the active ingredients, such as vitamins, which are abundantly contained, are significantly reduced, and when the processing method uses external enzymes, the enzyme preparations are expensive. Therefore, the extract cannot be used as a feed additive for animals, such as fish. The purpose of the present invention is not to extract and separate the extract components in the algae, but to improve the digestion of Spirulina algae without reducing the nutrients and other active ingredients contained in the algae. An object of the present invention is to provide a solution composition comprising liquefied spirulina with improved absorbability and a method for producing the same. The present inventors have made extensive changes in their research on liquefying Spirulina at low temperatures in order to adapt it for use as feed for animals, especially larval fish for aquaculture, but also for growing fish larger than 20 to 30 mm. When conducting experiments under these conditions, it was found that the objective could be achieved by autolysis in a highly alkaline aqueous solution at around room temperature. In addition, Spirulina is not cultured aseptically, but in order to confirm that autolysis occurs, we cultured sterile seed Spirulina in an oversterilized culture solution that had been irradiated with ultraviolet light, and then placed it in a sterile box. Approximately 1 g of spirulina was recovered in terms of dry weight by aseptic separation, and 100 ml of a 0.5 molar sodium carbonate-sodium bicarbonate buffer solution (PH10) was collected.
0.5 ml of toluene was added and left at 30°C for 24 hours. When a portion of this dispersion was taken and observed under a microscope, it was found that the filaments were completely separated and only minute particles were observed. Furthermore, the ratio of the non-protein nitrogen content to the total nitrogen content of this dispersion was 65%, indicating that Spirulina was degraded by its own enzyme. At the same time, similar operations were performed on Spirulina cultured in a non-sterile manner, and similar results were obtained. The present invention is based on the knowledge obtained in the course of such research. The Spirulina algae used in the present invention can be learned from various known documents. For example, regarding the culture method, JP-A-56-64482 (title of invention: method and device for culturing microalgae) and JP-B No. 45-29430 (title of invention: method and culture tank for culturing algae) are described. According to the method, spirulina can be easily grown by inoculating spirulina into a culture solution containing dissolved nutrients and irradiating it with light while circulating the culture solution using a rotating body, blowing carbon dioxide-containing air, or driving force. and can be harvested. In addition, there are two known species of relatively large Spirulina that are currently cultivated using industrial culture methods: Spirulina platensis and Spirulina maxima. For details on the characteristics of
Publication No. 50-32996 (Title of invention: Fish breeding method)
You can see it in In addition, Spirulina Major (S.major), Spirulina Princess (S.
princeps), Spirulina laxissima (S.
laxissima), Spirulina butylsima (S.
subtillsima), Spirulina Caldaria (S.
Spirulina caldaria), S. curta and S. spirulissima are also known. Therefore, we will not discuss the cultivation method and morphological characteristics of Spirulina algae in detail here, but the component composition of Spirulina algae that has been confirmed to date is summarized in Table 1, and the main amino acid composition of protein components is summarized in Table 1. It is shown in Table 2. Note that the composition of the green alga Chlorella is also added to Tables 1 and 2 for comparison.

【衚】【table】

【衚】【table】

【衚】 本発明においお、スピルリナ藻䜓は工業的培逊
により収穫される䞊蚘の第衚および第衚に瀺
した劂き成分組成を有するスピルリナマキシマお
よびスピルリナプラテンシス䞡者は成分組成類
䌌の䞀方又は䞡者を利甚するのが奜たしいが、
圢態䞊よりも成分的に類䌌するその他のスピルリ
ナ属の藻䜓を利甚しおも差し支えない。そしお、
培逊槜から回収分離埌氎掗したケヌキ状の生藻䜓
が最も奜適であるが、氎掗埌砕解しあるいは砕解
するこずなく也燥したスピルリナ藻䜓、望たしく
は熱颚枩床90℃〜200℃で噎霧也燥したスピルリ
ナ藻䜓あるいは氎掗埌凍結也燥したスピルリナ藻
䜓なども、䞊蚘生藻䜓の䞀郚を混入しお利甚でき
る。 本発明は䞊述したスピルリナ藻䜓を匷アルカリ
性の氎溶液䞭で自己消化せしめたものであるが、
氎溶液のPH倀は8.0〜11.5ずするのが望たしく、
PH〜10の範囲ずするのが䞀局奜適である。 PHがを䞋回る堎合あるいはPH倀が11.5を䞊回
る堎合にはスピルリナの自己分解に関䞎する酵玠
の掻性PH域からはずれるので䞍適圓である。 このようなアルカリ性氎溶液を調補するために
氎に添加される化合物あるいは化合物矀ずしお、 (ã‚€) 炭酞ナトリりム−重炭酞ナトリりム (ロ) 炭酞カリりム−重炭酞カリりム (ハ) 隣酞ナトリりム−隣酞氎玠ナトリりム−隣酞
氎玠ナトリりム−氎酞化ナトリりム (ニ) 䞊蚘(ハ)のナトリりム塩をカリりム塩ずした組
合せ。 (ホ) グリシン−塩化ナトリりム−氎酞化ナトリり
ム (ヘ) グリシン−塩化カリりム−氎酞化カリりム などの䞀皮又は二皮以䞊を利甚するこずができ
る。たた、䞊蚘化合物又は化合物矀の氎溶液䞭の
濃床は、0.05〜1Mずするのが望たしく、PH
は氎酞化ナトリりムなどの氎酞化物で調敎する。 このようなアルカリ氎溶液に察し、スピルリナ
藻䜓の自己消化促進およびたた防腐あるいは抗
菌を目的ずしお䞋蚘の化合物の䞀皮又は二皮以䞊
をアルカリ氎溶液に察しお(a)〜(e)に぀いおは、
〜10Mol、(f)に぀いおは0.05〜濃床ずな
るように添加するのが奜適である。 (a) 塩化ナトリりム、塩化カリりムの劂き無機塩
類。 (b) 庶糖、果糖、乳糖、ブドり糖、ガラクトヌ
ス、゜ルボヌス、マルトヌスの劂き糖類。 (c) ゜ルビトヌル、マンニトヌルの劂き糖アルコ
ヌル類。 (d) グルコン酞、ガラクトン酞、乳酞、酢酞、プ
ロピオン酞、ク゚ン酞、リンゎ酞、フマヌル酞
の劂き有機酞およびその塩類。 (e) グルタミン酞、アスパラキン酞、アラニン、
リゞンの劂きアミノ酞及びその塩類。 (f) トル゚ン、酢酞゚チル、キシレン、−ヘキ
サン、゚ヌテル、ベンれンの劂き疎氎性有機溶
媒。 本発明においおはスピルリナ藻䜓をアルカリ氎
溶液圓り也燥重量で10〜100添加分散し、
枩床25〜55℃、望たしくは30〜45℃に保持しなが
ら撹拌又は撹拌せずに0.5〜48時間にお自己消化
せしめる。自己消化時の液枩が25℃を䞋回る堎合
には消化の進行が緩慢で䞍適圓であり、55℃を䞊
回る堎合は酵玠倱掻が起り䞍適圓である。自己消
化完了埌そのたたの状態もしくは甚途目的に応じ
お鉱酞あるいは有機酞でPHの調敎を行い本発明の
目的補品が埗られる。 本発明の溶液組成物は、遮光性密栓容噚に保存
すれば長期間倉質するこずはない。 本発明にかかるスピルリナ藻䜓液化物におい
お、藻䜓の自己消化皋床は䟋えば非蛋癜態窒玠含
量を経時的に定量分析するこずによ぀お把握する
こずができる。即ち、スピルリナ藻䜓䞭には、培
逊条件によ぀お倚少の倉動はあるが、通垞玄10〜
11の窒玠が含たれ、この党窒玠を100ずしお玄
2.8皋床の非蛋癜態窒玠が含有され、自己消化
の進行ず共に非蛋癜態窒玠含量が増倧するので消
化皋床を容易に把握できる。䟋えば、自己消化開
始埌玄42時間経過しおほが消化進行皋床の鈍化し
たスピルリナ藻䜓液化物の党窒玠含量に察する非
蛋癜態窒玠含量の割合が42.2であるこずが確認
されおいる。これは蛋癜態窒玠が酵玠分解䜜甚に
より自己消化した割合が40.5であるこずを瀺し
おいる。このように高床に蛋癜質が分解された溶
液は、酵玠掻性を倱぀た藻䜓からでは冷氎又は熱
氎抜出あるいは匷アルカリ抜出PH11.5皋床で
も到底埗るこずはできない。 本発明における党窒玠含量は䞊蚘溶液党内容物
を通垞のケルダヌル窒玠ずしお求めたものであ
り、非蛋癜態窒玠は10濃床のトリクロル酢酞に
可溶な窒玠をケルダヌル法で求めたものである。 なお、スピルリナの被分散媒䞭にグリシン、尿
玠等の窒玠化合物を添加するず党窒玠含量可溶性
窒玠含量ずも倧きく䞊げ底されるので前も぀おそ
の分の窒玠含量を求めおおき、スピルリナのみに
由来する䞊述の各窒玠含量を算出しその比を求め
る。 本発明にかかるスピルリナ藻䜓液化物は党窒玠
䞭に占める非蛋癜態窒玠の割合が少くずも20、
望たしくは30以䞊であるこずが肝芁であり、20
の倀を䞋回る堎合はスピルリナ藻䜓の倧きな断
片が液化物䞭に存圚しおいるので䟋えば仔皚魚甚
には奜たしくない。そしお、党窒玠䞭の非蛋癜態
窒玠の割合が30を䞊回るず液化物䞭には倧きな
断片玄10Ό以䞊は芋圓らなくなる。 さらに本発明においお藻䜓の自己消化皋床は、
消化にずもな぀お液䞭に溶出遊離しおくる物質を
光孊的に枬定するこずによ぀おも把握するこずが
できる。即ち、本発明者らが栞酞系の物質である
ず掚定しおいる260n付近に極倧吞収のパタヌ
ンを瀺す物質が存圚し、その260nにおける吞
光床の増倧皋床を枬定するこずにより把握するこ
ずもできる。䟋えば、スピルリナ藻䜓の䞀定量を
䞀定量の消化液䞭で䞊述の方法により自己消化し
た溶液に最終濃床が0.4芏定ずなるように過塩玠
酞を添加し、生成した可溶性蛋癜の凝固沈柱ず藻
䜓残枣を遠心分離機10000G、10分間を甚い
お分離陀去し、埗られた溶液を分光光床蚈にかけ
お260nの吞光床を枬定し、あらかじめ分解床
ず吞光床の関係を求めおおいた怜量線から分解皋
床を把握するこずができる。 本発明にかかる溶液組成物は、動物甚ずりわけ
銀鮭、真鯛、鯉、どじよう、ひらめ、にじたす、
あたご、ふぐ、あじ、はたち、かんぱち、おらぎ
あ、あゆ、うなぎ、などの逊殖甚仔皚魚の逌料に
利甚するのが奜適であるが、20〜30mm以䞊の成長
過皋にある各皮逊殖魚類にも利甚できる。 さらに、本発明にかかる溶液組成物は䞊述した
魚類甚の逌料玠材ずしお利甚できるばかりではな
く、他の動物甚䟋えば牛、豚、銬、矊、ミンク、
山矊の劂き家畜や実隓動物モルモツト、ネズ
ミおよびにわずりや小鳥の劂き家離類、さらに
はみどりむし、ぞうりむし等の原生動物わむし
類、みじんこやくるたえび等の甲殻類の逌料ずし
おも適宜利甚するこずができる。ずりわけ、これ
ら動物の幌生期の固圢逌料や液状逌料に添加しお
利甚するのが奜適である。 本発明組成物は、逌料に察しお噎霧・含浞・浞
挬・混和などの方法で添加できるが、芁は逌に均
䞀に分散添加され個々の動物や逊殖魚に効率よく
投䞎、摂逌される限り劂䜕なる添加方法も採甚で
きる。特に商品名ゲルバむンダヌ君接化孊株匏
䌚瀟補マむリツチ田蟺補薬株匏䌚瀟補、ス
タンガヌド台糖フアむザヌ株匏䌚瀟補の劂き
アルギン酞を䞻成分ずする逌料甚展着剀ず溶液組
成物の混合溶液を逌料に察しお噎霧あるいは混和
しお利甚するのが奜適である。 以䞊の本発明によればスピルリナ藻䜓に含たれ
る有効成分がほずんど溶液䞭に溶存しおいる状態
の溶液組成物が埗られるので、藻䜓そのたたの堎
合よりも動物に察する消化吞収性は栌段に向䞊さ
れ、䞔぀溶液状態であるから基瀎逌料に察する添
加の際の取扱いも䞀局容易であるずいう利点があ
る。 以䞋に実斜䟋および溶液組成物の䜿甚䟋を瀺
し、本発明をさらに詳しく説明する。 実斜䟋  培逊槜から採取埌、脱氎したスピルリナマキシ
マの生藻䜓よりなるケヌキ也燥重量換算30
を20重量の食塩ずナトリりム濃床でノモルずな
るように炭酞ナトリりム−重炭酞ナトリりムを添
加した氎溶液PH10に分散した。この分散溶液
を枩床30℃に制埡しながら48時間保持し藻䜓を自
己消化せしめた。分散溶液の経時的倉化を顕埮鏡
芳察したずころ、玄18時間埌にはスパむラル状の
圢態は寞断され、玄26時間埌には䞀芖野に単䜍
现胞からなる断片が〜個残存する皋床に消化
が進行し、40時間埌にはこれらの断片も消倱する
皋床に消化の進行するこずが認められた。たた、
48時間埌には党窒玠含量に察する非蛋癜態窒玠含
量の割合が45ずな぀た。さらに、消化凊理埌の
溶液に最終濃床が0.4芏定ずなるように過塩玠酞
を添加しお可溶性蛋癜を凝固した埌遠心分離機
10000Gに10分間かけお、藻䜓残枣ず前蚘凝固
沈柱を陀去した埌、波長220nから350nの吞
光床を枬定したずころ260nに吞収極倧を有す
る第図に瀺したずおりの曲線が埗られた。な
お、この260nの吞光床セル厚cmを藻
䜓の自己消化時間の経過ず共に䞊述した方法に準
じお枬定したずころ第図に瀺したずおりの曲線
が埗られた。この堎合也燥䜓換算でのスピ
ルリナを100mlに分散し自己消化させた堎合に換
算するずO.D.260ncmセルは12.5ずなる 比范䟋  分散溶液のPHをに制埡した溶液(ã‚€)およびPHを
12に制埡した溶液(ロ)を調補した以倖は、実斜䟋
の操䜜をくり返した。 溶液(ã‚€)および溶液(ロ)の䞡者共に消化の進行が緩
慢で、48時間埌の消化進行皋床が実斜䟋の堎合
の10時間経過埌のものに盞圓し、実甚性のある補
造法ずは認められなか぀た。 実斜䟋  塩化カリりム200ず燐酞氎玠ナトリりム
Na2HPO4・12H2O18を氎に溶解し、さら
に氎でうすめおずした埌10芏定の氎酞化ナト
リりム溶液を添加しおPH10に調敎した。この溶液
にスピルリナプラテンシスの生藻䜓よりなるケヌ
キ也燥重量換算60を添加分散し、枩床を35
℃に制埡しながら24時間保持し自己消化せしめ
た。 たた、消化進行ず共に時々PHを枬定し、芏定
の氎酞化ナトリりムを滎䞋しおPHを10に保持し
た。この溶液組成物の党窒玠含量に察する非蛋癜
態窒玠含量の割合は41であ぀た。 実斜䟋  燐酞氎玠ナトリりムNa2HPO4・12H2O18
を400mlの氎に溶解した埌、庶糖825を加えお
加枩溶解し、10芏定の氎酞化ナトリりム溶液を添
加しおPHを10ずした。この溶液にスピルリナマキ
シマの生藻䜓よりなるケヌキ也燥重量換算25
ずスピルリナプラテンシスの生藻䜓よりなる
ケヌキ也燥重量換算25ずを加えお分散混合
し、枩床を35℃に制埡しながら48時間保持し、自
己消化せしめた。この溶液組成物の党窒玠含量に
察する非蛋癜態窒玠含量の割合は38であ぀た。 比范䟋  実斜䟋の操䜜をくり返した。䜆し、分散溶液
の枩床を13℃条件−および同枩床を57℃
条件−に制埡し、スピルリナ藻䜓の自己消
化条件のみを倉化した。 条件−の堎合は48時間経過埌の溶液組成物䞭
の党窒玠含量に察する非蛋癜態窒玠含量の割合が
箄10で消化進行が極めお緩慢であ぀た。 たた条件−の堎合は時間埌の同窒玠含量の
割合が玄15に達したけれども、その埌の増加が
認められず自己消化に必芁な酵玠の倱掻したこず
が認められた。 実斜䟋 〜 被分散溶液組成、スピルリナ藻䜓および枩床・
保持時間等の自己消化条件の組合わせを第衚に
瀺した劂く倉化し、本発明の液化スピルリナ溶液
組成物を補造した。
[Table] In the present invention, Spirulina algae is one of Spirulina maxima and Spirulina platensis (both have similar compositions) having the composition shown in Tables 1 and 2 above, which are harvested by industrial cultivation. Or it is preferable to use both,
There is no problem in using other algal bodies of the genus Spirulina that are more similar in composition than in morphology. and,
Cake-like living algae collected from the culture tank, separated and washed with water are most suitable, but Spirulina algae that are washed with water and then crushed or dried without being crushed, preferably spray-dried at a hot air temperature of 90°C to 200°C. Spirulina algae that have been washed or freeze-dried after washing with water can also be used by mixing a part of the above-mentioned live algae. The present invention is made by autolyzing the above-mentioned Spirulina algae in a strongly alkaline aqueous solution.
The pH value of the aqueous solution is preferably 8.0 to 11.5.
More preferably, the pH is in the range of 9 to 10. If the PH value is less than 8 or more than 11.5, it is inappropriate because it is out of the active PH range of enzymes involved in the autolysis of Spirulina. Compounds or compound groups added to water to prepare such an alkaline aqueous solution include (a) Sodium carbonate - sodium bicarbonate (b) Potassium carbonate - potassium bicarbonate (c) Sodium phosphate - sodium hydrogen phosphate - Sodium dihydrogen phosphate - Sodium hydroxide (d) A combination of the above (c) sodium salt and potassium salt. (e) Glycine-sodium chloride-sodium hydroxide (f) One or more of glycine-potassium chloride-potassium hydroxide can be used. In addition, the concentration of the above compound or compound group in the aqueous solution is preferably 0.05 to 1M/PH
is adjusted with hydroxide such as sodium hydroxide. Regarding (a) to (e), one or more of the following compounds are added to such an alkaline aqueous solution for the purpose of promoting self-digestion of Spirulina algae and/or for antiseptic or antibacterial purposes.
~10Mol/, and (f) is preferably added at a concentration of 0.05 to 5%. (a) Inorganic salts such as sodium chloride and potassium chloride. (b) Sugars such as sucrose, fructose, lactose, glucose, galactose, sorbose, and maltose. (c) Sugar alcohols such as sorbitol and mannitol. (d) Organic acids and their salts such as gluconic acid, galactonic acid, lactic acid, acetic acid, propionic acid, citric acid, malic acid, fumaric acid. (e) Glutamic acid, aspartic acid, alanine,
Amino acids such as lysine and their salts. (f) Hydrophobic organic solvents such as toluene, ethyl acetate, xylene, n-hexane, ether, benzene. In the present invention, spirulina algae are added and dispersed in a dry weight of 10 to 100 g per 1 alkaline aqueous solution,
Autolysis is carried out for 0.5 to 48 hours with or without stirring while maintaining the temperature at 25 to 55°C, preferably 30 to 45°C. If the temperature of the solution during autolysis is lower than 25°C, the digestion progresses slowly, which is inappropriate; if it exceeds 55°C, enzyme deactivation occurs, which is inappropriate. After completion of autolysis, the desired product of the present invention can be obtained by adjusting the pH with mineral acid or organic acid depending on the intended use or as it is. The solution composition of the present invention will not deteriorate over a long period of time if stored in a light-shielding sealed container. In the liquefied Spirulina algae according to the present invention, the degree of autolysis of the algae can be determined, for example, by quantitatively analyzing the non-protein nitrogen content over time. In other words, although there is some variation depending on the culture conditions, the number of Spirulina algae is usually about 10 to 10.
Contains 11% nitrogen, taking this total nitrogen as 100.
It contains about 2.8% non-protein nitrogen, and since the non-protein nitrogen content increases as autolysis progresses, the degree of digestion can be easily determined. For example, it has been confirmed that the ratio of non-protein nitrogen content to the total nitrogen content of liquefied Spirulina algae, which has slowed down to the extent of digestion after about 42 hours had passed since the start of autolysis, was 42.2%. This indicates that 40.5% of protein nitrogen was self-digested by enzymatic decomposition. Such a highly decomposed solution of proteins cannot be obtained from algae that have lost enzymatic activity by cold water or hot water extraction, or by strong alkaline extraction (pH around 11.5). The total nitrogen content in the present invention is determined by calculating the total content of the solution as normal Kjeldahl nitrogen, and the non-protein nitrogen is determined by calculating the nitrogen soluble in 10% trichloroacetic acid by the Kjeldahl method. Note that when nitrogen compounds such as glycine and urea are added to the Spirulina dispersion medium, both the total nitrogen content and the soluble nitrogen content will be greatly increased. Calculate each nitrogen content and find the ratio. The liquefied Spirulina algae body according to the present invention has a proportion of non-protein nitrogen in the total nitrogen of at least 20%,
It is important that it is preferably 30% or more, and 20
If the value is less than 20%, large fragments of Spirulina algae are present in the liquefied product, which is not preferable for use in, for example, larvae. When the proportion of non-protein nitrogen in the total nitrogen exceeds 30%, no large fragments (about 10 ÎŒm or more) are found in the liquefied product. Furthermore, in the present invention, the degree of autolysis of algae is
It can also be determined by optically measuring the substances that are eluted and liberated into the liquid during digestion. That is, there is a substance that exhibits a maximum absorption pattern around 260 nm, which the present inventors estimate is a nucleic acid-based substance, and this can be determined by measuring the degree of increase in absorbance at 260 nm. For example, perchloric acid is added to a solution in which a certain amount of Spirulina algae is autolysed in a certain amount of digestive fluid by the method described above so that the final concentration is 0.4N, and the resulting coagulation precipitate of soluble protein and algae are The body residue was separated and removed using a centrifuge (10000G, 10 minutes), and the resulting solution was measured with a spectrophotometer to measure the absorbance at 260 nm, and the relationship between decomposition and absorbance was determined from a calibration curve that had been determined in advance. The degree of decomposition can be grasped. The solution composition according to the present invention can be used for animals, especially coho salmon, red sea bream, carp, Japanese loach, flounder, and rainbow trout.
It is suitable for use as feed for aquaculture larvae such as amago, blowfish, horse mackerel, yellowtail, amberjack, telapia, ayu, eel, etc., but it can also be used for various aquaculture fish that are in the growth stage of 20 to 30 mm or more. can. Furthermore, the solution composition according to the present invention can be used not only as a feed material for the above-mentioned fish, but also for other animals such as cows, pigs, horses, sheep, mink, etc.
Appropriately used as feed for livestock such as goats, experimental animals (guinea pigs, rats), and stray animals such as chickens and small birds, as well as protozoan rotifers such as green beetles and gourd bugs, and crustaceans such as watermelons and Kuruma shrimp. can be used. In particular, it is suitable to use it by adding it to solid feed or liquid feed for the larval stage of these animals. The composition of the present invention can be added to feed by methods such as spraying, impregnating, dipping, and mixing, but the important point is that as long as it is evenly dispersed and added to feed and efficiently administered to and ingested by individual animals and farmed fish. Any method of addition can be used. In particular, a mixed solution of a feed spreader and a solution composition whose main component is alginic acid, such as Gel Binder (manufactured by Kimitsu Chemical Co., Ltd.), Mailitschi (manufactured by Tanabe Seiyaku Co., Ltd.), and Stanguard (manufactured by Taito Pfizer Co., Ltd.). It is preferable to use it by spraying or mixing it with the feed. According to the present invention as described above, a solution composition in which most of the active ingredients contained in Spirulina algae are dissolved in the solution can be obtained, so that the digestibility for animals is significantly improved compared to when the algae are intact. Moreover, since it is in a solution state, it has the advantage of being easier to handle when added to basic feed. The present invention will be explained in more detail by showing Examples and usage examples of solution compositions below. Example 1 A cake made of living Spirulina maxima algae collected from the culture tank and dehydrated (30 g in dry weight)
was dispersed in an aqueous solution (PH10) containing 20% by weight of common salt and sodium carbonate-sodium bicarbonate so that the sodium concentration was nomolar. This dispersion solution was kept at a controlled temperature of 30°C for 48 hours to allow the algae to self-digest. When we observed changes in the dispersion solution over time using a microscope, we found that the spiral shape was fragmented after about 18 hours, and after about 26 hours, digestion had been completed to the extent that 4 to 5 fragments of one unit cell remained in one field of view. Digestion progressed to the extent that these fragments disappeared after 40 hours. Also,
After 48 hours, the ratio of non-protein nitrogen content to total nitrogen content was 45%. Furthermore, perchloric acid was added to the solution after the digestion treatment to a final concentration of 0.4N to coagulate the soluble proteins, and then centrifuged (10,000G) for 10 minutes to separate the algae residue and the coagulated precipitate. After removal, the absorbance was measured at wavelengths from 220 nm to 350 nm, and a curve as shown in FIG. 1 was obtained, having an absorption maximum at 260 nm. When the absorbance at 260 nm (cell thickness: 1 cm) was measured as the autolysis time of the algae increased according to the method described above, a curve as shown in FIG. 2 was obtained. {In this case, when 1 g of spirulina is dispersed in 100 ml in terms of dry matter and autolyzed, the OD260nm (1 cm cell) is 12.5. Comparative example a Solution in which the pH of the dispersion solution was controlled to 7 (a) and PH of
Example 1 except that a solution (b) controlled at 12 was prepared.
The operation was repeated. Digestion progressed slowly in both solution (a) and solution (b), and the degree of digestion progress after 48 hours was equivalent to that after 10 hours in Example 1, indicating that the production method is practical. was not recognized. Example 2 200 g of potassium chloride and 18 g of sodium hydrogen phosphate (Na 2 HPO 4 .12H 2 O) were dissolved in water, further diluted with water to a pH of 1, and 10N sodium hydroxide solution was added to adjust the pH to 10. did. Add and disperse a cake made of living Spirulina platensis algae (60 g in dry weight) to this solution, and reduce the temperature to 35
The mixture was maintained at a controlled temperature for 24 hours to allow autolysis. Additionally, as the digestion progressed, the pH was measured from time to time, and 5N sodium hydroxide was added dropwise to maintain the pH at 10. The ratio of non-protein nitrogen content to the total nitrogen content of this solution composition was 41%. Example 3 Sodium hydrogen phosphate ( Na2HPO4・12H2O ) 18
After dissolving 825 g of sucrose in 400 ml of water, 825 g of sucrose was added and dissolved by heating, and the pH was adjusted to 10 by adding 10N sodium hydroxide solution. Add this solution to a cake consisting of living algae of Spirulina maxima (25% on dry weight basis).
g) and a cake made of living algae of Spirulina platensis (25 g in terms of dry weight) were added and dispersed and mixed, and the temperature was controlled at 35° C. and maintained for 48 hours to allow self-digestion. The ratio of non-protein nitrogen content to the total nitrogen content of this solution composition was 38%. Comparative Example b The operation of Example 3 was repeated. However, the temperature of the dispersion solution is 13℃ (condition-1) and the same temperature is 57℃.
(Condition-2), and only the autolysis conditions of Spirulina algae were changed. In the case of condition-1, the ratio of non-protein nitrogen content to the total nitrogen content in the solution composition after 48 hours was approximately 10%, and the progress of digestion was extremely slow. Further, in the case of condition-2, although the nitrogen content ratio reached approximately 15% after 6 hours, no increase was observed after that, indicating that the enzyme necessary for autolysis had been deactivated. Examples 4 to 8 Dispersed solution composition, Spirulina algae and temperature/
The liquefied spirulina solution composition of the present invention was produced by changing the combination of autolysis conditions such as retention time as shown in Table 3.

【衚】 する。
䜿甚䟋  実斜䟋で補造した本発明溶液組成物に塩酞を
加えおほが䞭性に䞭和し、この液党䜓を次の飌育
実隓に䜿甚した。察象魚は銀鮭幌魚ずし、䞀区圓
り玄25000å°Ÿã‚’90m2氎槜に泚氎量毎分2.5tで飌育
した。基瀎飌料には商品名ニゞマス甚ペレツト
昭和産業株匏䌚瀟補を甚い、ペレツトをミキ
サヌ䞭で撹拌しながら察照区の飌料には飌料甚展
着剀氎溶液および実斜䟋に甚いた組成のアルカ
リ溶液の䞭和液を、詊隓区の飌料には飌料甚展着
剀氎溶液ず本発明溶液組成物の混合溶液を墳霧噚
で均䞀にスプレヌし、その埌フむヌドオむルを䞡
区の飌料に添加吞収させお調逌した。各䜿甚材料
成分の配合割合は次の第衚の通りである。
[Table] Yes.
Usage Example 1 Hydrochloric acid was added to the solution composition of the present invention produced in Example 1 to neutralize it to almost neutrality, and the entire solution was used in the next breeding experiment. The target fish were young coho salmon, and approximately 25,000 fish per section were raised in a 90 m 2 tank at a water injection rate of 2.5 tons per minute. Pellets for rainbow trout (trade name, manufactured by Showa Sangyo Co., Ltd.) were used as the basic feed, and while the pellets were stirred in a mixer, an aqueous feed spreader solution and an alkaline solution with the composition used in Example 1 were added to the control feed. The neutralizing solution was prepared by uniformly spraying a mixed solution of a feed spreader aqueous solution and the solution composition of the present invention on the feed in the test group using a sprayer, and then adding feed oil to the feed in both groups and allowing it to be absorbed. I fed it. The blending ratio of each material component used is as shown in Table 4 below.

【衚】【table】

【衚】 絊逌率は1.3芋圓ずし暫時絊逌量を増加させ
た。絊逌は察照区詊隓区ずも同量のペレツトにフ
むヌドオむル商品名理研フむヌドオむルΩ理
研ピタミン株匏䌚瀟補を含浞させお投䞎した。 詊隓結果は第衚のずおりであ぀た。 第衚䞭の察照区−は、第衚の詊隓区逌料
䞭の液化スピルリナ溶液組成物100重量郚のかわ
りにスピルリナマキシマ生藻䜓を也燥重量換算で
重量郚を配合した以倖は同組成の飌料を調補し
お飌育詊隓に䟛した結果である。
[Table] The feeding rate was set at 1.3% and the feeding amount was increased temporarily. For feeding, the same amount of pellets was impregnated with feed oil (trade name: Riken Feed Oil Ω, manufactured by Riken Pittamin Co., Ltd.) and administered to both the control and test plots. The test results were as shown in Table 5. Control group-2 in Table 5 is the same except that instead of 100 parts by weight of the liquefied Spirulina solution composition in the test group feed in Table 4, 3 parts by weight of Spirulina maxima live algae was added in terms of dry weight. These are the results of preparing a feed with the same composition and subjecting it to a feeding test.

【衚】 なお、䞊述の比范䟋−(b)の条件−で調補した
自己消化液非蛋癜態窒玠含量党窒玠含量
0.15も本䜿甚䟋ず同様に銀鮭飌育に適甚した
が、察照区−ず同皋床の結果しか埗られなか぀
た。 飌育日数 36日 絊逌総重量(F) ペレツトフむヌドオむル 蚈算匏 WoWt ・NoNt・ Wt−WoWoW2・  Wt−Wo・NtNo 詊隓区の総魚重量の増重は察照区に察しお
28.1、察照区に察しおは13倫々䞊回り、本
発明溶液組成物は成長促進に寄䞎するこずが認め
られる。 䜿甚䟋  実斜䟋で補造した溶液組成物を塩酞で䞭和埌
察象魚をマダむ皚魚ずしお飌育詊隓した。飌料は
えび肉のねり逌ずし他の材料を添加混錬しお絊逌
した。各材料の配合割合は次の第衚の通りずし
た。
[Table] In addition, the autolysis solution prepared under the condition-2 of Comparative Example-(b) above (non-protein nitrogen content/total nitrogen content =
0.15) was also applied to coho salmon breeding in the same way as in this usage example, but only results comparable to control group-2 were obtained. Number of rearing days (t) 36 days Total feeding weight (F) (pellets + feed oil) Calculation formula f=F/{(Wo+Wt) /2・(No+Nt)/2・t} (%) I=Wt−Wo/Wo+W 2 /2・1/t(%) E=I/f(%) R=F/(Wt-Wo)・Nt+No/2 Increase in total fish weight in test area compared to control area 1
28.1% and 13% higher than Control Group 2, respectively, which indicates that the solution composition of the present invention contributes to growth promotion. Use Example 2 After neutralizing the solution composition produced in Example 2 with hydrochloric acid, a breeding test was conducted using target fish as young red sea bream. The feed was shrimp paste and other ingredients were added and kneaded. The blending ratio of each material was as shown in Table 6 below.

【衚】 単䜍重量郚
飌育は海面小割網生簀××に 化
埌30日の皚魚1500尟攟逊し、飌育日数35日で行぀
た。結果は次の第衚の通りで詊隓区においお特
に初期の摂逌が掻発であ぀た。
[Table] (Unit: parts by weight)
Rearing was carried out for 35 days, with 1,500 juveniles released 30 days after hatching into small sea-surface net pens (2 x 2 x 2 m). The results are shown in Table 7 below, showing that feeding was particularly active in the early stages in the test plots.

【衚】 䜿甚䟋  実斜䟋で埗られた液化スピルリナ溶液組成物
を塩酞で䞭和し、真鯉皚魚を察象に次の飌育詊隓
に䟛した。基瀎飌料は鯉甚クランブル商品名
やたず皚魚甚、日枅飌料株匏䌚瀟補ずし他の
材料を墳霧噚で墳霧し、ミキサヌ䞭で撹拌されお
いるクランブルに均䞀に添加した。各材料の配合
割合は次の第衚の通りであり、氎、飌料甚展着
剀、液化スピルリナ溶液組成物䞉者を混合した溶
液ずしお分散・溶解させお甚いた。
[Table] Usage Example 3 The liquefied spirulina solution composition obtained in Example 3 was neutralized with hydrochloric acid and subjected to the following rearing test on juvenile red carp. The basic feed is crumble for carp (product name:
A for Yamato fry (manufactured by Nisshin Feed Co., Ltd.) and other ingredients were atomized using a munger and uniformly added to the crumble being stirred in a mixer. The blending ratio of each material is as shown in Table 8 below, and water, a feed spreader, and a liquefied spirulina solution composition were mixed and used as a solution that was dispersed and dissolved.

【衚】 単䜍重量郚
飌育詊隓は皚魚1000å°Ÿã‚’30日間×の氎槜
に入れ実斜し、第衚に瀺したずおりの結果を埗
た。 なお、絊飌率は初期〜を目安に必芁に応
じ加枛し、䞡区ずも同量䞎え、総絊飌量はクラン
ブルずしお3420ずな぀た。 なお、詊隓区飌料の自己消化液の䟛絊量は也重
量換算でクランブルに察しお玄0.02のスピルリ
ナに盞圓する。
[Table] (Unit: parts by weight)
A rearing test was carried out by placing 1000 fry in a 5 x 8 m aquarium for 30 days, and the results shown in Table 9 were obtained. The feeding rate was initially set at 6 to 7% and adjusted as necessary, and the same amount was fed to both groups, resulting in a total feeding amount of 3420 g as crumble. In addition, the amount of autolysed fluid supplied in the test group feed was equivalent to approximately 0.02% spirulina in the crumble on a dry weight basis.

【衚】【table】 【図面の簡単な説明】[Brief explanation of drawings]

第図は本発明溶液組成物䞭に溶存しおいる成
分の玫倖郚吞光曲線図であり、第図は消化凊理
時間に察する前蚘成分の極倧吞収波長郚260n
における吞光床の倉化を瀺す曲線図である。
FIG. 1 is an ultraviolet absorption curve diagram of the components dissolved in the solution composition of the present invention, and FIG. 2 shows the maximum absorption wavelength region (260n
It is a curve diagram showing the change in absorbance in m).

Claims (1)

【特蚱請求の範囲】  スピルリナ生藻䜓をアルカリ性氎溶液に分散
した分散溶液のPHを8.0〜11.5の範囲に保持しな
がら、枩床を25〜55℃に制埡しお前蚘スピルリナ
藻䜓を自己消化せしめ、前蚘分散溶液の党窒玠含
量に察する非蛋癜態窒玠含量を少くずも20にし
た液化スピルリナ溶液組成物。  スピルリナ藻䜓の自己消化液が光孊的特性に
おいお260nに極倧吞収を瀺す物質を有する特
蚱請求の範囲第項蚘茉の液化スピルリナ溶液組
成物。  スピルリナ藻䜓がスピルリナマキシマおよび
スピルリナプラテンシスの䞀方又は䞡者である特
蚱請求の範囲第又は第項蚘茉の液化スピルリ
ナ溶液組成物。  スピルリナ生藻䜓をアルカリ性氎溶液に分散
した分散溶液のPHを8.0〜11.5の範囲に保持しな
がら、枩床を25〜55℃に制埡しお前蚘スピルリナ
藻䜓を自己消化せしめ、前蚘分散溶液の党窒玠含
量に察する非蛋癜態窒玠含量を少くずも20に増
倧する液化スピルリナ溶液組成物の補造法。  スピルリナ藻䜓がスピルリナマキシマおよび
スピルリナプラテンシスの䞀方又は䞡者である特
蚱請求の範囲第項蚘茉の液化スピルリナ溶液組
成物の補造法。
[Claims] 1. The Spirulina algae are self-digested by controlling the temperature at 25-55°C while maintaining the pH of a dispersion solution in which Spirulina live algae are dispersed in an alkaline aqueous solution in the range of 8.0-11.5. , a liquefied spirulina solution composition having a non-protein nitrogen content of at least 20% relative to the total nitrogen content of the dispersion solution. 2. The liquefied spirulina solution composition according to claim 1, wherein the autolyzed solution of spirulina algae contains a substance that exhibits maximum absorption at 260 nm in optical properties. 3. The liquefied Spirulina solution composition according to claim 1 or 2, wherein the Spirulina algae is one or both of Spirulina maxima and Spirulina platensis. 4 While maintaining the pH of the dispersion solution of Spirulina living algae dispersed in an alkaline aqueous solution in the range of 8.0 to 11.5, the temperature is controlled at 25 to 55°C to autolyze the Spirulina algae, and all of the dispersion solution is A method for producing a liquefied spirulina solution composition that increases the non-protein nitrogen content to nitrogen content by at least 20%. 5. The method for producing a liquefied Spirulina solution composition according to claim 4, wherein the Spirulina algae is one or both of Spirulina maxima and Spirulina platensis.
JP11108380A 1980-08-14 1980-08-14 Solution composition of liquefied spirulina and its preparation Granted JPS5736981A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11108380A JPS5736981A (en) 1980-08-14 1980-08-14 Solution composition of liquefied spirulina and its preparation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11108380A JPS5736981A (en) 1980-08-14 1980-08-14 Solution composition of liquefied spirulina and its preparation

Publications (2)

Publication Number Publication Date
JPS5736981A JPS5736981A (en) 1982-02-27
JPS6350992B2 true JPS6350992B2 (en) 1988-10-12

Family

ID=14551944

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11108380A Granted JPS5736981A (en) 1980-08-14 1980-08-14 Solution composition of liquefied spirulina and its preparation

Country Status (1)

Country Link
JP (1) JPS5736981A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4595505A (en) * 1984-05-30 1986-06-17 Solmat Systems, Ltd. Method for suppressing algal growth in solar ponds
US6537570B1 (en) 1996-12-09 2003-03-25 Kelvin Winston Duncan Method of biological control
KR100844189B1 (en) * 2007-06-14 2008-07-04 한국생명공학연구원 [ ]Spirulina platensis M20CJK3[KCTC11127BP] characterized by enhanced floatation of its cell
CN101869274A (en) * 2010-05-17 2010-10-27 广西倧孊 Autolysis method of spiral seaweed tissue

Also Published As

Publication number Publication date
JPS5736981A (en) 1982-02-27

Similar Documents

Publication Publication Date Title
JP5459980B2 (en) Method for producing health food, feed and fertilizer and complex fermented fungus for the production
JP2002238466A (en) Feed additive
CN109479772B (en) Artificial propagation technical method for rainbow trout
RU2345139C2 (en) Method of processing synanthropic fly larva
CN104186431A (en) High-density artemia breeding method with single-cell protein single-step food chain utilized
Silverman In vitro cultivation procedures for parasitic helminths
Baburina et al. Chemical and biotechnological processing of collagen-containing raw materials into functional components of feed suitable for production of high-quality meat from farm animals
JPS6350992B2 (en)
RU2688470C1 (en) Method of obtaining entomological biomass - raw material for production of fodder additives
SU674653A3 (en) Feed for animals
CN1579196A (en) Engineered fly biological high-protein powder
RU2388318C1 (en) Method of fodder product preparation
CN106721586A (en) It is a kind of to adjust metabolism and promote shrimp culture feather hydrolysis powder feed and preparation method thereof of body detoxification
RU2016510C1 (en) Organomineral substrate showing biological stimulation property
RU2103360C1 (en) Nutrient medium for culturing eucaryotic cells and method for preparing base of proteolytic hydrolyzate medium
JP2819513B2 (en) Cultured seaweed growth promotion treatment method
CN105707441A (en) Technology for producing selenium-enriched fly larva animal feed by using livestock dung
RU2133097C1 (en) Method of preparing food addition "vitapeptid", food addition "vitapeptid"
RU2020153C1 (en) Method of preparing of enzyme hydrolysate and nutrient medium for cultivation of eucaryotic cells
RU2068879C1 (en) Method of preparing enzymatic hydrolyzate and nutrient medium for eucaryotic cells cultivation
JP3327943B2 (en) Method for producing bioactivator
US3331356A (en) Sterilization of fish in their aquatic environment to produce maximum size and weight per unit of water surface
JP2002199848A (en) Formulated feed for aquatic invertebrate
CN114097711B (en) Method for inducing yellow meal worm to produce antibacterial peptide, preparation method and application of yellow meal worm antibacterial peptide
SU718079A1 (en) Feed protein production method