JPS6350814B2 - - Google Patents

Info

Publication number
JPS6350814B2
JPS6350814B2 JP15485183A JP15485183A JPS6350814B2 JP S6350814 B2 JPS6350814 B2 JP S6350814B2 JP 15485183 A JP15485183 A JP 15485183A JP 15485183 A JP15485183 A JP 15485183A JP S6350814 B2 JPS6350814 B2 JP S6350814B2
Authority
JP
Japan
Prior art keywords
cathode
electron gun
heat
grid
cylinder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP15485183A
Other languages
Japanese (ja)
Other versions
JPS5958736A (en
Inventor
Yukio Honda
Tadanori Taguchi
Toshuki Aida
Ushio Kawabe
Akira Misumi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP58154851A priority Critical patent/JPS5958736A/en
Publication of JPS5958736A publication Critical patent/JPS5958736A/en
Publication of JPS6350814B2 publication Critical patent/JPS6350814B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J29/00Details of cathode-ray tubes or of electron-beam tubes of the types covered by group H01J31/00
    • H01J29/02Electrodes; Screens; Mounting, supporting, spacing or insulating thereof
    • H01J29/04Cathodes

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は傍熱型含浸陰極用電子銃の構造に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to the structure of an electron gun for indirectly heated impregnated cathodes.

〔発明の背景〕[Background of the invention]

含浸あるいは補給型と呼ばれる方式の陰極は、
撮像管、ブラウン管などの光電変換管や進行波
管、クライストロン、マグネトロンなどのマイク
ロ波管用として有望視されている。従来からの含
浸陰極は、電子放射物者が含浸された陰極基体と
スリーブとからなり、ヒータなどの発熱体により
陰極を加熱する方式の傍熱型陰極である。この含
浸陰極は、Wを主成分とする粉末を適当な焼結条
件で焼結した多孔質の陰極基体にBaO・Al2O3
CaOなどからなる溶融化合物を電子放射物質とし
て陰極基体の空孔内に含浸したものである。使用
時には、MoやTa等の高融点金属の円筒形のスリ
ーブで陰極基体を保持し、スリーブ内に陰極加熱
用のヒータを装着する傍熱形の構造となつてい
る。ヒータは通常、耐熱性良好なW線が用いら
れ、W線表面に電気的絶縁用のアルミナ被覆層が
形成されている。
The cathode of the method called impregnation or replenishment type is
It is seen as promising for use in photoelectric conversion tubes such as image pickup tubes and cathode ray tubes, traveling wave tubes, and microwave tubes such as klystrons and magnetrons. A conventional impregnated cathode is an indirectly heated cathode that consists of a cathode base impregnated with an electron emitter and a sleeve, and is heated by a heating element such as a heater. This impregnated cathode is made of a porous cathode base made by sintering powder containing W as the main component under appropriate sintering conditions, and is coated with BaO, Al 2 O 3 ,
A molten compound such as CaO is impregnated into the pores of the cathode substrate as an electron emitting substance. During use, the cathode substrate is held in a cylindrical sleeve made of a high melting point metal such as Mo or Ta, and a heater for heating the cathode is installed inside the sleeve, resulting in an indirectly heated structure. The heater usually uses a W wire with good heat resistance, and an alumina coating layer for electrical insulation is formed on the surface of the W wire.

従来、撮像管、ブラウン管等の電子放射源とし
ては、(Ba、Sr、Ca)Oを主成分とする酸化物
カソードが用いられている。酸化物カソードは
1000〓で10A/cm2の飽和電流密度を得ることがで
きる電子源であるが、電子源が(Ba、Sr、Ca)
Oの粉末を用いるためイオン衝撃に弱く、また電
気抵抗が(充分活性化された酸化物カソードの比
抵抗は約104Ωcm)大きいため多くの放射電流で
動作すると自己加熱により酸化物カソード自体が
劣化するという欠点がある。従つて酸化物カソー
ドの定常動作時の放射電流密度は約0.5A/cm2
低い値に設定してある。
Conventionally, an oxide cathode containing (Ba, Sr, Ca)O as a main component has been used as an electron radiation source for image pickup tubes, cathode ray tubes, and the like. Oxide cathode is
This is an electron source that can obtain a saturation current density of 10A/cm 2 at 1000〓, but the electron source
Since O powder is used, it is vulnerable to ion bombardment, and the electrical resistance is high (the specific resistance of a fully activated oxide cathode is about 10 4 Ωcm), so when operated with a large amount of radiation current, the oxide cathode itself will heat up due to self-heating. It has the disadvantage of deterioration. Therefore, the radiation current density of the oxide cathode during steady operation is set to a low value of about 0.5 A/cm 2 .

一方、含浸型陰極は陰極基体としてWあるいは
MoあるいはReあるいはこれらの合金等の高温強
度の高い金属を用いているため、イオン衝撃に強
く、みまた電気抵抗(Wの比抵抗は約4.9×10-6
Ωcm)が小さいので多くの放射電流密度で動作し
ても自己加熱による陰極基体も温度上昇もない。
しかし、含浸型陰極では10A/cm2の飽和電流密度
を得るには、1000〜1100℃の高温に陰極基体を加
熱する必要がある。従つて、発熱体としてのヒー
タから供給される電力を有効に利用するための電
子銃の構造が要求される。
On the other hand, impregnated cathodes use W or W as the cathode substrate.
Because it uses metals with high high temperature strength such as Mo, Re, or their alloys, it is resistant to ion bombardment and has low electrical resistance (specific resistance of W is approximately 4.9×10 -6
Ωcm) is small, so there is no temperature rise in the cathode substrate due to self-heating even when operating at high radiation current densities.
However, in order to obtain a saturation current density of 10 A/cm 2 with an impregnated cathode, it is necessary to heat the cathode substrate to a high temperature of 1000 to 1100°C. Therefore, there is a need for an electron gun structure that can effectively utilize the electric power supplied from the heater as a heating element.

以下には、従来の傍熱方式による電子銃の構造
を、酸化物カソードを用いた場合と含浸型陰極を
用いた場合を例にとつて説明する。
Below, the structure of a conventional indirect heating type electron gun will be described, taking as examples a case where an oxide cathode is used and a case where an impregnated cathode is used.

例 1 第1図は従来の傍熱型酸化物カソードを用いた
最も一般的な電子銃の構造を示す。(Ba、Sr、
Ca)Oから成る酸化物は陰極基体1上に塗布さ
れる。陰極基体1の材料は主としてNiが用いら
れ、他の少量の活性剤(Mg、Si、Al等)添加さ
れている。陰極基体1は耐熱合金(例えばニクロ
ム)製の支持円筒2で支持され、さらに支持円筒
2は、保持台8を界して、熱反射用筒体を兼ねた
陰極支持体4に固定されて、絶縁板7に取付けら
れる。陰極加熱用のヒータ3は支持円筒2の内側
に挿入して用いる。実用の電子銃としては、陰極
基体1に対向して電子流を流す孔を有した第1グ
リツド5及び電子の引出し用の第2グリツド6の
他に複数個の電極を用いて螢光面に電子流を投影
する様になつている。この電子銃構成の欠点は、
支持円筒2の熱容量が大きく、かつ長さも長く、
また保持台8、陰極支持体4への熱の逃げも多い
ため、ヒータ3も大きいものが要求されてくる。
また陰極表面温度が定常値に達する時間も長くな
る。さらに支持円筒2の長さが長いと、温度上昇
による熱膨張の量も増加して、陰極表面と第1グ
リツド5の間隔の変動(陰極表面と第1グリツド
の間隔が100μmの場合の変動の許容値は10%以
下と云われている)も大きくなる。
Example 1 Figure 1 shows the structure of the most common electron gun using a conventional indirectly heated oxide cathode. (Ba, Sr,
An oxide consisting of Ca)O is applied onto the cathode substrate 1. The material of the cathode substrate 1 is mainly Ni, with a small amount of other activators (Mg, Si, Al, etc.) added. The cathode substrate 1 is supported by a support cylinder 2 made of a heat-resistant alloy (for example, nichrome), and the support cylinder 2 is further fixed to a cathode support 4 which also serves as a heat reflecting cylinder with a holding table 8 interposed therebetween. It is attached to the insulating plate 7. A heater 3 for heating the cathode is inserted inside the support cylinder 2 for use. In a practical electron gun, in addition to a first grid 5 having holes facing the cathode substrate 1 through which electrons flow and a second grid 6 for extracting electrons, a plurality of electrodes are used on the fluorescent surface. It is designed to project an electron stream. The disadvantage of this electron gun configuration is that
The support cylinder 2 has a large heat capacity and a long length.
Furthermore, since a large amount of heat escapes to the holding table 8 and the cathode support 4, the heater 3 is also required to be large.
Furthermore, the time required for the cathode surface temperature to reach a steady value becomes longer. Furthermore, if the length of the support cylinder 2 is long, the amount of thermal expansion due to temperature rise will increase, resulting in fluctuations in the distance between the cathode surface and the first grid 5 (the fluctuation when the distance between the cathode surface and the first grid 5 is 100 μm). (The permissible value is said to be 10% or less) will also increase.

例 2 第2図は陰極部の熱容量を減らし、かつ熱膨張
による変形量も減少する様に工夫された電子銃構
成の一例を示す。陰極基体1は支持円筒2で支持
される。陰極加熱用ヒータ3が、陰極部を集中的
に加熱できるように工夫された結果、支持円筒の
長さも例1の場合に比べて半分以下になつてい
る。支持円筒2は、その円周上の3箇所もしくは
4箇所に取付けられた陰極支持板9により、陰極
支持体4の上部に固定される。他の電極構造は例
1の場合とほとんど同じである。本方式の特徴
は、陰極部の熱容量が減少したことにより、陰極
表面温度が定常時に達する時間が短縮(例1の場
合の約1/4に短縮されている)された。また、支
持円筒2の熱膨張による変形に対して、陰極支持
板9はこれを吸収する様な伸びをして、陰極表面
と第1グリツド5との間隔を一定に保つ様になつ
ている。
Example 2 FIG. 2 shows an example of an electron gun configuration designed to reduce the heat capacity of the cathode section and also reduce the amount of deformation due to thermal expansion. The cathode substrate 1 is supported by a support cylinder 2. As a result of the cathode heating heater 3 being devised to heat the cathode portion intensively, the length of the support cylinder is also less than half that of Example 1. The support cylinder 2 is fixed to the upper part of the cathode support 4 by cathode support plates 9 attached at three or four places on its circumference. The other electrode structures are almost the same as in Example 1. A feature of this method is that the time required for the cathode surface temperature to reach a steady state is shortened (reduced to about 1/4 of that in Example 1) due to the reduction in the heat capacity of the cathode section. In addition, the cathode support plate 9 expands to absorb deformation of the support cylinder 2 due to thermal expansion, and maintains a constant distance between the cathode surface and the first grid 5.

ここに上げた2つの例は、電子放射物質として
(Ba、Sr、Ca)O等の酸化物を用いた場合で、
従つて陰極基体1の温度も高々800℃と低いので、
陰極部から発散する熱を有効に利用するための熱
反射用筒体を兼ねた陰極筒体4に特別の操作をし
なくても実用上は大きな障害はない。
The two examples given here are cases where oxides such as (Ba, Sr, Ca)O are used as electron emitting materials.
Therefore, the temperature of the cathode substrate 1 is as low as 800°C, so
Even if the cathode tube 4, which also serves as a heat reflecting tube for effectively utilizing the heat radiated from the cathode section, is not subjected to any special operations, there is no major problem in practical use.

次に含浸型陰極を用いた電子銃の従来構造の例
を示す。
Next, an example of a conventional structure of an electron gun using an impregnated cathode will be shown.

例 3 第3図は含浸型陰極を用いた傍熱型電子銃の構
造の例を示す。多孔質Wに電子放射物質として
BaO・Al2・O3・CaOを含浸した陰極基体1′は、
MoあるいはTaあるいはW等の耐熱金属の薄板
(20〜30μm厚)で作つた支持円筒2で支持され
る。この支持円筒2は陰極基体1′と反対の一端
において、陰極部からの放射熱を反射する熱反射
用筒体を兼用した陰極支持体4によつて保持され
ている。ヒータ3は支持円筒2の内側に挿入さ
れ、熱伝導と輻射熱により陰極基体1′を加熱す
る。陰極基体1′のヒータ3と接する側には、電
子放射物質がヒータ3側に蒸発してヒータ3の絶
縁破壊を生じるのを防止するための障壁板10が
設けてある。陰極支持体4は絶縁板7に取付け固
定される。この様な含浸型陰極を電子銃として用
いる場合、陰極基体1′に対向して電子線を通す
孔を有する第1グリツド5、及び電子線の引出し
用電極の第2グリツド6の他収束用電極を用いて
螢光面等に投影される。
Example 3 Figure 3 shows an example of the structure of an indirectly heated electron gun using an impregnated cathode. Porous W as an electron emitting material
The cathode substrate 1′ impregnated with BaO・Al 2・O 3・CaO is
It is supported by a support cylinder 2 made of a thin plate (20 to 30 μm thick) of heat-resistant metal such as Mo, Ta, or W. This support cylinder 2 is held at one end opposite to the cathode base 1' by a cathode support 4 which also serves as a heat reflecting cylinder that reflects radiant heat from the cathode portion. The heater 3 is inserted inside the support cylinder 2 and heats the cathode base 1' by thermal conduction and radiant heat. A barrier plate 10 is provided on the side of the cathode substrate 1' in contact with the heater 3 to prevent the electron emitting substance from evaporating toward the heater 3 and causing dielectric breakdown of the heater 3. The cathode support 4 is attached and fixed to the insulating plate 7. When such an impregnated cathode is used as an electron gun, there is a first grid 5 which faces the cathode base 1' and has holes through which the electron beam passes, a second grid 6 which is an electrode for extracting the electron beam, and a converging electrode. The image is projected onto a fluorescent surface, etc. using

含浸型陰極は高電流密度の電子線源として期待
されているが、その動作温度が1000〜1100℃と高
いため、ヒータの消費電力をできるだけ低くする
様な電子銃構成が期待される。この様な観点から
第3図の例をみた場合、従来の電子銃構造には次
の様な欠点がある。すなわち、陰極基体1′の周
囲からの熱放射によつつて消費される熱を有効に
利用する電子銃構造になつていない。つまり、陰
極基体1′周囲からの輻射熱を陰極側に反射する
様な電子銃構造になつていない。
The impregnated cathode is expected to be used as a high current density electron beam source, but since its operating temperature is as high as 1000-1100°C, an electron gun configuration that reduces the power consumption of the heater as much as possible is expected. When looking at the example shown in FIG. 3 from this perspective, the conventional electron gun structure has the following drawbacks. That is, the electron gun structure does not effectively utilize the heat consumed by heat radiation from the periphery of the cathode substrate 1'. In other words, the electron gun structure is not such that the radiant heat from around the cathode base 1' is reflected toward the cathode side.

〔発明の目的〕[Purpose of the invention]

本発明の第1の目的は、陰極基体及びその支持
体となる支持円筒から放散される熱を有効に利用
出来、かつ電子銃構造を簡略化できる傍熱型の含
浸陰極用電子銃を提供することである。
A first object of the present invention is to provide an indirectly heated impregnated cathode electron gun that can effectively utilize the heat dissipated from a cathode substrate and a support cylinder serving as its support, and that can simplify the electron gun structure. That's true.

本発明の他の目的は、陰極部からの輻射熱によ
る第1グリツドの熱膨張による変形を減少する電
子銃構造を提供することである。
Another object of the present invention is to provide an electron gun structure that reduces deformation due to thermal expansion of the first grid due to radiant heat from the cathode section.

〔発明の概要〕[Summary of the invention]

本発明の傍熱型含浸陰極用電子銃は、多孔質金
属からなる陰極基体、これを支持する円筒型の支
持円筒及び発熱体とからなる傍熱型の含浸陰極、
陰極基体と支持円筒から外側に放散される熱を陰
極側に反射する熱反射用筒体、及び電子流を通す
孔を有し陰極に対向する第1グリツドから構成さ
れる電子銃において、該熱反射用筒体と第1グリ
ツドを一体の複合体としたことおよびこの複合体
の側面に輪状襞を設けることを特徴とする。
The indirectly heated impregnated cathode electron gun of the present invention includes an indirectly heated impregnated cathode comprising a cathode substrate made of a porous metal, a cylindrical support cylinder supporting the cathode substrate, and a heating element;
In an electron gun, the electron gun is composed of a cathode base body, a heat reflecting cylinder that reflects the heat radiated outward from the support cylinder toward the cathode, and a first grid facing the cathode and having holes through which electrons flow. It is characterized in that the reflecting cylinder and the first grid are integrated into a composite body, and that an annular fold is provided on the side surface of this composite body.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明を実施例により説明する。 The present invention will be explained below using examples.

参考例 本発明の基礎となる電子銃の構造を第4図によ
り説明する。空孔率20〜25%の多孔質Wに
4BaO・Al2O3・CaOなる電子放射物質を含浸し
た陰極基体1′(直径1.4mmφ、厚さ0.6mm)は、
肉厚25μm、長さ6mmのMo製の支持円筒2で支
持した。支持円筒2の材質としてはMoの他、高
温強度の高い耐熱金属であれば、W、Ta、Re、
Ptやこれらの合金を用いてもよい。発熱体とし
てのヒータ3は支持円筒2の内側に挿入して用い
る。陰極基体1′がヒータ3と接する側には、電
子放射物質の蒸発によるヒータ3の絶縁破壊等を
防止するための障壁板10を設けた。障壁板10
としては、支持円筒2と同様に高温強度の高い耐
熱金属を用いるのが望ましい。本参考例では肉厚
25μmのMo板を用いた、陰極基体1′と支持円筒
2、及び障壁板はRu−Moのろう材にて固定し
た。陰極取付け用の孔(カラーブラウン管のよう
に複数の陰極ある時は複数個の孔)を有するアル
ミナ等の絶縁板7に、陰極取付用孔を中心とした
円周上を3等分(もしくは4等分)した位置にお
いて陰極支持棒12を固定する。陰極支持棒12
には陰極支持板9を介して支持円筒2を固定し
た。陰極支持板9としては、できるだけ支持円筒
2と同一材質とした方が望ましいが、高温強度が
高く、熱膨張の少ない耐熱金属であればMo、
W、Ta、Re、Ptあるいはこれらの合金を用いて
も良い。本参考例ではMoを用いた。さらに陰極
支持棒12の一つに、陰極基体1′の電位設定用
の陰極リード線を設けた。陰極基体1′と支持円
筒2の外側には、陰極基体1′に対向し電子線を
通す孔を有する第1グリツドと、陰極基体1′及
び支持円筒2から放散される輻射熱を有効に利用
するための熱反射用筒体を兼用した複合体11を
設けた。複合体11は、陰極基体1′及び支持円
筒2の輻射熱で500〜600℃に上昇することもある
ので、複合体11の材質としては高温強度が高く
熱膨張の少ない耐熱合金であればMo、W、Ta、
Re、Pt、Niあるいはこれらの合金を用いても良
い。複合体11の肉厚は陰極基体1′の動作温度
によつても多少異なるが(動作温度が高いと厚肉
が良い)、50〜200μmが適当である。本参考例の
複合体11は、Moのブロツクを100μm肉厚の形
状に削り出したものを用いたが、複合体11の製
法としては深絞りによつても、または円筒と第1
グリツドにあたる孔あきの円板をろう接あるいは
溶接によつて行つてもよい。また第1グリツドと
陰極基体1′の間隔は100μm、支持円筒2と複合
体11との間の間隔は1.0mmとなる様に組立てた。
複合体11には電位設定用の第1グリツドリード
線14を接続した。複合体11の外側に第2グリ
ツド6を設け、さらに第2グリツドリード線15
を接続した。18,19は絶縁板7に複合体11
および第2グリツド6を固定するための取付金具
である。なお、第4図bは陰極リード線等の若干
の部分を省略してある。
Reference Example The structure of an electron gun, which is the basis of the present invention, will be explained with reference to FIG. Porous W with a porosity of 20-25%
The cathode substrate 1' (diameter 1.4 mmφ, thickness 0.6 mm) impregnated with an electron-emitting substance called 4BaO・Al 2 O 3・CaO is
It was supported by a supporting cylinder 2 made of Mo and having a wall thickness of 25 μm and a length of 6 mm. In addition to Mo, the material for the support cylinder 2 may be W, Ta, Re, or any other heat-resistant metal with high high-temperature strength.
Pt or an alloy thereof may also be used. The heater 3 as a heating element is inserted inside the support cylinder 2 for use. A barrier plate 10 is provided on the side where the cathode substrate 1' contacts the heater 3 to prevent dielectric breakdown of the heater 3 due to evaporation of the electron emitting substance. Barrier plate 10
As with the support cylinder 2, it is desirable to use a heat-resistant metal with high high-temperature strength. In this reference example, the wall thickness
The cathode substrate 1', the support cylinder 2, and the barrier plate, each made of a 25 μm Mo plate, were fixed with Ru-Mo brazing material. An insulating plate 7 made of alumina or the like that has a cathode mounting hole (or multiple holes if there are multiple cathodes like a color cathode ray tube) has a circumference divided into three (or four) with the cathode mounting hole as the center. The cathode support rod 12 is fixed at the equally divided positions. Cathode support rod 12
A support cylinder 2 was fixed via a cathode support plate 9. It is preferable that the cathode support plate 9 is made of the same material as the support cylinder 2, but if it is a heat-resistant metal with high high temperature strength and low thermal expansion, Mo,
W, Ta, Re, Pt, or an alloy thereof may be used. In this reference example, Mo was used. Furthermore, one of the cathode support rods 12 was provided with a cathode lead wire for setting the potential of the cathode base 1'. On the outside of the cathode base 1' and the support cylinder 2, there is a first grid which faces the cathode base 1' and has holes through which electron beams pass, and which makes effective use of the radiant heat radiated from the cathode base 1' and the support cylinder 2. A composite body 11 was provided which also served as a heat reflecting cylinder. Since the temperature of the composite 11 may rise to 500 to 600°C due to the radiant heat of the cathode base 1' and the support cylinder 2, the material for the composite 11 may be Mo, Mo, or a heat-resistant alloy with high high-temperature strength and low thermal expansion. W,Ta,
Re, Pt, Ni, or an alloy thereof may also be used. The thickness of the composite body 11 varies somewhat depending on the operating temperature of the cathode substrate 1' (the higher the operating temperature, the better the thickness), but it is suitably 50 to 200 μm. The composite 11 of this reference example was made by cutting a Mo block into a shape with a thickness of 100 μm.
The perforated disk corresponding to the grid may be soldered or welded. Further, the assembly was performed so that the distance between the first grid and the cathode substrate 1' was 100 μm, and the distance between the support cylinder 2 and the composite body 11 was 1.0 mm.
A first grid lead wire 14 for potential setting was connected to the complex 11. A second grid 6 is provided outside the complex 11, and a second grid lead wire 15 is provided.
connected. 18, 19 are the composites 11 on the insulating plate 7
and a mounting bracket for fixing the second grid 6. Note that some parts such as the cathode lead wire are omitted in FIG. 4b.

以上述べた電極構造を用いる事により、同一寸
法の陰極基体1′を同一温度まで加熱するのに要
するヒータ3の消費電力を約15%低減できた。複
合体11の材料を別の金属を用いても同様の結果
を得た。本発明は本例を基礎としてなされたもの
である。
By using the electrode structure described above, the power consumption of the heater 3 required to heat the cathode substrate 1' of the same size to the same temperature can be reduced by about 15%. Similar results were obtained when a different metal was used as the material for the composite 11. The present invention is based on this example.

実施例 第5図は、放熱される熱の有効利用およびヒー
タ3の消費電力低減と複合体11の熱変形による
第1グリツド5′と陰極基体1′の間隔の変化を減
少することを目的とした本発明の実施例を示す。
Embodiment FIG. 5 shows an example in which the purpose is to effectively utilize the radiated heat, reduce the power consumption of the heater 3, and reduce changes in the distance between the first grid 5' and the cathode substrate 1' due to thermal deformation of the composite 11. Examples of the present invention are shown below.

複合体11は、電子線を通す孔を有する円板か
らなる第1グリツド5′と、側面に輪形襞を有す
る円筒からなる熱反射用筒体16で構成される。
この複合体11は、高温強度が高く熱膨張の少な
い耐熱金属であればMo、W、Ta、Re、Ptある
いはこれらの合金を用いても良い。また複合体1
1は、同種の金属を組合せても、異種の金属を組
合せて構成しても良い。本実施例では、第1グリ
ツド5′と熱反射用円筒体16としてMoを用い
た例につき述べる。第1グリツド5′は肉厚100μ
mの円板を用いた。熱反射用筒体16は肉厚50μ
mの円筒の側面に、曲率半径0.5mmの外向けの輪
形襞17をプレス整形して作つたものを用いた。
第1グリツド5′と熱反射用筒体16はRu−Mo
のろう材により接続した。他に点溶接しても良
い。輪形襞17の曲率半径は0.5〜1mmが有効で
ある。また熱反射用筒体16の輪形襞17は、円
筒の内側に凸になつても本発明の目的に対しては
有効であるが、支持円筒2と熱反射用筒体16と
の間隔を接近できる点からは、輪形襞17は円筒
の外側に凸にした方が良い。
The composite body 11 is composed of a first grid 5' consisting of a disk having a hole through which the electron beam passes, and a heat reflecting cylinder 16 consisting of a cylinder having annular folds on its side.
This composite body 11 may be made of Mo, W, Ta, Re, Pt, or an alloy thereof, as long as it is a heat-resistant metal with high high-temperature strength and low thermal expansion. Also complex 1
1 may be constructed by combining the same types of metals or by combining different types of metals. In this embodiment, an example in which Mo is used as the first grid 5' and the heat reflecting cylinder 16 will be described. The first grid 5' has a wall thickness of 100μ
A disk of m was used. The heat reflecting cylinder 16 has a wall thickness of 50μ.
The outer ring-shaped folds 17 with a radius of curvature of 0.5 mm were formed by pressing on the side surface of a cylinder with a radius of 0.5 mm.
The first grid 5' and the heat reflecting cylinder 16 are made of Ru-Mo.
Connected with solder metal. Alternatively, spot welding may be used. An effective radius of curvature of the annular folds 17 is 0.5 to 1 mm. The annular folds 17 of the heat-reflecting cylinder 16 are effective for the purpose of the present invention even if they are convex toward the inside of the cylinder, but the distance between the support cylinder 2 and the heat-reflecting cylinder 16 is reduced. From a practical point of view, it is better to make the annular folds 17 convex to the outside of the cylinder.

本発明の構造の複合体11にすることによつ
て、第1グリツド5′の円板の直径方向の伸びと、
熱反射用筒体16の軸方向の伸びを、輪形襞17
により緩和することができた。輪形襞17を有し
た複合体11を用いることにより、輪形襞17の
ない複合体を用いた場合に比べて、熱膨張による
変形量を約10%減少でき、その結果、第1グリツ
ド5′と陰極基体1′の間隔の変化も減少できた。
また、複合体11を有した電子銃構造を用いる事
により、従来の電子銃構造の場合に比べて、約15
%のヒータ3の消費電力を削減でできた。
By making the composite 11 of the structure of the invention, the diametrical elongation of the disc of the first grid 5';
The axial extension of the heat reflecting cylinder 16 is determined by the annular folds 17.
This could be alleviated by By using the composite body 11 with ring-shaped folds 17, the amount of deformation due to thermal expansion can be reduced by about 10% compared to the case where a composite body without ring-shaped folds 17 is used, and as a result, the first grid 5' and Changes in the spacing between the cathode substrates 1' could also be reduced.
In addition, by using the electron gun structure with the composite body 11, compared to the case of the conventional electron gun structure, the
% reduction in power consumption of heater 3.

〔発明の効果〕〔Effect of the invention〕

以上、説明したごとく本発明によれば、傍熱型
含浸陰極において、陰極加熱用の発熱体の消費電
力を低下でき、また輪形襞を設けることにより第
1グリツドの熱膨張による変形も低減できる。
As described above, according to the present invention, in an indirectly heated impregnated cathode, the power consumption of the heating element for heating the cathode can be reduced, and by providing the annular folds, deformation due to thermal expansion of the first grid can also be reduced.

【図面の簡単な説明】[Brief explanation of drawings]

第1図と第2図は従来の酸化物カソードを用い
た傍熱型電子銃の構造を示す断面図、第3図は含
浸型陰極を用いた従来の傍熱型電子銃の構造を示
す断面図、第4図a,bは本発明の参考例たる傍
熱型含浸陰極用電子銃の構造を示す断面図と底面
図、第5図は本発明の実施例における傍熱型含浸
陰極用電子銃の構造を示す断面図である。 1,1′……陰極基体、2……支持円筒、3…
…ヒータ、4……陰極支持体、5,5′……第1
グリツド、6……第2グリツド、7……絶縁板、
8……保持台、9……陰極支持板、10……障壁
板、11……複合体、12……陰極支持棒、13
……陰極リード線、14……第1グリツドリード
線、15……第2グリツドリード線、16……熱
反射用筒体、17……輪形襞、18……取付金
具、19……取付金具。
Figures 1 and 2 are cross-sectional views showing the structure of a conventional indirectly heated electron gun using an oxide cathode, and Figure 3 is a cross-sectional view showing the structure of a conventional indirectly heated electron gun using an impregnated cathode. Figures 4a and 4b are a sectional view and a bottom view showing the structure of an electron gun for indirectly heated impregnated cathodes as a reference example of the present invention, and Figure 5 is an electron gun for indirectly heated impregnated cathodes in an embodiment of the present invention. It is a sectional view showing the structure of a gun. 1, 1'...Cathode base, 2...Support cylinder, 3...
...heater, 4...cathode support, 5, 5'...first
Grid, 6...Second grid, 7...Insulating plate,
8... Holding stand, 9... Cathode support plate, 10... Barrier plate, 11... Composite, 12... Cathode support rod, 13
. . . Cathode lead wire, 14 .

Claims (1)

【特許請求の範囲】 1 多孔質金属からなる陰極基体、前記陰極基体
を支持する支持円筒及び発熱体とからなる傍熱型
の含浸陰極、前記陰極基体と前記支持円筒から外
側に放散される熱を前記含浸陰極側に反射する熱
反射用筒体、及び電子流を通す孔を有し前記含浸
陰極に対向するグリツドを有する電子銃におい
て、前記熱反射用筒体と前記グリツドとを一体の
複合体とせしめ、且つ前記複合体の側面に輪状襞
を有することを特徴とする傍熱型含浸陰極用電子
銃。 2 前記輪状襞は前記複合体の外側に凸部となる
様に構成されて成ることを特徴とする特許請求の
範囲第1項記載の傍熱型含浸陰極用電子銃。
[Scope of Claims] 1. An indirectly heated impregnated cathode comprising a cathode base made of porous metal, a support cylinder that supports the cathode base, and a heating element, and heat radiated outward from the cathode base and the support cylinder. In the electron gun, the electron gun has a heat reflecting cylinder that reflects electrons toward the impregnated cathode, and a grid that has a hole through which the electron flow passes and faces the impregnated cathode. An electron gun for an indirectly heated impregnated cathode, characterized in that the composite body has an annular fold on the side surface thereof. 2. The indirectly heated impregnated cathode electron gun according to claim 1, wherein the annular fold is configured to form a convex portion on the outside of the composite.
JP58154851A 1983-08-26 1983-08-26 Electron gun for indirectly-heated type impregnated cathode Granted JPS5958736A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58154851A JPS5958736A (en) 1983-08-26 1983-08-26 Electron gun for indirectly-heated type impregnated cathode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58154851A JPS5958736A (en) 1983-08-26 1983-08-26 Electron gun for indirectly-heated type impregnated cathode

Publications (2)

Publication Number Publication Date
JPS5958736A JPS5958736A (en) 1984-04-04
JPS6350814B2 true JPS6350814B2 (en) 1988-10-12

Family

ID=15593287

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58154851A Granted JPS5958736A (en) 1983-08-26 1983-08-26 Electron gun for indirectly-heated type impregnated cathode

Country Status (1)

Country Link
JP (1) JPS5958736A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61138824A (en) * 1984-12-10 1986-06-26 Toyota Motor Corp Suct1on pipe length variable type suction device for multicylinder internal-combustion engine
JPS61207822A (en) * 1985-03-12 1986-09-16 Toyota Motor Corp Control of suction control valve of variable suction pipe length type suction apparatus

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51112166A (en) * 1975-03-27 1976-10-04 Matsushita Electric Ind Co Ltd Impregnated cathode

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51112166A (en) * 1975-03-27 1976-10-04 Matsushita Electric Ind Co Ltd Impregnated cathode

Also Published As

Publication number Publication date
JPS5958736A (en) 1984-04-04

Similar Documents

Publication Publication Date Title
US3528156A (en) Method of manufacturing heated cathode
JP2607654B2 (en) Indirectly heated cathode structure and electron gun structure using the same
JPS6350814B2 (en)
CN108878232B (en) Hot cathode assembly for vacuum electronic devices
JP2741235B2 (en) Indirectly heated cathode of deuterium discharge tube
JPH08222119A (en) Direct heated cathode structure
JP2010015815A (en) Cathode structure for electron tube
JP2590750B2 (en) Impregnated cathode structure
KR920008302B1 (en) A form strucutre of dispenser-type cathode
US2858471A (en) Anode for electron discharge device
KR0147609B1 (en) Directly heated cathode
KR920006821Y1 (en) A form structure of dispenser type cathode
JPH0821309B2 (en) Impregnated type cathode
JPH065198A (en) Cathode including cathode element
US2931934A (en) Indirectly heated supply cathode
JPS6062034A (en) Hot-cathode frame body
JPH083956Y2 (en) Impregnated cathode structure
JPS6151723A (en) Directly heating impregnated cathode structure
KR0147615B1 (en) Directly heated cathode
KR950010691Y1 (en) Cathod of crt electron gun
JPS6026438Y2 (en) Cathode structure for electron tube
JP2023173840A (en) Indirect heated cathode and method of manufacturing the same
JPS6347100B2 (en)
HU217163B (en) Directly heated cathode structure
JP2738694B2 (en) Method for producing impregnated cathode assembly