JPS6350876B2 - - Google Patents

Info

Publication number
JPS6350876B2
JPS6350876B2 JP5859083A JP5859083A JPS6350876B2 JP S6350876 B2 JPS6350876 B2 JP S6350876B2 JP 5859083 A JP5859083 A JP 5859083A JP 5859083 A JP5859083 A JP 5859083A JP S6350876 B2 JPS6350876 B2 JP S6350876B2
Authority
JP
Japan
Prior art keywords
type
znse
confinement layer
layer
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP5859083A
Other languages
Japanese (ja)
Other versions
JPS59184583A (en
Inventor
Tooru Suzuki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP5859083A priority Critical patent/JPS59184583A/en
Publication of JPS59184583A publication Critical patent/JPS59184583A/en
Publication of JPS6350876B2 publication Critical patent/JPS6350876B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/32Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures
    • H01S5/323Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
    • H01S5/32308Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser emitting light at a wavelength less than 900 nm
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/32Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures
    • H01S5/3211Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures characterised by special cladding layers, e.g. details on band-discontinuities
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/32Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures
    • H01S5/3211Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures characterised by special cladding layers, e.g. details on band-discontinuities
    • H01S5/3214Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures characterised by special cladding layers, e.g. details on band-discontinuities comprising materials from other groups of the periodic system than the materials of the active layer, e.g. ZnSe claddings and GaAs active layer

Description

【発明の詳細な説明】 本発明は基板との格子整合の良好な信頼性の高
い緑色までの波長域で発振可能な可視光半導体レ
ーザに関する。従来実用性の高い可視光半導体レ
ーザ用材料としては、―V族化合物半導体レー
ザが探索されてきた。実用性の点からして、ダブ
ルヘテロ型半導体レーザを製作する場合、良好な
結晶性を有する基板の上に格子整合条件を良く満
足してダブルヘテロエピタキシヤル層を形成する
必要がある。これらの条件を満足する最短波長レ
ーザ用材料はGaAs基板上のAl0.5In0.5Pをクラツ
ド層とし、(AlyGa1-yxIn1-xPを活性層とするダ
ブルヘテロレーザであり、Al0.5In0.5Pのバンドギ
ヤツプエネルギーEgが2.35evとしたとき、活性
層とのEg差を0.2ev必要とすると、〜5800Åまで
の短波長レーザが期待される。しかし、これ以上
の短波長化を行うためには、―V族の範囲内に
材料を求めることはできない。―族化合物半
導体には多くの直接遷移型結晶が存在し、バンド
エツジルミネツセンスは、色において青〜赤に対
応している。しかし、―族化合物半導体の問
題点は大部分の―族結晶において良好な低抵
抗P型結晶が得られないことにある。このことが
最大の原因となつて、今まで―族を用いた電
流注入型半導体レーザを作製することは不可能で
あつた。本発明の目的は、これらのデバイス製作
上の問題点を解決し、高効率で、高信頼性を有す
る半導体レーザを提供することにある。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a highly reliable visible light semiconductor laser that has good lattice matching with a substrate and is capable of oscillating in a wavelength range up to green. Conventionally, -V group compound semiconductor lasers have been explored as highly practical materials for visible light semiconductor lasers. From a practical point of view, when manufacturing a double hetero-type semiconductor laser, it is necessary to form a double-hetero epitaxial layer on a substrate having good crystallinity and satisfying lattice matching conditions. The shortest wavelength laser material that satisfies these conditions is a double hetero laser with Al 0.5 In 0.5 P on a GaAs substrate as the clad layer and (Al y Ga 1-y ) x In 1-x P as the active layer. , Al 0.5 In 0.5 P has a band gap energy Eg of 2.35 ev, and if the Eg difference with the active layer is required to be 0.2 ev, a short wavelength laser of up to ~5800 Å is expected. However, in order to make the wavelength even shorter than this, it is not possible to find a material within the range of the -V group. There are many direct transition type crystals in - group compound semiconductors, and the band eddyluminescence corresponds to blue to red in color. However, the problem with - group compound semiconductors is that most - group crystals do not have good low-resistance P-type crystals. This is the main reason why it has been impossible to fabricate a current injection type semiconductor laser using the - group until now. An object of the present invention is to solve these problems in device manufacturing and to provide a semiconductor laser having high efficiency and high reliability.

本発明の半導体レーザは、バンドギヤツプエネ
ルギーが(AlXGa1-X0.5In0.5PのΓ点におけるバ
ンドギヤツプエネルギーよりも小さく、かつ、
GaAs格子整合のとれた化合物半導体で成る活性
層を、n型のZnSe又はZnSe1-YSYで成るクラツド
層と厚さ100Å以上のP型ZnSe又はZnSe1-YSY
成るキヤリア閉じ込め層とで挟んだ積層構造を有
し、さらに、P型キヤリア閉じ込め層に接してP
型(AlXGa1-X0.5In0.5Pで成る光閉じ込め層を備
えた構成となつている。また、直列抵抗を減らし
た構成として前記n型クラツド層のかわりに、厚
さ100Å以上のn型ZnSe又はZnSe1-YSYで成るキ
ヤリア閉じ込め層を設け、さらにこの層にn型
(AlXGa1-X0.5In0.5Pで成る光閉じ込め層を設け
ている。
The semiconductor laser of the present invention has a band gap energy smaller than the band gap energy at the Γ point of (Al x Ga 1-x ) 0.5 In 0.5 P, and
An active layer made of a GaAs lattice-matched compound semiconductor is combined with a cladding layer made of n-type ZnSe or ZnSe 1-Y S Y and a carrier confinement layer made of P-type ZnSe or ZnSe 1-Y S Y with a thickness of 100 Å or more. It has a laminated structure sandwiched between
The structure includes an optical confinement layer made of type (Al x Ga 1-x ) 0.5 In 0.5 P. Furthermore, in order to reduce the series resistance, a carrier confinement layer made of n-type ZnSe or ZnSe 1-Y S Y with a thickness of 100 Å or more is provided in place of the n-type cladding layer, and this layer is further made of n-type ( Al An optical confinement layer made of Ga 1-X ) 0.5 In 0.5 P is provided.

GaAsとZnSeとは両者とも閃亜鉛鉱型結晶構造
をとり格子定数がそれぞれ5.653Å、5.667Åと格
子整合条件が極めて良いことが知られている。又
ZnSeは直接遷移型のエネルギーギヤツプ2.67eV
をもつており、可視光半導体レーザの短波長化に
とり重要な材料である。しかし、ZnSeは通常n
型の結晶を得るのみであり、P型結晶は比抵抗が
高いのが欠点であつた。例えば10Ω・cmのP型結
晶をクラツド層として用い、2μmの膜厚とする
と、10μmのストライプ巾、200μmの共振器長の
レーザのクラツド層部分のシリーズ抵抗は100Ω
にものぼり、良好なレーザ特性を期待することは
できない。ZnSeをクラツド層として用いる半導
体レーザにおいてZnSeの果す役割は、活性層へ
のキヤリアの閉じ込め及び光の閉じ込めの2種で
ある。ZnSeは比抵抗が高いので成可く薄膜を使
用したい所であるが、発振波長に対応する光波の
活性層外へのしみ出しを考慮すると、制限が生ず
る。この事情を考慮し、キヤリアの閉じ込め層と
して約100Å以上の膜厚の超薄膜ZnSeを活性層に
隣接して設けることにより、活性層へのキヤリア
の閉じ込めを図ることができZnSe層部分での直
列抵抗を低く押えることができる。たとえば、10
Ω・cmの比抵抗をもつ10μmストライプ巾200μm
キヤビテイ長をもつP型ZnSeの膜厚方向の抵抗
は1Ω・cmとなる。ZnSe層を超薄膜にすること
によつて、光の閉じ込め効果が弱まるので、バン
ドギヤツプが大きくとれ、GaAs基板に格子整合
可能な発振波長に対する吸収の少なく、比抵抗の
小さい(AlXGa1-X0.5In0.5P系混晶をP型の光閉
じ込め層として用いることにより、この欠陥をカ
バーする。この際、発振波長に対する光吸収を極
小にするために、(AlXGa1-X0.5In0.5PのΓ点の
バンドギヤツプエネルギーを少なくとも発振波長
より大きくとる必要がある。以上のように構成さ
れた層構造を含む半導体レーザは、直列抵抗の小
さい、従つて発熱の少ない、良好な特性をもつ。
n型クラツド層の替りにn型キヤリア閉じ込め層
を設け、この層に接してさらにn型(AlXGa1-X
0.5In0.5P光閉じ込め層を設けた構造は、同様の直
列抵抗低減の方策をn側クラツド層にも適用する
ことを意味する。ZnSeにSを混入させた構造
(ZnSe1-YSYを用いる構造)は、GaAsとZnSeとの
わずかだが存在する格子不整合(約0.3%)を調
整するための措置である。
It is known that GaAs and ZnSe both have a zinc blende crystal structure and have extremely good lattice matching conditions, with lattice constants of 5.653 Å and 5.667 Å, respectively. or
ZnSe is a direct transition type with an energy gap of 2.67eV
It is an important material for shortening the wavelength of visible light semiconductor lasers. However, ZnSe is usually n
However, only P-type crystals are obtained, and the disadvantage of P-type crystals is that they have a high specific resistance. For example, if a 10Ωcm P-type crystal is used as the cladding layer and the film thickness is 2μm, the series resistance of the cladding layer portion of a laser with a stripe width of 10μm and a cavity length of 200μm is 100Ω.
Therefore, good laser characteristics cannot be expected. In a semiconductor laser using ZnSe as a cladding layer, ZnSe plays two roles: carrier confinement in the active layer and light confinement. Since ZnSe has a high specific resistance, it would be desirable to use a thin film, but there are limitations when considering the leakage of light waves corresponding to the oscillation wavelength to the outside of the active layer. Considering this situation, by providing an ultra-thin ZnSe film with a thickness of approximately 100 Å or more adjacent to the active layer as a carrier confinement layer, it is possible to confine carriers in the active layer. It is possible to keep the resistance low. For example, 10
10μm stripe width 200μm with resistivity of Ω・cm
The resistance in the film thickness direction of P-type ZnSe with a cavity length is 1Ω·cm. By making the ZnSe layer ultra-thin, the light confinement effect is weakened, resulting in a large band gap, low absorption at oscillation wavelengths that can be lattice matched to the GaAs substrate, and low resistivity ( Al ) 0.5 In 0.5 This defect is covered by using a P-based mixed crystal as a P-type optical confinement layer. At this time, in order to minimize optical absorption with respect to the oscillation wavelength, it is necessary to set the bandgap energy at the Γ point of (Al x Ga 1-x ) 0.5 In 0.5 P to be at least larger than the oscillation wavelength. A semiconductor laser including the layered structure configured as described above has good characteristics such as low series resistance and therefore low heat generation.
An n-type carrier confinement layer is provided instead of the n-type cladding layer, and an n-type (Al x Ga 1-x )
The structure with the 0.5 In 0.5 P optical confinement layer means that the same series resistance reduction strategy is also applied to the n-side cladding layer. The structure in which S is mixed into ZnSe (the structure using ZnSe 1-Y S Y ) is a measure to adjust the slight lattice mismatch (approximately 0.3%) between GaAs and ZnSe.

次に本発明の実施例を図面を用いて簡単に説明
する。第1図はプレーナ型の半導体レーザであ
り、本発明の一実施例である。n型のGaAs基板
2の上にGaをドープしたn型ZnSe3を2μm成長
し、次に、n型又はP型又はアンドーブ(Al0.7
Ga0.30.5In0.5P(活性層)4を約0.1μm成長し、次
に窒素又は燐又は砒素又はリシウム等でP型にド
ープしたZnSe5を500Å成長する。その上にZn又
はGa等でP型にドープした(Al0.75Ga0.250.5In0.5
P6を約2μ成長し、最後にn型GaAsを約1μm成
長する。しかるのちZn又はCαなどによりストラ
イプ9状にP型不純物拡散をおこない、オーミツ
ク電極1,8を設けて半導体レーザをつくること
ができる。このレーザは室温において波長5800Å
で発振することができる。
Next, embodiments of the present invention will be briefly described using the drawings. FIG. 1 shows a planar semiconductor laser, which is an embodiment of the present invention. Ga-doped n-type ZnSe 3 is grown to a thickness of 2 μm on an n-type GaAs substrate 2, and then n-type or P-type or undoped (Al 0.7
Ga 0.3 ) 0.5 In 0.5 P (active layer) 4 is grown to a thickness of approximately 0.1 μm, and then ZnSe 5 doped with nitrogen, phosphorus, arsenic, lithium, etc. to a thickness of 500 Å is grown. On top of that, doped with Zn or Ga etc. to make it P type (Al 0.75 Ga 0.25 ) 0.5 In 0.5
P6 is grown to a thickness of approximately 2μ, and finally n-type GaAs is grown to a thickness of approximately 1μ. Thereafter, a P-type impurity is diffused in the form of stripes 9 using Zn or Cα, and ohmic electrodes 1 and 8 are provided to produce a semiconductor laser. This laser has a wavelength of 5800Å at room temperature.
can oscillate.

第2図に本発明の第2の実施例を掲げる。第2
図において、活性層4の下に約200ÅのGaドープ
のn型ZnSe層11を設け、その下にSeドープの
n型(Al0.75Ga0.250.5In0.5P10を設けてある点
が第1の実施例と異なる。第2の実施例によれ
ば、半導体レーザの直列抵抗を更に下げることが
出来るため、温度特性が更にすぐれた半導体レー
ザを得ることができる。第1及び第2の実施例と
もZnSeのかわりにZnS0.06Se0.94を用いることによ
りGaAs基板との格子整合が更に良好となり、半
導体レーザとしての信頼性が更に高まる。
FIG. 2 shows a second embodiment of the present invention. Second
In the figure, the first point is that a Ga-doped n-type ZnSe layer 11 of about 200 Å is provided under the active layer 4, and a Se-doped n-type (Al 0.75 Ga 0.25 ) 0.5 In 0.5 P10 is provided below it. This is different from the example. According to the second embodiment, since the series resistance of the semiconductor laser can be further reduced, a semiconductor laser with even better temperature characteristics can be obtained. In both the first and second embodiments, by using ZnS 0.06 Se 0.94 instead of ZnSe, the lattice matching with the GaAs substrate becomes even better, and the reliability as a semiconductor laser is further improved.

上記実施例では活性層として(AlWGa1-W0.5
In0.5Pを用いたが他の材料、例えばZnSeとGaAs
との混晶あるいはInGaAsP等でも本発明の効果
は得られる。特に、ZnSeとGaAsとの混晶を用い
た場合は、バンドギヤツプエネルギーがGaAsか
らZnSeまでの範囲で変えることができるため広
い波長領域をカバーできる利点がある。
In the above example, the active layer was (Al W Ga 1-W ) 0.5
In 0.5 P was used, but other materials such as ZnSe and GaAs
The effects of the present invention can also be obtained with mixed crystals such as InGaAsP or InGaAsP. In particular, when a mixed crystal of ZnSe and GaAs is used, the band gap energy can be varied in the range from GaAs to ZnSe, which has the advantage of covering a wide wavelength range.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図は本発明の実施例を示す斜視図
である。第1図において、1はn型オーム性電極
であり、2はn型GaAs基板、3はn型ZnSe層、
4は活性層、5はP型超薄膜ZnSe層、6はP型
(AlXGa1-X0.5In0.5P層、7はn型GaAs層、8は
P型オーム性電極、9はストライプ型P型拡散層
をそれぞれ示している。第2図において、10は
n型(AlXGa1-X0.5In0.5P、11はn型超薄膜
ZnSe層を示し、他の番号は第1図のそれと同一
である。
FIGS. 1 and 2 are perspective views showing an embodiment of the present invention. In FIG. 1, 1 is an n-type ohmic electrode, 2 is an n-type GaAs substrate, 3 is an n-type ZnSe layer,
4 is an active layer, 5 is a P-type ultra-thin ZnSe layer, 6 is a P-type (Al x Ga 1-X ) 0.5 In 0.5 P layer, 7 is an n-type GaAs layer, 8 is a P-type ohmic electrode, 9 is a stripe Each shows a P-type diffusion layer. In Figure 2, 10 is n-type (Al x Ga 1-X ) 0.5 In 0.5 P, and 11 is n-type ultra-thin film.
The ZnSe layer is shown and the other numbers are the same as in FIG.

Claims (1)

【特許請求の範囲】 1 バンドギヤツプエネルギーが(AlXGa1-X0.5
In0.5PのΓ点におけるバントキヤツプエネルギー
より小さく、かつ、GaAsと格子整合のとれた化
合物半導体で成る活性層を、n型のZnSe又は
ZnSe1-YSYで成るクラツド層と厚さ100Å以上の
P型のZnSe又はZnSe1-YSYで成るキヤリア閉じ込
め層とで挟んだ構造を有し、さらに、前記キヤリ
ア閉じ込め層に接してP型(AlXGa1-X0.5In0.5
で成る光閉じ込め層を備えていることを特徴とす
る半導体レーザ。 2 バンドギヤツプエネルギーが(AlXGa1-X0.5
In0.5PのΓ点におけるバンドギヤツプエネルギー
より小さく、かつ、GaAsと格子整合のとれた化
合物半導体で成る活性層を、厚さ100Å以上のn
型ZnSe又はZnSe1-YSYで成るキヤリア閉じ込め層
と厚さ100Å以上のP型ZnSe又はZnSe1-YSYで成
るキヤリア閉じ込め層とで挟んだ積層構造を有
し、さらに前記n型キヤリア閉じ込め層に接して
n型(AlXGa1-X0.5In0.5Pで成る光閉じ込め層を
備え、前記P型キヤリア閉じ込め層に接してP型
(AlXGa1-X0.5In0.5Pで成る光閉じ込め層を備え
ていることを特徴とする半導体レーザ。
[Claims] 1 Band gap energy is (Al x Ga 1-X ) 0.5
The active layer is made of a compound semiconductor that is smaller than the band cap energy at the Γ point of In 0.5 P and has a lattice match with GaAs, and is made of n-type ZnSe or
It has a structure sandwiched between a clad layer made of ZnSe 1-Y S Y and a carrier confinement layer made of P-type ZnSe or ZnSe 1-Y S Y with a thickness of 100 Å or more, and further in contact with the carrier confinement layer. P type (Al x Ga 1-X ) 0.5 In 0.5 P
A semiconductor laser comprising an optical confinement layer consisting of: 2 Band gap energy is (Al X Ga 1-X ) 0.5
The active layer is made of a compound semiconductor that has a bandgap energy smaller than the Γ point of In 0.5 P and is lattice matched to GaAs, with a thickness of 100 Å or more.
It has a laminated structure sandwiched between a carrier confinement layer made of type ZnSe or ZnSe 1-Y S Y and a carrier confinement layer made of p-type ZnSe or ZnSe 1-Y S Y with a thickness of 100 Å or more, and further includes the n-type carrier confinement layer. an optical confinement layer made of n-type (Al x Ga 1 - x ) 0.5 In 0.5 P in contact with the confinement layer ; A semiconductor laser comprising an optical confinement layer consisting of:
JP5859083A 1983-04-05 1983-04-05 Semiconductor laser Granted JPS59184583A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5859083A JPS59184583A (en) 1983-04-05 1983-04-05 Semiconductor laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5859083A JPS59184583A (en) 1983-04-05 1983-04-05 Semiconductor laser

Publications (2)

Publication Number Publication Date
JPS59184583A JPS59184583A (en) 1984-10-19
JPS6350876B2 true JPS6350876B2 (en) 1988-10-12

Family

ID=13088692

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5859083A Granted JPS59184583A (en) 1983-04-05 1983-04-05 Semiconductor laser

Country Status (1)

Country Link
JP (1) JPS59184583A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62188393A (en) * 1986-02-14 1987-08-17 Nec Corp Semiconductor laser
JPH01175789A (en) * 1987-12-29 1989-07-12 Inkiyuubeetaa Japan:Kk Visible light emitting semiconductor laser device
JPH01184978A (en) * 1988-01-20 1989-07-24 Inkiyuubeetaa Japan:Kk Visible light emitting semiconductor laser device
US5003548A (en) * 1988-09-21 1991-03-26 Cornell Research Foundation, Inc. High power (1,4 W)AlGaInP graded-index separate confinement heterostructure visible (λ-658 nm) laser
US5319219A (en) * 1992-05-22 1994-06-07 Minnesota Mining And Manufacturing Company Single quantum well II-VI laser diode without cladding
JPH0783138B2 (en) * 1993-01-29 1995-09-06 日本電気株式会社 Semiconductor light emitting element

Also Published As

Publication number Publication date
JPS59184583A (en) 1984-10-19

Similar Documents

Publication Publication Date Title
EP0038085B1 (en) Buried heterostructure laser diode and method for making the same
KR910003465B1 (en) Opto-electronic device
JPH0243351B2 (en)
JPS6350876B2 (en)
JPH0632340B2 (en) Semiconductor light emitting element
US5371756A (en) Semiconductor blue-green laser diodes
JP2900824B2 (en) Method for manufacturing optical semiconductor device
JPH07202340A (en) Visible-light semiconductor laser
JPH0371679A (en) Semiconductor light emitting element
US5192711A (en) Method for producing a semiconductor laser device
JP3416899B2 (en) Semiconductor laser
JP2527024B2 (en) Semiconductor laser
JP2740165B2 (en) Semiconductor laser
JPS5871677A (en) 2-wavelength buried hetero structure semiconductor laser
JPS5871679A (en) Semiconductor light emitting element
JP2945568B2 (en) Semiconductor laser device and method of manufacturing the same
KR830000075B1 (en) Semiconductor laser device
JPH0837340A (en) Surface emission semiconductor element
JP2968159B2 (en) Method for manufacturing semiconductor laser device
JPS62291190A (en) Semiconductor light-emitting device
JPS6350874B2 (en)
JP2628638B2 (en) Semiconductor laser device
JPH07297487A (en) Semiconductor laser element
JPH02133979A (en) Semiconductor light-emitting element
JPS59127894A (en) Semiconductor laser