JPH07297487A - Semiconductor laser element - Google Patents

Semiconductor laser element

Info

Publication number
JPH07297487A
JPH07297487A JP8430094A JP8430094A JPH07297487A JP H07297487 A JPH07297487 A JP H07297487A JP 8430094 A JP8430094 A JP 8430094A JP 8430094 A JP8430094 A JP 8430094A JP H07297487 A JPH07297487 A JP H07297487A
Authority
JP
Japan
Prior art keywords
layer
semiconductor laser
laser device
current confinement
range
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8430094A
Other languages
Japanese (ja)
Inventor
Toshiaki Tanaka
俊明 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP8430094A priority Critical patent/JPH07297487A/en
Publication of JPH07297487A publication Critical patent/JPH07297487A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide a Group II-Vl semiconductor laser of low threshold current, high output and low noise characteristics. CONSTITUTION:This semiconductor laser element has double heterojuction structure composed of a light-emitting active layer 4 held between light wave guide layers 3, 5, and the light-emitting active layer 4 has a quantum well structure, and the light wave guide layer 5 forms a refractive index wave guide ridge stripe structure for controlling a lateral mode, and the width of the upper part of a ridge stripe is narrower than the bottom part thereof, and a laser-bean- transmitting current constricting layer 7 and a laser beam absorbing current constricting layer 8 are provided outside the ridge stripe. A threshold current is 50 to 60mA under the continuous operating condition at 25 deg.C, and an asymetrical coating element in which the reflection power of the front face and the back face is 10%, 90% operates in a lateral mode up to the light output of not less than 40%. A light output in which self-oscillation is obtained was able to be adjusted up to l0mW to 49mW by the current constricting layer 7. When a return light quantity was 5X, A noise (RIN) level was in the low range of -125 to -140dB/Hz. The oscillation wavelength of 520 to 530nm was obtained at the time of the light output of 20mW.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、半導体レーザ素子、特
に、光情報端末或は光応用計測用の光源に適する短波長
のレーザ光を発光するII−VI族半導体レーザ素子に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor laser device, and more particularly to a II-VI group semiconductor laser device which emits a laser beam of a short wavelength suitable for a light source for optical information terminals or optical application measurement.

【0002】[0002]

【従来の技術】高集積、高密度記録の光ディスクなど光
情報端末に使用する光源は短波長のものが望ましい。ま
た、雑音を低減するために自励発振することが望まし
い。短波長の半導体レーザ素子としては、II−VI族半導
体レーザが理論的には好ましいことは知られている。し
かし、高出力、低雑音かつ常温で自励発振が起こる実用
的なII−VI族半導体レーザは実現されていない。従来、
II−VI族半導体レーザ素子で、活性層にCdZnSe/
MgZnSSe系材料を使用し、ストライプ構造を持
ち、ZnS半導体埋込み層により電流狭窄構造を持つ緑
色半導体レーザの作製が試みられており、室温において
パルス発振動作を実現していることが、例えば文献 ア
プライド・フィジックス・レタース1993年、63
巻、2315頁(Appl.Phys.Lett.,6
3(1993)2315)において述べられている。
2. Description of the Related Art It is desirable that a light source used for an optical information terminal such as an optical disc of high integration and high density recording has a short wavelength. Further, it is desirable to perform self-excited oscillation in order to reduce noise. It is known that a II-VI group semiconductor laser is theoretically preferable as a short wavelength semiconductor laser device. However, a practical II-VI group semiconductor laser with high output, low noise and self-sustained pulsation at room temperature has not been realized. Conventionally,
In a II-VI group semiconductor laser device, CdZnSe /
An attempt has been made to fabricate a green semiconductor laser having a stripe structure and a current confinement structure by a ZnS semiconductor burying layer using a MgZnSSe-based material, and it is known that pulse oscillation operation is realized at room temperature. Physics Letters 1993, 63
Vol. 2315 (Appl. Phys. Lett., 6
3 (1993) 2315).

【0003】[0003]

【発明が解決しようとする課題】上記文献に記載された
緑色CdZnSe/MgZnSSe系II−VI族半導体レ
ーザは、単層のZnS層を埋込み層に用いて電流狭窄構
造を構成しているため、高出力まで安定な横モード制御
ができる屈折率導波構造となっておらず、10mW以下
の出力しか得られていない。そのため30mW程度必要
とする光ディスク装置には実用できない。更に、横方向
の屈折率が適切に設定できず安定に自励発振が持続する
導波構造になっていない。また、ZnS埋込み層は多結
晶体となっており、GaAs基板に対して約−4%もの
大きな格子定数の違いがあるため、結晶欠陥を形成しや
すく光散乱による導波光損失を低減できていない。
The green CdZnSe / MgZnSSe system II-VI group semiconductor laser described in the above document has a high current confinement structure because a single ZnS layer is used as a buried layer. It does not have a refractive index waveguide structure capable of stable transverse mode control up to the output, and only an output of 10 mW or less is obtained. Therefore, it cannot be put to practical use in an optical disk device that requires about 30 mW. In addition, the refractive index in the lateral direction cannot be set appropriately, and the waveguide structure does not have stable self-sustained pulsation. Moreover, since the ZnS burying layer is a polycrystal and has a large lattice constant difference of about -4% with respect to the GaAs substrate, crystal defects are easily formed and guided light loss due to light scattering cannot be reduced. .

【0004】本発明の目的は、高出力域まで安定に自励
発振が持続し、低い閾値電流で動作し、かつ低雑音特性
の半導体レーザを提供することである。本発明の他の目
的は、高出力域まで安定に自励発振が持続し、低い閾値
電流で動作するII−VI族の半導体レーザを提供すること
である。
An object of the present invention is to provide a semiconductor laser which has stable self-sustained pulsation up to a high output region, operates at a low threshold current, and has a low noise characteristic. It is another object of the present invention to provide a II-VI group semiconductor laser in which self-excited oscillation is stably maintained up to a high output region and which operates at a low threshold current.

【0005】[0005]

【課題を解決するための手段】上記目的を達成するた
め、本発明の半導体レーザ素子は、2つの光導波層に挾
まれた上記光導波層の禁制帯幅より小さい禁制帯幅の活
性層からなるダブルヘテロ接合構造を有した半導体レー
ザにおいて、上記光導波層の少なくとも1つは光軸方向
に垂直な断面形状が中央部が台形で両側の裾部が平坦部
となるリッジストライプ構造をもち、上記リッジストラ
イプの横側で上記光導波層上にレーザ光に透明な第1の
電流狭窄層と、上記第1の電流狭窄層の上側にレーザ光
を吸収する第2の電流狭窄層との少なくとも2段階の埋
込み層を設けた。上記リッジストライプ構造、第1及び
第2の電流狭窄層の厚さ、幅及び材料を上記活性層横方
向の屈折率差を1×10~3から8×10~3の範囲となる
ように設定し、光導波層の横モードを制御し自励発振が
持続する屈折率導波リッジストライプ構造を形成する。
上記リッジストライプ構造の台形は上辺の幅が2〜3μ
m、底辺の幅が4〜6μmの範囲に設定し、上記裾部の
膜厚がさ0.15〜0.35μm、上記第1の電流狭窄層
の膜厚が0.2〜0.4μm、上記第2の電流狭窄層の膜
厚が0.8〜1.3μmの範囲に設定する。また、上記第
1及び第2の電流狭窄層のキャリア濃度はそれぞれ5×
1017〜2×1018cm~3及び1×1018〜1×1019
cm~3の範囲に設定した。
In order to achieve the above object, the semiconductor laser device of the present invention comprises an active layer having a forbidden band width smaller than the forbidden band width of the optical waveguide layer sandwiched between two optical waveguide layers. In the semiconductor laser having the double heterojunction structure, at least one of the optical waveguide layers has a ridge stripe structure in which a cross section perpendicular to the optical axis direction has a trapezoidal central part and flat bottom parts on both sides, At least a first current confinement layer transparent to the laser light on the optical waveguide layer on the side of the ridge stripe, and a second current confinement layer absorbing the laser light on the upper side of the first current confinement layer. A two-step buried layer was provided. The thickness, width and materials of the ridge stripe structure, the first and second current confinement layers are set so that the difference in refractive index in the lateral direction of the active layer is in the range of 1 × 10 3 to 8 × 10 3 Then, the transverse mode of the optical waveguide layer is controlled to form a refractive index waveguide ridge stripe structure in which self-sustained pulsation continues.
The trapezoid of the ridge stripe structure has an upper side width of 2 to 3 μ.
m, the width of the base is set in the range of 4 to 6 μm, the film thickness of the skirt is 0.15 to 0.35 μm, and the film thickness of the first current constriction layer is 0.2 to 0.4 μm. The thickness of the second current constriction layer is set in the range of 0.8 to 1.3 μm. Further, the carrier concentration of each of the first and second current confinement layers is 5 ×
10 17 to 2 × 10 18 cm to 3 and 1 × 10 18 to 1 × 10 19
The range was set to cm ~ 3 .

【0006】好ましくは、活性層及び埋込み層はII−VI
族半導体で構成され、上記II−VI族半導体の混晶材料は
上記半導体基板と格子整合する組成の材料とする。ま
た、活性層は単一又は多重量子井戸構造とする。また、
上記II−VI族半導体レーザにおいて、好ましい材料構成
は、半導体基板がGaAsであるときは、上記発光活性
層の量子井戸構造をCdZnSe圧縮歪量子井戸層を用
いるとともにZnSSe又はMgZnSSe量子障壁層
として用い、上記第1及び第2の電流狭窄層にはそれぞ
れZnSSe又はMgZnSSe層及びZnSTe層を
設ける。半導体基板がInPであるときは、上記発光活
性層の量子井戸構造をCdZnSe又はZnSeTe引
張歪量子井戸層を用いるとともにMgZnSe又はMg
ZnSeTe量子障壁層として用い、上記第1及び第2
の電流狭窄層にはそれぞれMgZnSe又はMgZnS
eTe層及びZnSTe層を用いる。
Preferably, the active and buried layers are II-VI.
The mixed crystal material of the II-VI group semiconductor is a material having a composition that lattice-matches with the semiconductor substrate. The active layer has a single or multiple quantum well structure. Also,
In the II-VI group semiconductor laser, when the semiconductor substrate is GaAs, a preferable material configuration is to use the quantum well structure of the light emitting active layer as a ZnSSe or MgZnSSe quantum barrier layer together with a CdZnSe compressive strain quantum well layer. A ZnSSe or MgZnSSe layer and a ZnSTe layer are provided on the first and second current confinement layers, respectively. When the semiconductor substrate is InP, the quantum well structure of the light emitting active layer is CdZnSe or ZnSeTe tensile strained quantum well layer, and MgZnSe or Mg is used.
The first and second ZnSeTe quantum barrier layers are used as
Of MgZnSe or MgZnS respectively
An eTe layer and a ZnSTe layer are used.

【0007】[0007]

【作用】縦多モードで自励発振の得られる屈折率導波構
造では、縦単一モードの導波構造よりも活性層横方向の
屈折率差を相対的に小さく設定する必要がある。従来ス
トライプ外側における光導波層の膜厚を厚く設けること
によって形成されていた。このとき、活性層横方向の屈
折率差が小さくなるとともに、ストライプ構造の光導波
層横方向にレーザ発振に寄与しない無効電流を上昇させ
てしまう問題を生じていた。そこで、本発明では、埋込
み層を活性層より禁制帯幅が大きくレーザ光に透明な第
1の電流狭窄層と禁制帯幅が小さくレーザ光を吸収する
第2の電流狭窄層を少なくとも2段階に設けた埋込み構
造となって、光導波層に最初にレーザ光に透明な電流狭
窄層を設けることにより、活性層横方向の屈折率差を小
さく設定して自例発振を可能とするとともに、上記無効
電流を低減させることができ、従来よりも低閾値動作が
達成される。
In the refractive index waveguide structure capable of self-sustained pulsation in the longitudinal multimode, it is necessary to set the refractive index difference in the lateral direction of the active layer relatively smaller than that in the longitudinal single mode waveguide structure. Conventionally, it was formed by providing a large thickness of the optical waveguide layer on the outside of the stripe. At this time, there arises a problem that the difference in refractive index in the lateral direction of the active layer becomes small and the reactive current that does not contribute to laser oscillation rises in the lateral direction of the optical waveguide layer of the stripe structure. Therefore, in the present invention, the buried layer is provided with at least two stages of a first current confinement layer having a larger forbidden band width than the active layer and transparent to laser light and a second current confinement layer having a smaller forbidden band width and absorbing laser light. With the embedded structure provided, the current confinement layer that is transparent to the laser light is first provided in the optical waveguide layer, so that the refractive index difference in the lateral direction of the active layer is set small to enable self-oscillation. The reactive current can be reduced, and a lower threshold operation than the conventional one is achieved.

【0008】また、従来の半導体レーザでは活性層横方
向の屈折率差の大きな導波構造よりも、基本横モードの
高出力化ができないという課題があったが、本発明の半
導体レーザは活性層として、キャリア注入による屈折率
変化が小さい単一又は多重量子井戸構造の活性層を使用
した場合は、作り付けの屈折率差を大きく保ち、基本横
モードを高キャリア注入域まで制御して、バルク活性層
の場合より高出力化ができる。すなわち、量子井戸構造
活性層では、横モードが不安定になる光出力であるキン
クレベルを向上できるため、基本横モードの高出力化が
達成される。
Further, the conventional semiconductor laser has a problem that it is impossible to increase the output power of the fundamental transverse mode as compared with the waveguide structure having a large difference in refractive index in the lateral direction of the active layer. As an example, when an active layer with a single or multiple quantum well structure with a small change in refractive index due to carrier injection is used, the built-in refractive index difference is kept large, and the fundamental transverse mode is controlled to a high carrier injection region to achieve bulk activation. Higher output can be achieved than in the case of layers. In other words, in the quantum well structure active layer, the kink level, which is the optical output that makes the transverse mode unstable, can be improved, so that a higher output of the fundamental transverse mode is achieved.

【0009】さらに、最初に設ける埋込み層である電流
狭窄層の膜厚を適切に設定すると、安定に自励発振が得
られる弱導波構造の設計ができ、活性層横方向の屈折率
差を1×10~3から8×10~3の範囲に設定可能であっ
た。また自励発振は光出力2mWから得られ、第1の電
流狭窄層の膜厚により自励発振の得られる最大光出力は
10mWから60mWまでの範囲において調節すること
ができた。上記により、基本横モードで50mW以上の
高出力域まで安定に自励発振が持続した屈折率導波構造
を形成することができ、無効電流を抑制した低閾値動作
を達成し、かつ自励発振が得られる光出力時には雑音
(RIN)レベル−125〜−140dB/Hzの低雑
音特性を得た。
Furthermore, if the thickness of the current confinement layer, which is the first buried layer, is set appropriately, a weak waveguide structure can be designed in which stable self-sustained pulsation can be obtained, and the difference in the refractive index in the lateral direction of the active layer can be obtained. It could be set in the range of 1 × 10 3 to 8 × 10 3 Further, the self-sustained pulsation was obtained from the optical output of 2 mW, and the maximum optical output obtained by the self-sustained pulsation could be adjusted in the range of 10 mW to 60 mW by the film thickness of the first current confinement layer. As described above, it is possible to form a refractive index waveguide structure in which self-excited oscillation is stably maintained up to a high output region of 50 mW or more in the fundamental transverse mode, achieve low threshold operation with suppressed reactive current, and self-excited oscillation. At the time of the optical output that obtains, a low noise characteristic of a noise (RIN) level of −125 to −140 dB / Hz was obtained.

【0010】[0010]

【実施例】【Example】

<実施例1>図1は本発明による半導体レーザ素子の一
実施例の断面構成図である。図示のように、下から順に
AuGeNi層のn側電極11、n型GaAs基板1、
n型ZnSeバッファ層2、n型MgZnSSe光導波
層3及びアンドープCdZnSe/ZnSSe歪多重量
子井戸構造活性層4が積層され、活性層4の上面に中央
部が上辺が狭く底辺が広い台形が平坦層上に形成された
断面形状をもつリッジストライプ構造のp型MgZnS
Se光導波層5が積層されている。光導波層5の上記台
形上辺にはp型ZnSSeバッファ光導波層6が上記台
形の延長上に形成されている。リッジストライプ構造の
横側、すなわち、リッジストライプ構造の裾の上部で上
記台形の側辺部には、レーザ光に透明なn型ZnSSe
電流狭窄層7が上記台形の上面端部より暫次厚みを増す
ように外側に形成されている。上記台形の上面及び電流
狭窄層7の上面には、p型ZnSTeバッファ兼光吸収
層8が形成され、電流狭窄層7の上部がレーザ光を吸収
する電流狭窄層となる。電流狭窄層8の上面は平坦とな
り、その上にp型ZnSTe/ZnTeコンタクト層
9、PdPtAuのp側電極10が形成されている。
<Embodiment 1> FIG. 1 is a sectional structural view of an embodiment of a semiconductor laser device according to the present invention. As shown, the n-side electrode 11 of the AuGeNi layer, the n-type GaAs substrate 1, and the
An n-type ZnSe buffer layer 2, an n-type MgZnSSe optical waveguide layer 3, and an undoped CdZnSe / ZnSSe strained multiple quantum well structure active layer 4 are stacked, and a trapezoidal flat layer having a central part with a narrow upper side and a wide base on the upper surface of the active layer 4. A ridge stripe structure p-type MgZnS having a cross-sectional shape formed above
The Se optical waveguide layer 5 is laminated. On the upper side of the trapezoid of the optical waveguide layer 5, a p-type ZnSSe buffer optical waveguide layer 6 is formed on the extension of the trapezoid. On the lateral side of the ridge stripe structure, that is, on the side of the trapezoid above the bottom of the ridge stripe structure, n-type ZnSSe transparent to laser light is provided.
The current confinement layer 7 is formed outside the upper end of the trapezoid so as to have a temporary increase in thickness. A p-type ZnSTe buffer / light absorption layer 8 is formed on the trapezoidal upper surface and the upper surface of the current confinement layer 7, and the upper portion of the current confinement layer 7 serves as a current confinement layer that absorbs laser light. The upper surface of the current constriction layer 8 is flat, and the p-type ZnSTe / ZnTe contact layer 9 and the p-side electrode 10 of PdPtAu are formed on the flat surface.

【0011】本実施例の半導体レーザ素子の製造工程を
説明する。(100)面から5°オフした基板面方位を
有するn型GaAs基板1の上にClドープn型ZnS
eバッファ層2(層の厚さd=0.1μm,キャリア濃
度nD=1×1018cm~3)、Clドープn型MgyZn
1-yzSe1-z光導波層3(d=1.5μm,nD=5×
1017cm~3,y=0.10〜0.12,z=0.12〜
0.15)、アンドープCdxZn1-xSe/ZnSzSe
1-z歪量子井戸構造活性層4(ZnSzSe1-z量子障壁
層(d=4nm,z=0.06〜0.08)2周期とCd
xZn1-zSe圧縮歪量子井戸層(d=6nm,x=0.
1)3周期及びその両側にZnSzSe1-z光分離閉じ込
め層(d=30nm,z=0.06〜0.08))、Nド
ープp型MgyZn1-yzSe1-z光導波層5(d=1.
2μm,nA=4〜7×1017cm~3,y=0.10〜
0.12,z=0.12〜0.15)、Nドープp型Zn
ZSe1-z光導波層6(d=0.2μm,nA=8×10
17〜1×1018cm~3,z=0.06〜0.08)を順次
分子線エピタキシー(MBE)法により成長温度300
℃においてエピタキシャル成長する。
The manufacturing process of the semiconductor laser device of this embodiment will be described. Cl-doped n-type ZnS is formed on the n-type GaAs substrate 1 having a substrate plane orientation that is 5 ° off from the (100) plane.
e buffer layer 2 (layer thickness d = 0.1 μm, carrier concentration n D = 1 × 10 18 cm 3 ), Cl-doped n-type Mg y Zn
1-y S z Se 1-z optical waveguide layer 3 (d = 1.5 μm, n D = 5 ×
10 17 cm- 3 , y = 0.10-0.12, z = 0.12-
0.15), undoped Cd x Zn 1-x Se / ZnS z Se
1-z strained quantum well structure active layer 4 (ZnS z Se 1-z quantum barrier layer (d = 4 nm, z = 0.06 to 0.08)) 2 periods and Cd
x Zn 1-z Se compressive strain quantum well layer (d = 6 nm, x = 0.
1) 3 period and ZnS z Se 1-z optical separate confinement layer on both sides (d = 30nm, z = 0.06~0.08 )), N -doped p-type Mg y Zn 1-y S z Se 1- z optical waveguide layer 5 (d = 1.
2 μm, n A = 4 to 7 × 10 17 cm to 3 , y = 0.10
0.12, z = 0.12 to 0.15), N-doped p-type Zn
S Z Se 1-z optical waveguide layer 6 (d = 0.2 μm, n A = 8 × 10
17 to 1 × 10 18 cm to 3 and z = 0.06 to 0.08) are sequentially grown at a growth temperature of 300 by the molecular beam epitaxy (MBE) method.
Epitaxially grows at ℃.

【0012】その後、SiN絶縁膜(d=0.2〜0.3
μm)を蒸着した後、ホトリソグラフィ技術とケミカル
エッチングにより、光導波層5が0.15〜0.20μm
残存する所まで層6と層5を除去して、リッジストライ
プ状メサ(幅4〜6μm)を形成する。次に、SiNマ
スクを残したまま、ガスソース分子線エピタキシー(G
SMBE)法又は有機金属気相成長(MOCVD)法に
より、n型ZnSZSe1-z電流狭窄層7(d=0.2〜
0.4μm,nD=5×1017〜1×1018cm~3,z=
0.06〜0.08)を選択成長してストライプ構造を埋
込む。
After that, a SiN insulating film (d = 0.2 to 0.3)
of 0.15 to 0.20 μm by photolithography and chemical etching.
Layers 6 and 5 are removed to the remaining portion to form a ridge stripe mesa (width 4 to 6 μm). Next, with the SiN mask left, gas source molecular beam epitaxy (G
The n-type ZnS Z Se 1-z current confinement layer 7 (d = 0.2 to 0.2) is formed by the SMBE method or the metal organic chemical vapor deposition (MOCVD) method.
0.4 μm, n D = 5 × 10 17 to 1 × 10 18 cm to 3 , z =
0.06 to 0.08) is selectively grown to fill the stripe structure.

【0013】次に、SiNマスクをエッチング除去した
後、MBE法によりNドープp型ZnSαTe1-αバッ
ファ兼光吸収層8(d=1.5〜3.0μm,nA=1〜3
×1018cm~3,α=0.62〜0.64)、Nドープp
型ZnSαTe1-α層9(d=20〜50nm,nA=3
×1018〜2×1019cm~3,αは層7から電極10に
向かって0.63から0へ徐々に減少し、電極10と接
触する面はNドープp型ZnTeコンタクト層(nA=2
×1019cm~3)とする)をストライプ構造に対して平
坦に埋込むようにエピタキシャル成長する。この後、p
側電極PdPtAu10及びn側電極AuGeNi11
を蒸着し、劈開スクライブして図1の断面図に示す半導
体レーザ素子の形状に切り出す。
Then, after removing the SiN mask by etching, the N-doped p-type ZnSαTe 1- α buffer / light absorbing layer 8 (d = 1.5 to 3.0 μm, n A = 1 to 3) by MBE method.
× 10 18 cm ~ 3 , α = 0.62 ~ 0.64), N-doped p
Type ZnSαTe 1- α layer 9 (d = 20 to 50 nm, n A = 3)
× 10 18 to 2 × 10 19 cm to 3 , α gradually decreases from 0.63 to 0 toward the electrode 10 from the layer 7, and the surface in contact with the electrode 10 has an N-doped p-type ZnTe contact layer (n A = 2
X 10 19 cm 3 )) is epitaxially grown so as to be buried evenly in the stripe structure. After this, p
Side electrode PdPtAu10 and n-side electrode AuGeNi11
Is vapor-deposited and cleaved and scribed to cut out into the shape of the semiconductor laser device shown in the sectional view of FIG.

【0014】本実施例では、25℃の連続動作条件にお
いて共振器長600μmアンコート素子の閾値電流が5
0〜60mAであり、前面後面の反射率がそれぞれ10
%及び90%である非対称コーティングを施すことによ
り光出力40mW以上まで安定に基本横モードで動作す
ることを確認できた。また、電流狭窄層7の膜厚を上記
範囲で調節することにより、自励発振の得られる光出力
範囲を制御できた。自励発振は光出力2mWから得ら
れ、電流狭窄層7の膜厚により10mWから40mWま
でで自励発振の得られる最大光出力を調節できた。自励
発振の得られる光出力範囲では、戻り光量が5%生じた
ときでも雑音(RIN)レベルは−125〜−140
dB/Hzの低い範囲であった。発振波長は、光出力2
0mWのとき520〜530nmを得た。
In this example, the threshold current of the uncoated device having a cavity length of 600 μm was 5 under the continuous operation condition of 25 ° C.
0 to 60 mA, and the reflectance of the front and rear surfaces is 10 each
% And 90%, it was confirmed that the fundamental transverse mode was stably operated up to an optical output of 40 mW or more. Further, by adjusting the film thickness of the current confinement layer 7 within the above range, the light output range in which self-sustained pulsation can be obtained could be controlled. Self-sustained pulsation was obtained from an optical output of 2 mW, and the maximum optical output at which self-sustained pulsation was obtained could be adjusted from 10 mW to 40 mW depending on the film thickness of the current confinement layer 7. In the optical output range where self-sustained pulsation is obtained, the noise (RIN) level is -125 to -140 even when the amount of returned light is 5%.
It was in the low range of dB / Hz. The oscillation wavelength is the optical output 2
520-530 nm was obtained at 0 mW.

【0015】<実施例2>図2は本発明による半導体レ
ーザ素子の他の実施例の断面構成図である。
<Embodiment 2> FIG. 2 is a sectional structural view of another embodiment of the semiconductor laser device according to the present invention.

【0016】同図において、図1の実施例と同一機能、
材料部は同じ番号を付している。実施例1との相違は、
リッジ構造の中央上部にNドープp型ZnSαTe1-α
バッファ層8が付加され、電流狭窄層7はバッファ層8
の上面から横側に厚みを増しながら形成されている。電
流狭窄層7上面にはn型ZnSTeの光吸収兼電流狭窄
層12が積層されている。光吸収兼電流狭窄層12の上
面はバッファ層8の上面と同じ高さになっている。
In the figure, the same functions as those of the embodiment of FIG.
The material parts are given the same numbers. The difference from Example 1 is that
N-doped p-type ZnSαTe 1- α is formed on the upper center of the ridge structure.
The buffer layer 8 is added, and the current confinement layer 7 is the buffer layer 8.
Is formed while increasing the thickness from the upper surface to the lateral side. An n-type ZnSTe light absorption / current confinement layer 12 is laminated on the upper surface of the current confinement layer 7. The upper surface of the light absorption / current constriction layer 12 is flush with the upper surface of the buffer layer 8.

【0017】実施例2の製造工程を説明する。(10
0)面から5°オフした基板面方位を有するn型GaA
s基板1を用いて、実施例1と同様にして層6まで順次
MBE法によりエピタキシャル成長する。続いてNドー
プp型ZnSαTe1-αバッファ層8(d=0.1〜0.
2μm,nA=1〜3×1018cm~3,α=0.62〜0.
64)を成長した後、ホトリソグラフィ技術とケミカル
エッチングにより、層5が0.15〜0.20μm残存す
る所まで層8と層6と層5を除去して、実施例1と同様
にしてリッジストライプ構造を作製する。次に、SiN
マスクを残したまま、GSMBE法又はMOCVD法に
より、n型ZnSZSe1-Z電流狭窄層7(d=0.2〜
0.4μm,nD=5×1017〜1×1018cm~3,z=
0.06〜0.08)、n型ZnSαTe1-α光吸収兼電
流狭窄層8(d=0.8〜1.0μm,nA=1〜3×10
18cm~3,α=0.62〜0.64)を選択成長してスト
ライプ構造を平坦に埋込む。次に、SiNマスクをエッ
チング除去した後、実施例1と全く同様に2図の断面図
に示す素子を作製する。
The manufacturing process of the second embodiment will be described. (10
N-type GaA having a substrate plane orientation that is 5 ° off from the (0) plane
Using the s substrate 1, the layers 6 are sequentially epitaxially grown by the MBE method in the same manner as in the first embodiment. Then, N-doped p-type ZnSαTe 1- α buffer layer 8 (d = 0.1 to 0.1.
2 μm, nA = 1 to 3 × 10 18 cm ~ 3 , α = 0.62 to 0.
64) and then, by photolithography and chemical etching, the layers 8, 6, and 5 are removed until the layer 5 remains at 0.15 to 0.20 μm, and the ridge is formed in the same manner as in Example 1. Create a stripe structure. Next, SiN
The n-type ZnS Z Se 1-Z current confinement layer 7 (d = 0.2 to 0.2) is formed by the GSMBE method or the MOCVD method while leaving the mask.
0.4 μm, n D = 5 × 10 17 to 1 × 10 18 cm to 3 , z =
0.06 to 0.08), n-type ZnSαTe 1- α light absorption and current confinement layer 8 (d = 0.8 to 1.0 μm, nA = 1 to 3 × 10)
18 cm ~ 3 , α = 0.62 ~ 0.64) is selectively grown to bury the stripe structure flatly. Next, after removing the SiN mask by etching, the device shown in the sectional view of FIG.

【0018】本実施例では、25℃の連続動作条件にお
いて共振器長600μmアンコート素子の閾値電流が4
0〜50mAであり、前面後面の反射率が10%−90
%である非対称コーティングを施すことにより光出力5
0mW以上まで安定に基本横モードで動作することを確
認できた。また、電流狭窄層7の膜厚を上記範囲で調節
することにより、自励発振の得られる光出力範囲を制御
できた。自励発振は光出力2mWから得られ、電流狭窄
層7の膜厚により10mWから50mWまでで自励発振
の得られる最大光出力を調節できた。自励発振の得られ
る光出力範囲では、戻り光量が5%生じたときでも雑音
(RIN)レベルは−125〜−140dB/Hzの低
い範囲であった。発振波長は、光出力30mWのとき5
20〜530nmを得た。
In this example, the threshold current of the uncoated element having a cavity length of 600 μm is 4 under the continuous operation condition of 25 ° C.
0 to 50 mA, the reflectance of the front and rear surfaces is 10% -90
5% light output by applying asymmetric coating
It was confirmed that the device operates stably in the basic transverse mode up to 0 mW or more. Further, by adjusting the film thickness of the current confinement layer 7 within the above range, the light output range in which self-sustained pulsation can be obtained could be controlled. The self-sustained pulsation was obtained from an optical output of 2 mW, and the maximum optical output at which self-sustained pulsation was obtained could be adjusted from 10 mW to 50 mW depending on the film thickness of the current confinement layer 7. In the light output range where self-sustained pulsation can be obtained, the noise (RIN) level was in the low range of −125 to −140 dB / Hz even when the amount of returned light was 5%. The oscillation wavelength is 5 when the optical output is 30 mW.
20-530 nm was obtained.

【0019】<実施例3>図3は本発明による半導体レ
ーザ素子の更に他の実施例の断面構成図である。図示の
ように、下から順にAuGeNi層のn側電極11、n
型InP基板13、n型MgSeバッファ層14、n型
MgZnSe光導波層15及びアンドープCdZnSe
/ZnSeTe歪多重量子井戸構造活性層16が積層さ
れ、活性層16の上面に中央部が上辺が狭く底辺が広い
台形が平坦層上に形成された断面形状をもつリッジスト
ライプ構造のp型MgZnSSe光導波層17、上記台
形の上辺には更にp型ZnSeTe光導波層18、p型
ZnSTeバッファ層19が積層されている。台形の横
側は下側から順にレーザ光に透明なn型MgZnSe電
流狭窄層20、レーザ光を吸収するn型ZnSTe光吸
収兼電流狭窄層21が積層されている。光吸収兼電流狭
窄層21の上面とバッファ層19の上面は平面を形成
し、その平面上にp型ZnSTe/ZnTeコンタクト
層22及びp側電極PdPtAu23が順に積層されて
いる。
<Third Embodiment> FIG. 3 is a sectional view showing the structure of a semiconductor laser device according to a third embodiment of the present invention. As shown, the n-side electrodes 11, n of the AuGeNi layer are sequentially arranged from the bottom.
-Type InP substrate 13, n-type MgSe buffer layer 14, n-type MgZnSe optical waveguide layer 15 and undoped CdZnSe
/ ZnSeTe strained multiple quantum well structure active layer 16 is laminated, and a ridge stripe structure p-type MgZnSSe optical waveguide having a cross-sectional shape in which a trapezoid with a central upper part and a wider base is formed on the upper surface of the active layer 16 on a flat layer. On the wave layer 17 and the upper side of the trapezoid, a p-type ZnSeTe optical waveguide layer 18 and a p-type ZnSTe buffer layer 19 are further laminated. On the lateral side of the trapezoid, an n-type MgZnSe current confinement layer 20 transparent to laser light and an n-type ZnSTe light absorption / current confinement layer 21 that absorbs laser light are stacked in this order from the bottom. A top surface of the light absorption / current constriction layer 21 and a top surface of the buffer layer 19 form a plane, and a p-type ZnSTe / ZnTe contact layer 22 and a p-side electrode PdPtAu 23 are sequentially stacked on the plane.

【0020】本実施例の製造工程を説明する。まず、
(100)面から5°オフした基板面方位を有するn型
InP基板13を用いて、Clドープn型MgSeバッ
ファ層14(d=0.1μm,nD=1×1018cm
~3)、Clドープn型MgZZn1-ZSe光導波層15
(d=1.5μm,nD=5×1017cm~3,z=0.8
8〜0.92)、アンドープCdXZn1-XSe/ZnS
YTe1-Y歪量子井戸構造活性層16(ZnSeYTe
1-Y量子障壁層(d=4nm,y=0.45〜0.50)
1層とCdXZn1-XSe引張歪量子井戸層(d=12n
m,x=0.3)2周期及びその両側にZnSeYTe
1-Y光分離閉じ込め層(d=30nm,y=0.45〜
0.50))、Nドープp型MgZZn1-ZSe光導波層
17(d=1.2μm,nA=4〜5×1017cm~3,z
=0.88〜0.92)、Nドープp型ZnSeYTe1-Y
光導波層18(d=0.2μm,nA=8×1017cm
~3,y=0.45〜0.50)、Nドープp型ZnSαT
1-αバッファ層19(d=0.1μm,nA=1〜3×
1018cm~3,α=0.30〜0.32)を順次MBE法
によりエピタキシャル成長する。その後、SiN絶縁膜
(d=0.2〜0.3μm)を蒸着した後、ホトリソグラ
フィ技術とケミカルエッチングにより、層17が0.1
5〜0.20μm残存する所まで層19と層18と層1
7を除去して、リッジストライプ状メサ(幅4〜6μ
m)を形成する。次に、SiNマスクを残したまま、G
SMBE法又はMOCVD法により、n型MgZZn1-Z
Se電流狭窄層20(d=0.2〜0.4μm,nD=5
×1017〜1×1018cm~3,z=0.88〜0.9
2)、n型ZnSαTe1-α光吸収兼電流狭窄層21
(d=0.8〜1.0μm,nA=1〜3×1018cm~
3,α=0.30〜0.32)を選択成長してストライプ
構造を平坦に埋込む。次に、SiNマスクをエッチング
除去した後、MBE法でNドープp型ZnSαTe1-α
層22(d=20〜50nm,nA=3×1018〜2×1
19cm~3、αは層19から電極23に向かって0.3
0から0へ徐々に減少、電極23と接触する面はNドー
プp型ZnTeコンタクト層(nA=2×1019cm~3
とする)をエピタキシャル成長する。この後、p側電極
PdPtAu23及びn側電極AuGeNi24を蒸着
し、劈開スクライブして3図の断面図に示す素子の形状
に切り出す。
The manufacturing process of this embodiment will be described. First,
A Cl-doped n-type MgSe buffer layer 14 (d = 0.1 μm, n D = 1 × 10 18 cm) was used by using an n-type InP substrate 13 having a substrate plane orientation that was off by 5 ° from the (100) plane.
~ 3), Cl-doped n-type Mg Z Zn 1-Z Se optical waveguide layer 15
(D = 1.5 μm, n D = 5 × 10 17 cm ~ 3 , z = 0.8
8 to 0.92), undoped Cd X Zn 1-X Se / ZnS
e Y Te 1-Y strained quantum well structure active layer 16 (ZnSe Y Te
1-Y quantum barrier layer (d = 4 nm, y = 0.45 to 0.50)
1 layer and Cd X Zn 1-X Se tensile strain quantum well layer (d = 12n
m, x = 0.3) 2 periods and ZnSe Y Te on both sides
1-Y light separation confinement layer (d = 30 nm, y = 0.45
0.50)), N-doped p-type Mg Z Zn 1-Z Se optical waveguide layer 17 (d = 1.2μm, nA = 4~5 × 10 17 cm ~ 3, z
= 0.88 to 0.92), N-doped p-type ZnSe Y Te 1-Y
Optical waveguide layer 18 (d = 0.2 μm, nA = 8 × 10 17 cm
~ 3 , y = 0.45 to 0.50), N-doped p-type ZnSαT
e 1− α buffer layer 19 (d = 0.1 μm, nA = 1 to 3 ×)
10 18 cm 3 and α = 0.30 to 0.32) are sequentially epitaxially grown by the MBE method. Then, after depositing a SiN insulating film (d = 0.2 to 0.3 μm), the layer 17 is reduced to 0.1 by photolithography and chemical etching.
Layer 19, layer 18, and layer 1 up to the remaining portion of 5 to 0.20 μm
7 is removed, and the ridge stripe mesa (width 4 to 6 μm
m) is formed. Next, while leaving the SiN mask, G
N-type Mg Z Zn 1-Z by SMBE method or MOCVD method
Se current confinement layer 20 (d = 0.2 to 0.4 μm, n D = 5
× 10 17 to 1 × 10 18 cm to 3 , z = 0.88 to 0.9
2), n-type ZnSαTe 1- α light absorption and current confinement layer 21
(D = 0.8 to 1.0 μm, nA = 1 to 3 × 10 18 cm ~
3 , α = 0.30 to 0.32) is selectively grown to bury the stripe structure flatly. Next, after removing the SiN mask by etching, the N-doped p-type ZnSαTe 1- α is formed by the MBE method.
Layer 22 (d = 20 to 50 nm, nA = 3 × 10 18 to 2 × 1)
0 19 cm to 3 , α is 0.3 from the layer 19 toward the electrode 23.
It gradually decreases from 0 to 0, and the surface in contact with the electrode 23 is an N-doped p-type ZnTe contact layer (nA = 2 × 10 19 cm ~ 3 )
And) is epitaxially grown. After that, the p-side electrode PdPtAu23 and the n-side electrode AuGeNi24 are vapor-deposited, and cleaved and scribed to cut out into the shape of the element shown in the sectional view of FIG.

【0021】本実施例では、25℃の連続動作条件にお
いて共振器長600μmアンコート素子の閾値電流が4
0〜50mAであり、前面後面の反射率が10%−90
%である非対称コーティングを施すことにより光出力5
0mW以上まで安定に基本横モードで動作することを確
認できた。また、電流狭窄層20の膜厚を上記範囲で調
節することにより、自励発振の得られる光出力範囲を制
御できた。自励発振は光出力2mWから得られ、電流狭
窄層20の膜厚により10mWから50mWまで自励発
振の得られる最大光出力を調節できた。自励発振の得ら
れる光出力範囲では、戻り光量が5%生じたときでも雑
音(RIN)レベルは−125〜−140dB/Hzの
低い範囲であった。発振波長は、光出力30mWのとき
520〜530nmを得た。
In this embodiment, the threshold current of the uncoated device having a cavity length of 600 μm is 4 under the continuous operation condition of 25 ° C.
0 to 50 mA, the reflectance of the front and rear surfaces is 10% -90
5% light output by applying asymmetric coating
It was confirmed that the device operates stably in the basic transverse mode up to 0 mW or more. Further, by adjusting the film thickness of the current confinement layer 20 within the above range, the light output range in which self-sustained pulsation can be obtained could be controlled. The self-sustained pulsation was obtained from the optical output of 2 mW, and the maximum optical output at which the self-sustained pulsation was obtained could be adjusted from 10 mW to 50 mW by the film thickness of the current confinement layer 20. In the light output range where self-sustained pulsation can be obtained, the noise (RIN) level was in the low range of −125 to −140 dB / Hz even when the amount of returned light was 5%. The oscillation wavelength was 520 to 530 nm when the optical output was 30 mW.

【0022】以上本発明の実施例について説明したが、
本発明は上記実施例に限定されるものではない。例え
ば、実施例では、基板面方位は(100)から5°オフ
した基板を用いているが、基板面方位が(100)面から0
〜54.7°オフした結晶面であれればよい。活性層は
量子井戸構造としているが、バルク構造としてもよい。
The embodiment of the present invention has been described above.
The present invention is not limited to the above embodiment. For example, in the embodiment, the substrate plane orientation is 5 ° off from (100), but the substrate plane orientation is 0 from the (100) plane.
The crystal plane may be off by about 54.7 °. Although the active layer has a quantum well structure, it may have a bulk structure.

【0023】[0023]

【発明の効果】最初に設ける埋込み層であるレーザ光に
透明な電流狭窄層の膜厚を適切に設定すると、安定に自
励発振が得られる活性層横方向の屈折率差を1×10~3
から8×10~3の範囲の弱導波構造の設定が可能であ
る。本発明により、圧縮歪或いは引張歪を導入した単一
又は多重量子井戸構造活性層を有したII−VI半導体レー
ザに対して、少なくとも2段階に埋込み電流狭窄差層を
設け、レーザ光に透明な電流狭窄層の膜厚を適切に設定
すると、基本横モードで50mW以上の高出力域まで安
定に動作し、また自励発振は光出力2mWから得られ、
かつ2mWの低出力域から60mWの高出力域までにお
いて自励発振の得られる光出力を制御できる。自励発振
の得られる光出力時では、戻り光量が5%生じたときで
も雑音(RIN)レベルを−125〜−140dB/H
zの低い範囲に抑制することができた。これにより、本
発明の半導体レーザは光磁気ディスクや相変化光ディス
クのメモリ書き込み消去光源として、低雑音でかつ高出
力を有し、システムに要求される素子特性を十分満足す
る。
When the thickness of the current confinement layer which is the first buried layer and is transparent to the laser beam is set appropriately, the self-sustained pulsation can be stably obtained. 3
It is possible to set a weak waveguide structure in the range from 8 × 10 3 to 8 × 10 3 . According to the present invention, an II-VI semiconductor laser having a single or multiple quantum well structure active layer introduced with compressive strain or tensile strain is provided with a buried current confinement difference layer in at least two stages, and is transparent to laser light. If the film thickness of the current confinement layer is properly set, stable operation up to a high output region of 50 mW or more in the fundamental transverse mode is achieved, and self-excited oscillation can be obtained from an optical output of 2 mW.
In addition, it is possible to control the optical output that can obtain self-sustained pulsation in the low output range of 2 mW to the high output range of 60 mW. At the time of optical output where self-excited oscillation is obtained, the noise (RIN) level is -125 to -140 dB / H even when the amount of returned light is 5%.
It could be suppressed to a low range of z. As a result, the semiconductor laser of the present invention has low noise and high output as a memory writing / erasing light source for a magneto-optical disk or a phase change optical disk, and sufficiently satisfies the element characteristics required for the system.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による半導体レーザ素子の一実施例の断
面構成図
FIG. 1 is a sectional configuration diagram of an embodiment of a semiconductor laser device according to the present invention.

【図2】本発明による半導体レーザ素子の他の実施例の
断面構成図
FIG. 2 is a sectional configuration diagram of another embodiment of the semiconductor laser device according to the present invention.

【図3】本発明による半導体レーザ素子のさらに他の一
実施例の断面構成図
FIG. 3 is a sectional configuration diagram of still another embodiment of the semiconductor laser device according to the present invention.

【符号の説明】[Explanation of symbols]

1:n型GaAs基板 2:n型ZnSeバッファ層 3:n型MgZnSSe光導波層 4:アンドープCdZnSe/ZnSSe歪多重量子井
戸構造活性層 5:p型MgZnSSe光導波層 6:p型ZnSSe光導波層 7:n型ZnSSe電流狭窄層 8:p型ZnSTeバッファ兼光吸収層 9:p型ZnSTe/ZnTeコンタクト層 10:p側電極PdPtAu 11:n側電極AuGeNi 12:n型ZnSTe光吸収兼電流狭窄層 13:(100)面から5°オフした基板面方位を有す
るn型InP基板 14:n型MgSeバッファ層 15:n型MgZnSe光導波層 16:アンドープCdZnSe/ZnSeTe歪多重量
子井戸構造活性層 17:p型MgZnSe光導波層 18:p型ZnSeTe光導波層 19:p型ZnSTeバッファ層 20:n型MgZnSe電流狭窄層 21:n型ZnSTe光吸収兼電流狭窄層 22:p型ZnSTe/ZnTeコンタクト層 23:p側電極PdPtAu 24:n側電極AuGeNi
1: n-type GaAs substrate 2: n-type ZnSe buffer layer 3: n-type MgZnSSe optical waveguide layer 4: undoped CdZnSe / ZnSSe strained multiple quantum well structure active layer 5: p-type MgZnSSe optical waveguide layer 6: p-type ZnSSe optical waveguide layer 7: n-type ZnSSe current constriction layer 8: p-type ZnSTe buffer / light absorption layer 9: p-type ZnSTe / ZnTe contact layer 10: p-side electrode PdPtAu 11: n-side electrode AuGeNi 12: n-type ZnSTe light absorption / current confinement layer 13 : N-type InP substrate having a substrate plane orientation off by 5 ° from the (100) plane 14: n-type MgSe buffer layer 15: n-type MgZnSe optical waveguide layer 16: undoped CdZnSe / ZnSeTe strained multiple quantum well structure active layer 17: p -Type MgZnSe optical waveguide layer 18: p-type ZnSeTe optical waveguide layer 19: p-type ZnS e Buffer layer 20: n-type MgZnSe current confinement layer 21: n-type ZnSTe light absorbing and current confinement layer 22: p-type ZnSTe / ZnTe contact layer 23: p-side electrode PdPtAu 24: n-side electrode AuGeNi

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】半導体基板上に2つの光導波層に挾まれた
上記光導波層の禁制帯幅より小さい活性層からなるダブ
ルヘテロ接合構造を有した半導体レーザにおいて、上記
活性層は量子井戸構造であり、上記光導波層の少なくと
も1つは光軸方向に垂直な断面形状が中央部が台形で両
側の裾部が平坦部となるリッジストライプ構造をもち、
上記リッジストライプの横側で上記光導波層上にレーザ
光に透明な第1の電流狭窄層と、上記第1の電流狭窄層
の上側にレーザ光を吸収する第2の電流狭窄層との少な
くとも2段階の埋込み層が設けられたことを特徴とする
半導体レーザ素子。
1. A semiconductor laser having a double heterojunction structure, comprising an active layer sandwiched between two optical waveguide layers on a semiconductor substrate and having a bandgap smaller than the forbidden band width of the optical waveguide layers. At least one of the optical waveguide layers has a ridge stripe structure in which a cross-sectional shape perpendicular to the optical axis direction is a trapezoid at the center and flats at the skirts on both sides,
At least a first current confinement layer transparent to the laser light on the optical waveguide layer on the side of the ridge stripe, and a second current confinement layer absorbing the laser light on the upper side of the first current confinement layer. A semiconductor laser device having a two-step buried layer.
【請求項2】請求項1記載の半導体レーザ素子におい
て、上記活性層及び第1及び第2の電流狭窄層がII-VI
族半導体であることを特徴とする半導体レーザ素子。
2. The semiconductor laser device according to claim 1, wherein the active layer and the first and second current confinement layers are II-VI.
A semiconductor laser device characterized by being a group semiconductor.
【請求項3】請求項2記載の半導体レーザ素子におい
て、上記半導体基板がGaAsで、上記活性層の量子井
戸構造がCdZnSeの圧縮歪量子井戸層とZnSSe
又はMgZnSSeの量子障壁層とからなり、上記第1
の電流狭窄層がZnSSe又はMgZnSSe層肩から
なり、上記第2の電流狭窄層がZnSTe層からなり、
上記埋込み層を構成する混晶材料が上記半導体基板のG
aAsと格子整合する材料の組成に設定されたことを特
徴とする半導体レーザ素子。
3. The semiconductor laser device according to claim 2, wherein the semiconductor substrate is GaAs, and the active layer has a quantum well structure of CdZnSe and a compressive strain quantum well layer and ZnSSe.
Or a quantum barrier layer of MgZnSSe.
The current constriction layer of ZnSSe or MgZnSSe layer shoulder, and the second current confinement layer of ZnSTe layer,
The mixed crystal material forming the buried layer is G of the semiconductor substrate.
A semiconductor laser device characterized by being set to a composition of a material lattice-matched with aAs.
【請求項4】請求項3記載の半導体レーザ素子におい
て、上記半導体基板がInPで、上記活性層がCdZn
Se又はZnSeTe引張歪量子井戸層とMgZnSe
又はMgZnSeTe量子障壁層とからなり、上記第1
の電流狭窄層がMgZnSe又はMgZnSeTe層か
らなり、上記第2の電流狭窄層がZnSTe層からな
り、上記埋込み層を構成する混晶材料が上記半導体基板
のInPと格子整合する材料の組成に設定されたことを
特徴とする半導体レーザ素子。
4. The semiconductor laser device according to claim 3, wherein the semiconductor substrate is InP and the active layer is CdZn.
Se or ZnSeTe tensile strain quantum well layer and MgZnSe
Or a MgZnSeTe quantum barrier layer,
The current confinement layer is made of MgZnSe or MgZnSeTe layer, the second current confinement layer is made of ZnSTe layer, and the mixed crystal material forming the buried layer is set to the composition of the material lattice-matched with InP of the semiconductor substrate. A semiconductor laser device characterized by the above.
【請求項5】請求項1、2、3又は4記載の半導体レー
ザ素子において、上記活性層の横方向の屈折率差が1×
10~3から8×10~3の範囲に設定され、2mWから6
0mWの範囲で自励発振が持続する屈折率導波基本横モ
ード制御構造が形成されたことを特徴とする半導体レー
ザ素子。
5. The semiconductor laser device according to claim 1, 2, 3, or 4, wherein the active layer has a lateral refractive index difference of 1 ×.
It is set in the range of 10 to 3 to 8 × 10 to 3 , and it is set to 2 mW to 6
A semiconductor laser device having a refractive index guided fundamental transverse mode control structure in which self-sustained pulsation continues in a range of 0 mW.
【請求項6】請求項1、2、3又は4記載の半導体レー
ザ素子において、第1の電流狭窄層が5×1017〜2×
1018cm~3範囲のキャリア濃度が設定され、第2の電
流狭窄層に1×1018〜1×1019cm~3範囲のキャリ
ア濃度が設定されていことを特徴とする半導体レーザ素
子。
6. The semiconductor laser device according to claim 1, 2, 3 or 4, wherein the first current confinement layer is 5 × 10 17 to 2 ×.
A semiconductor laser device characterized in that a carrier concentration in the range of 10 18 cm 3 is set, and a carrier concentration in the second current confinement layer is set in the range of 1 × 10 18 -1 × 10 19 cm- 3 .
【請求項7】請求項1、2、3又は4記載の半導体レー
ザ素子において、上記リッジストライプ構造の平坦部に
おける光導波層の膜厚が0.15〜0.35μm範囲と
し、上記第1の電流狭窄層の膜厚が0.2〜0.4μm範
囲に、上記第1の電流狭窄層の膜厚が0.8〜1.3μm
範囲に設定されたことを特徴とする半導体レーザ素子。
7. The semiconductor laser device according to claim 1, 2, 3 or 4, wherein the film thickness of the optical waveguide layer in the flat portion of the ridge stripe structure is in the range of 0.15 to 0.35 μm. The thickness of the current confinement layer is in the range of 0.2 to 0.4 μm, and the thickness of the first current confinement layer is in the range of 0.8 to 1.3 μm.
A semiconductor laser device characterized by being set in a range.
【請求項8】請求項1、2、3又は4記載の半導体レー
ザ素子において、リッジストライプ構造における上記台
形の底辺の幅が4〜6μmの範囲、上記台形の上辺の幅
が2〜3μmの範囲に設定されたことを特徴とする半導
体レーザ素子。
8. The semiconductor laser device according to claim 1, 2, 3 or 4, wherein the width of the base of the trapezoid in the ridge stripe structure is 4 to 6 μm, and the width of the top of the trapezoid is 2 to 3 μm. A semiconductor laser device characterized by being set to.
【請求項9】請求項1ないし8のいずれかに記載の半導
体レーザ素子において、上記半導体基板にの基板面方位
が(100)面から0〜54.7°オフした結晶面であること
を特徴とする半導体レーザ素子。
9. The semiconductor laser device according to claim 1, wherein the semiconductor substrate has a crystal plane in which the substrate plane orientation is 0 to 54.7 ° off from the (100) plane. Semiconductor laser device.
JP8430094A 1994-04-22 1994-04-22 Semiconductor laser element Pending JPH07297487A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8430094A JPH07297487A (en) 1994-04-22 1994-04-22 Semiconductor laser element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8430094A JPH07297487A (en) 1994-04-22 1994-04-22 Semiconductor laser element

Publications (1)

Publication Number Publication Date
JPH07297487A true JPH07297487A (en) 1995-11-10

Family

ID=13826634

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8430094A Pending JPH07297487A (en) 1994-04-22 1994-04-22 Semiconductor laser element

Country Status (1)

Country Link
JP (1) JPH07297487A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6563850B1 (en) 1997-10-06 2003-05-13 Sharp Kabushiki Kaisha Light-emitting device and fabricating method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6563850B1 (en) 1997-10-06 2003-05-13 Sharp Kabushiki Kaisha Light-emitting device and fabricating method thereof

Similar Documents

Publication Publication Date Title
US5636236A (en) Semiconductor laser
US5363395A (en) Blue-green injection laser structure utilizing II-VI compounds
JPH0373154B2 (en)
KR910003465B1 (en) Opto-electronic device
JP4219010B2 (en) Semiconductor laser device
US6768137B2 (en) Laminated semiconductor substrate and optical semiconductor element
JPH0732285B2 (en) Semiconductor laser device
EP0843393B1 (en) Semiconductor laser diode
US5389800A (en) Semiconductor light-emitting device
JPH1146038A (en) Nitride semiconductor laser element and manufacture of the same
JP2001144375A (en) Semiconductor light-emitting device
JPH07297487A (en) Semiconductor laser element
JPH02228087A (en) Semiconductor laser element
US5670789A (en) Semiconductor light-emitting device with quantum well structure
JP3033333B2 (en) Semiconductor laser device
JPH0278290A (en) Semiconductor laser device
JP3115006B2 (en) Semiconductor laser device
JPH0394490A (en) Semiconductor laser element
JPH0621576A (en) Semiconductor laser and its manufacture
JPH08222811A (en) Semiconductor light-emitting element
JPH07254747A (en) Semiconductor laser element
JP2525618B2 (en) Semiconductor laser
JPH0697572A (en) Semiconductor laser element
JPH02181486A (en) Semiconductor laser element
JPH05175605A (en) Semiconductor laser device