JPS6151723A - Directly heating impregnated cathode structure - Google Patents

Directly heating impregnated cathode structure

Info

Publication number
JPS6151723A
JPS6151723A JP60140309A JP14030985A JPS6151723A JP S6151723 A JPS6151723 A JP S6151723A JP 60140309 A JP60140309 A JP 60140309A JP 14030985 A JP14030985 A JP 14030985A JP S6151723 A JPS6151723 A JP S6151723A
Authority
JP
Japan
Prior art keywords
cathode
heater
insulating base
cathode structure
impregnated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60140309A
Other languages
Japanese (ja)
Inventor
Tadanori Taguchi
田口 貞憲
Toshiyuki Aida
会田 敏之
Yukio Honda
幸雄 本多
Hiroshi Fukushima
福島 宏
Yoshihiko Yamamoto
山本 恵彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP60140309A priority Critical patent/JPS6151723A/en
Publication of JPS6151723A publication Critical patent/JPS6151723A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J1/00Details of electrodes, of magnetic control means, of screens, or of the mounting or spacing thereof, common to two or more basic types of discharge tubes or lamps
    • H01J1/02Main electrodes
    • H01J1/13Solid thermionic cathodes
    • H01J1/15Cathodes heated directly by an electric current

Landscapes

  • Solid Thermionic Cathode (AREA)

Abstract

PURPOSE:To obtain a compact cathode structure having a quick-acting property by performing connection of supporting materials and heaters on the back of an insulation base body. CONSTITUTION:Cathodes 1 are fixed to cups 5 while fixing said cups 5 to the flat parts of heaters 2 for making directly heating impregnation type cathodes. A insulation base body 3 is provided with holes while setting up heaters 2 inside said holes while connecting to supporting materials 4 on the back of the insultion base body 3. Thereby, the hole space of the insulation base body 3 can be effectively used while making further the supporting materials on the front side to be unrequired thus becoming structurally simplified.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、ブラウン管、撮像管などの電子管用として、
速動性を持つ直熱含浸形陰極構体に関するものである。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention is applicable to electron tubes such as cathode ray tubes and image pickup tubes.
The present invention relates to a direct heat impregnated cathode structure with rapid action.

〔発明の背景〕[Background of the invention]

従来からの電子管用陰極としては、N i −M gあ
るいはN1−WなどNiを主成分としてこれに少量の還
元剤を添加した基体金属板上に、BaCO3や(Ba、
Sr、Ca)CO3などからなる電子放射物質を塗布あ
るいは吹き付けによって覆った酸化物陰極が主である。
Conventional cathodes for electron tubes are made of metals such as BaCO3, (Ba,
The main type of cathode is an oxide cathode covered with an electron emitting material such as Sr, Ca) CO3, etc. by coating or spraying.

この酸化物陰極は熱電子を放出するための温度(動作温
度)が低く、熱容量が小さいために発熱体(ヒータ)と
陰極が別個な傍熱形でも比較的速動性を持っている。ま
たこれを直熱形にしたことによってさらに速動性を持っ
た陰極が可能になった。これらの酸化物陰極は現在重板
されているTV用ジブラウン管撮像管などに使用されて
いる。さらに高電流密度のエミッションを得るには陰極
温度を高めれば良い。しかし、この場合には基体金属上
の酸化物の蒸発が激しくなったりして陰極寿命が極端に
短くなる。また、ヒーターの寿命も短くなったり、大量
のエミッションを引き出すと酸化物の剥離や、時とじて
陽極部とスパークが生じるなどの欠点がある。
This oxide cathode has a low temperature for emitting thermoelectrons (operating temperature) and a small heat capacity, so it has relatively fast behavior even in an indirectly heated type where the heating element (heater) and cathode are separate. Also, by making this a directly heated type, it became possible to create a cathode with even faster action. These oxide cathodes are currently used in multi-layer TV di-cathode ray tubes and the like. In order to obtain emission with even higher current density, the cathode temperature can be increased. However, in this case, the evaporation of the oxide on the base metal becomes intense and the life of the cathode becomes extremely short. Other disadvantages include shortening the lifespan of the heater, peeling off oxides when a large amount of emissions are extracted, and occasionally causing sparks with the anode.

高電流密度のエミッションを可能にする陰極として含浸
形陰極が有望視され、ブラウン管、撮像管などの電子管
用として開発が進められている。
Impregnated cathodes are seen as promising as cathodes that enable high current density emissions, and are being developed for use in electron tubes such as cathode ray tubes and image pickup tubes.

含浸形陰極は、一般にはタングステン(W)などの高融
点金属粉末を焼結して多孔質全屈ペレット基体を作り、
この空孔部に、@子放射物質としてバリウムアルミネー
トを170o〜1800’C位に加熱溶融を行なって浸
み込ませた構造で、動作温度は一般に10oO〜120
0℃位の範囲で選ばれ、その時のエミッション電流密度
は約10A/−以上である。また含浸形陰極の寿命はほ
ぼ陰極の厚さに比例している。含浸形陰極は、動作温度
が高いために一般には特開昭53−1334.8号公報
に示されているようにTaやMOなどの高融点金属から
なるスリーブを組み合せ、芯線(W線)にアルミナなど
の被覆層を被着してなるヒータで加熱される傍熱形陰極
として使用している。
Impregnated cathodes are generally made by sintering high-melting point metal powder such as tungsten (W) to create a porous fully curved pellet base.
It has a structure in which barium aluminate is infiltrated into this hole as an @-radiating material by heating and melting it at about 170o~1800'C, and the operating temperature is generally 10oO~120oC.
It is selected in the range of about 0°C, and the emission current density at that time is about 10 A/- or more. Further, the life of an impregnated cathode is approximately proportional to the thickness of the cathode. Because the operating temperature of the impregnated cathode is high, it is generally combined with a sleeve made of a high-melting point metal such as Ta or MO, and the core wire (W wire) is It is used as an indirectly heated cathode that is heated with a heater and is coated with a coating layer such as alumina.

さらに電子放射物質のヒータ側へ蒸発してヒータの特性
を損うことを防止するために裏打ち板を設けた構造にし
なければならない、このような傍熱形陰極では、多孔質
W基体の容量が大きく、動作温度が1000℃以上と高
く、裏打ち板などがあるために電源を投入してから使用
状態温度まで到達するのに必要な時間は、従来の酸化物
に比べて士数倍もの時間を要する。また、このように輻
射熱を利用する方法では、l18極温度よりもヒータ温
度を数百度高くしなければならなく、例えば1000℃
で使用するとヒータ温度は1300”Cにも達する。こ
のように陰極温度とヒータ温度との差が大きいだけでな
はなく、ヒータ寿命が短く、しかも電力も多く必要とす
る。長時間の使用に耐えるようにするにばヒータ線を太
くしなければならない、太くするとさらにヒータ電力が
増大するなどの欠点を有する。そこで、短時間で動作温
度に達する速動性を持たせ、ヒータ温度との温度差を少
なくするために、第1図に示すように、陰極1をヒータ
(発熱体)2に固定し、陰極内に通電したリヒータから
の熱伝導を利用した加熱方法すなわち傍熱方式に対して
直熱方式が選ばれ、フォルステライトなどの絶対基体3
に植設した支持材4を持ったステム6に接着した陰極構
体として泪いることが考えられている。陰極1の電子放
射物質外からの無駄な蒸発を防ぐためには陰極1はカッ
プ状の部品5の中に固定されていることが多い。
Furthermore, in order to prevent the electron emitting material from evaporating toward the heater side and damaging the characteristics of the heater, a structure must be provided with a backing plate.In such an indirectly heated cathode, the capacitance of the porous W substrate is It is large, has a high operating temperature of over 1000℃, and has a backing plate, etc., so the time required to reach the operating temperature after turning on the power is several times longer than with conventional oxides. It takes. In addition, in this method of using radiant heat, the heater temperature must be several hundred degrees higher than the extreme temperature of 118 degrees, for example, 1000 degrees Celsius.
When used in To make it durable, the heater wire must be made thicker, and if it is made thicker, the heater power will further increase.Therefore, it has the disadvantage that it can reach the operating temperature in a short time, and the heater wire must be made thicker. In order to reduce the difference, as shown in Figure 1, the cathode 1 is fixed to a heater (heating element) 2, and a heating method using heat conduction from a reheater that conducts electricity inside the cathode, that is, an indirect heating method, is used. Direct heating method was selected, and absolute substrate 3 such as forsterite
It is considered that the cathode structure is bonded to a stem 6 having a support material 4 implanted in the cathode structure. In order to prevent wasteful evaporation of the electron emitting material from the outside of the cathode 1, the cathode 1 is often fixed in a cup-shaped part 5.

支持材4はヒータ(発熱体)2に固定された陰極1を支
えるとともに、ヒータ2への電力の供給端子でもある。
The support member 4 supports the cathode 1 fixed to the heater (heating element) 2, and also serves as a terminal for supplying power to the heater 2.

通常、支持材4は絶縁基体3を貫通して設けられ1表側
で゛ヒータ2付き陰極1を支え、裏側の支持材4に電力
供給源が接続している。
Usually, the support material 4 is provided penetrating the insulating base 3 and supports the cathode 1 with the heater 2 on the front side thereof, and a power supply source is connected to the support material 4 on the back side.

ヒータ2としては第1図に示したように、陰極1を固定
する平坦部と曲角に折り曲げた脚部、脚部からの相反対
方向に延びた腕部を持った門型回転構造の他、第2図(
a) (b)に示すように、リボン状のまま用いたり、
また陰極1を固定する平坦部と曲角に折り曲げた脚部か
らなる構造のヒータ2も用いられる。しかし、第1図に
示すヒータ2は、加熱時の熱膨張を回転によって逃げる
ことが出来る上に、ヒータ2の長さを大きく取れるとい
う点で有利である。陰極1とヒータ2の固定において時
として陰極1の側面に2本のヒータを接着する方法が取
られる6 直熱方式は、ヒータ2に陰極1を固定して、ヒータ2に
通電してジュール熱で発熱させ熱伝導で加熱される。ヒ
ータ材としては高温抵抗が大きく、高温強度が大きく、
しかも蒸気圧の低いものが選ばれる。高温抵抗はジュー
ル熱を利用した加熱方法であるので、加熱電流を左右し
、しいては消費電力を左右する因子となる。高温強度が
大きい必要性は、陰極が安定に固定されていないと陽極
と陰極と距離などが変化したりして、使用時に画像が不
安定となるなどの問題を生ずる。また蒸気圧%つ が高にことは、使用時にヒータ成分が蒸発し、ヒータ特
性が時間とともに変化する可能があり不都合であり、ま
た、蒸発物が他の電極を汚染するなどの不都合が生ずる
As shown in FIG. 1, the heater 2 has a gate-shaped rotating structure having a flat part for fixing the cathode 1, legs bent at a curved angle, and arms extending in opposite directions from the legs. , Figure 2 (
a) As shown in (b), use it as a ribbon,
Furthermore, a heater 2 having a structure consisting of a flat part for fixing the cathode 1 and leg parts bent at a curved angle is also used. However, the heater 2 shown in FIG. 1 is advantageous in that the thermal expansion during heating can be escaped through rotation, and the length of the heater 2 can be increased. When fixing the cathode 1 and the heater 2, sometimes a method is used in which two heaters are glued to the side of the cathode 16. In the direct heating method, the cathode 1 is fixed to the heater 2, and the heater 2 is energized to generate Joule heat. It generates heat and is heated by thermal conduction. As a heater material, it has high high temperature resistance and high temperature strength.
Moreover, those with low vapor pressure are selected. Since high-temperature resistance is a heating method that utilizes Joule heat, it is a factor that affects the heating current and, in turn, the power consumption. The need for high strength at high temperatures causes problems such as unstable images during use due to changes in the distance between the anode and the cathode if the cathode is not stably fixed. Furthermore, if the vapor pressure is too high, the heater components may evaporate during use, which may cause the heater characteristics to change over time, which is disadvantageous, and the evaporated substances may contaminate other electrodes.

直熱形酸化物陰極用ヒータ材としては、NiとWの合金
が用いられ、動作温度付近700〜上と 800’Cにおける化抵抗が110〜120μΩ・国と
大きく、この陰極構体は傍熱形とほぼ同じか、むしろ小
さく出来る。一方、含浸形陽極用ヒータ材としては、動
作温度が高いために、W、Re。
An alloy of Ni and W is used as the heater material for the directly heated oxide cathode, and its resistance at operating temperatures of 700 to 800°C is as high as 110 to 120 μΩ. It can be almost the same as, or even smaller. On the other hand, since the operating temperature is high, W and Re are used as heater materials for impregnated anodes.

Mo、Taなど高温抵抗の高い高融点金属が用いられる
。この中で最も高い比抵抗を示す元素はReで、100
0℃で77μΩ’C11lである。Raは高価であるた
めに特殊な用途以外は単独で使われることはない。一般
に合金で使用され、通常はWとの合金が用いられている
。しかし、互いの全率固溶範囲内で純Reをしのぐ合金
はない。このように直熱含浸影線極用ヒータ材の比抵抗
は酸化物用に比べ約2/3と小さい、ヒータの比抵抗が
小さい上に、陰極の熱容量が大きいなどの点から酸化物
用ヒータ材よりも大寸法にしなければならない、ヒータ
が短くなると加熱電流が極端に大きくなり1、リード線
からの熱の逃げが大きくなり非効率的である。含浸形陰
極を用いた時のヒータの長さは、通電電流を左右する他
、陰極とヒータの温度差および消費電力を左右する。含
浸形陰極で最も効率良く加熱出来たヒータ形状は、ヒー
タの幅が陰極の直径の3〜4割程度でその長さが9〜1
2mmであった。これを酸化物陰極に用いているヒータ
に比べると、ヒータの幅はともかく長さが絶縁基体3の
支持材4の間隔を大きくするか、あるいは絶縁基体3と
陽極部の距離を長くする構造にしなければならない。結
果として絶縁基体3を大きくしたり、電子管の電子銃部
を長くしなければならない。最近では陰極構体を出来る
だけ小さくする傾向がある。含浸形陰極構体において絶
縁基体3の表側の支持材4を用いてヒータを用いて固定
する場合にはどうしても陰極構体が大きくなるという難
点がある。
A high melting point metal with high high temperature resistance such as Mo or Ta is used. Among these, the element showing the highest specific resistance is Re, which has a resistivity of 100
It is 77μΩ'C11l at 0°C. Since Ra is expensive, it is not used alone except for special purposes. Generally used in alloys, usually alloys with W. However, there is no alloy that outperforms pure Re within the mutual solid solution range. In this way, the specific resistance of the heater material for direct heat impregnated shadow electrodes is about 2/3 lower than that for oxides. If the heater is shortened, the heating current becomes extremely large1, and heat escape from the lead wire becomes large, which is inefficient. When an impregnated cathode is used, the length of the heater affects not only the current applied, but also the temperature difference between the cathode and the heater and the power consumption. The most efficient heater shape for impregnated cathodes is one in which the width of the heater is about 30 to 40% of the diameter of the cathode and the length is 9 to 1.
It was 2 mm. Comparing this to a heater used for an oxide cathode, apart from the width of the heater, the length of the heater has a structure in which the distance between the supporting members 4 of the insulating base 3 is increased, or the distance between the insulating base 3 and the anode section is increased. There must be. As a result, it is necessary to increase the size of the insulating base 3 or to lengthen the electron gun section of the electron tube. Recently, there has been a trend to make the cathode structure as small as possible. In an impregnated cathode structure, when the supporting material 4 on the front side of the insulating substrate 3 is used to fix the cathode structure using a heater, there is a problem that the cathode structure becomes large.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、上記難点を解消し、しかも効率の良い
加熱方法でしかも速動性のあるコンパクトな直熱含浸形
陰極構体を提供しようというものである。
SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned difficulties and to provide a compact directly heated impregnated cathode structure that uses an efficient heating method and is quick-acting.

〔発明の概要〕[Summary of the invention]

本発明は、ヒータ2と絶縁基体3に植設された支持材4
の接続を、絶縁基体3の裏側で実施し、絶縁基体の占め
る空間を有効に使うというものである。絶縁基体3に孔
を設けたシステム6を用い、この孔内にヒータを設置し
、絶縁基体3の裏側で支持材4と接続することによって
、絶縁基体3の孔空間を有効に使用出来、また、表側の
支持材は不要となり構造上も単純になると言える6また
、この孔を利用して金属薄板からなる輻射板を設けるこ
とによって、ヒータからの熱の逃げを防ぎ。
The present invention provides a heater 2 and a support material 4 implanted in an insulating base 3.
The connections are made on the back side of the insulating base 3, thereby making effective use of the space occupied by the insulating base. By using a system 6 in which a hole is provided in the insulating base 3, installing a heater in this hole, and connecting it to the support material 4 on the back side of the insulating base 3, the hole space in the insulating base 3 can be used effectively. This eliminates the need for a supporting material on the front side, making the structure simple6.Furthermore, by using this hole to provide a radiation plate made of a thin metal plate, heat escape from the heater is prevented.

供給した電力を有効に使うことが出来、低電力化につな
がると言える。以上説明したように、陰極植体を大きく
することなく、直熱含浸形113極構体の作製が可能で
、1しかも低電力化が可能であるという特徴を有してい
る。
It can be said that the supplied power can be used effectively, leading to lower power consumption. As explained above, a direct heat impregnation type 113-electrode structure can be produced without increasing the size of the cathode plant, and the present invention has the characteristics that it is possible to reduce the power consumption.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明を実施例を参照して詳細に説明する。 Hereinafter, the present invention will be explained in detail with reference to Examples.

第3図は本発明の直熱含浸形陰極溝体の製造に用いた各
部品を示す斜視図である。
FIG. 3 is a perspective view showing each component used in manufacturing the direct heat impregnation type cathode groove body of the present invention.

第4図、第5図は本発明による直熱含浸形陰極構体を示
す図である。第4図(a)及び第5図(a)は絶縁基体
3の表側すなわち陰極1の電子放射面側から見た平面図
、第4図(b)及び第5図(b)は絶縁基体3の短寸法
側から見た側面図、第4図(c)及び第5図(C)は絶
縁基体3の長手方向中心線で切断した時の断面図である
。また、図において前出のものと同一符号は同一または
均等部分を示すものとする。
4 and 5 are diagrams showing a direct heat impregnation type cathode structure according to the present invention. 4(a) and 5(a) are plan views seen from the front side of the insulating substrate 3, that is, the electron emitting surface side of the cathode 1, and FIG. 4(b) and FIG. 5(b) are plan views of the insulating substrate 3. 4(c) and 5(c) are cross-sectional views taken along the longitudinal center line of the insulating base 3. FIG. Further, in the figures, the same reference numerals as those mentioned above indicate the same or equivalent parts.

多孔質W体内にBaアルミネート化合物を泊融含浸した
陰極1 (直径1.45mn+厚さ0 、5 mm)、
厚さ25μmのTaからなるカップ5(内径1.45m
m、外径1 、5 mm、高さ0.45mm)、厚さ3
0μmのW−25wt%Re板を打ち抜きと成型によっ
て平坦部21、平坦部から折り曲げられた脚部2251
脚部から相反対方向に延びた腕部23を持つヒータ2を
用意した。ヒータ2の平坦部21の中心の長さは1.5
ml11、脚部22の長さ2.8mm、腕部23の長さ
1.75mm(支持材4に溶接後の長さ)で、通電有効
長さくヒータ2の中心線長さ)は10.7mmである。
Cathode 1 with porous W body impregnated with Ba aluminate compound (diameter 1.45 mm + thickness 0.5 mm),
Cup 5 made of Ta with a thickness of 25 μm (inner diameter 1.45 m
m, outer diameter 1.5 mm, height 0.45 mm), thickness 3
A flat part 21 is formed by punching and molding a 0 μm W-25wt% Re plate, and a leg part 2251 is bent from the flat part.
A heater 2 having arm portions 23 extending in opposite directions from the leg portions was prepared. The length of the center of the flat part 21 of the heater 2 is 1.5
ml11, the length of the leg part 22 is 2.8 mm, the length of the arm part 23 is 1.75 mm (the length after welding to the support material 4), and the effective current-carrying length (the center line length of the heater 2) is 10.7 mm. It is.

カップ5に陰極1を固定し、この方ツブ5をヒータ2の
平坦部21に固定し、直熱含浸形陰極を作る。カップ5
と陰極1およびカップ5とヒータ2の固定は、いずれも
レーザー溶接で実施した。これとは別に第3図(d)に
示すようにフォルステライトで作った絶a基体3(幅9
m+n、長さ19mm、厚さ2mn+)に等間隔に直径
2nuaの貫通した孔3ヶと穴にはさんで絶縁基体3の
裏側に0.75mmφのNi線を3.5mmの間隔で支
持材4が植設されているステムを用意した。また孔の内
側に厚さ25μmのTaからなるパイプを圧着によって
固定した輻射板8を設けたステムも用意した(第3図(
d)) 。
A cathode 1 is fixed to a cup 5, and a tube 5 of the cathode 1 is fixed to a flat part 21 of a heater 2 to form a direct heat impregnation type cathode. cup 5
The fixing of the heater 2 to the cathode 1 and cup 5 was performed by laser welding. Apart from this, as shown in Fig. 3(d), there is an absolute base 3 made of forsterite (width 9
m+n, length 19mm, thickness 2mm+), there are three through holes with a diameter of 2nua spaced at equal intervals, and Ni wires of 0.75mmφ are placed on the back side of the insulating base 3 between the holes, and the supporting material 4 is placed at intervals of 3.5mm. A stem in which the plant was planted was prepared. We also prepared a stem with a radiation plate 8 in which a Ta pipe with a thickness of 25 μm was fixed by pressure bonding inside the hole (see Fig. 3).
d)).

絶縁基体3に植設されている支持材4にヒータ2し、真
空容器内で通電加熱テストを実施した。その結果、陰極
温度1000”Cを得るのに必要な電流(Ir)、電圧
(Er)および電力(P)は、幅板8を設けていない第
3図(d)のステムを用いた場合はI 、=2.OA、
E 、=0.67V、P=1.34Wであり、輻射板8
を設けた第3図(e)のステムを使用した場合はIf=
1.9A、Ef=0.63V、P=1.20Wで輻射板
8を設けたステムを用いたことによって約1割、少ない
電力で加熱出来た。また同じlI3極1を用いて傍熱方
式で加熱した場合は、消¥9電力Pは2,94W(Er
= 5 、5 V 、 I r = 0 、535 A
 ) テあり、直熱方式にすることによって消費電力は
半分以下で済み、有効な加熱方法であると言える。また
直熱方式にすることによって電源を投入してから約4秒
で動作状態に達し、これは傍熱方式の約1710である
。この立ち上り時間は酸化物陰極にも劣らない速さであ
る。絶縁基体3に孔を開けたステムを用いこの空間にヒ
ータ2の一部を含んだことにより。
A heater 2 was attached to the supporting material 4 implanted in the insulating substrate 3, and an electrical heating test was conducted in a vacuum container. As a result, the current (Ir), voltage (Er) and power (P) necessary to obtain a cathode temperature of 1000''C are I,=2.OA,
E, = 0.67V, P = 1.34W, and the radiation plate 8
If the stem shown in Fig. 3(e) is used, If=
By using the stem provided with the radiant plate 8 at 1.9A, Ef=0.63V, and P=1.20W, heating was possible with about 10% less power. In addition, when the same lI 3 pole 1 is used for heating by indirect heating method, the consumption power P is 2,94W (Er
= 5, 5 V, Ir = 0, 535 A
) By using the direct heating method, the power consumption is less than half, and it can be said to be an effective heating method. Furthermore, by using the direct heating method, the operating state is reached in about 4 seconds after the power is turned on, which is about 1710 seconds for the indirect heating method. This rise time is as fast as that of an oxide cathode. By using a stem with a hole in the insulating base 3, a part of the heater 2 is included in this space.

ヒータ2を長くする必要がある直熱含浸形陰極の場合で
も、陰極構体は大きくならないことがわかる。したがっ
て、これまでの電子銃の設計を変更することなく、ブラ
ウン管や撮像管にそのまま適用出来る。陰極1が1ケの
ような場合には絶縁基体3は円形のものを用いるのが良
い。
It can be seen that even in the case of a directly heated impregnated cathode, which requires a longer heater 2, the cathode structure does not become larger. Therefore, the present invention can be applied to cathode ray tubes and image pickup tubes without changing the design of conventional electron guns. When there is only one cathode 1, it is preferable to use a circular insulating base 3.

〔発明の効果〕〔Effect of the invention〕

以上1本発明の詳細な説明したように、本発明の直熱含
浸形陰極構体を用いることによって。
As described above in detail, by using the direct heat impregnation type cathode structure of the present invention.

傍熱方式の陰極構体を用いるよりも、立ち上り時間が約
1/10、消費電力が半分以下で済み、絶縁基体3に孔
を開けた、ステムを用い、この空間にヒータ2の一部を
含んだことにより、ヒータ2を長くする必要がある直熱
含浸形陰極の場合でも、陰極構体を大きくする必要がな
く、コンパクトに出来、これまで使用して来た電子銃の
設計を変更することなく、ブラウン管や撮像管にそのま
ま適用出来る。また、輻射板8を用いたことにより、さ
らに消費電力が小さくて出来た。
Compared to using an indirectly heated cathode structure, the rise time is about 1/10, the power consumption is less than half, and a stem with a hole in the insulating base 3 is used, and a part of the heater 2 is contained in this space. As a result, even in the case of a directly heated impregnated cathode that requires a longer heater 2, there is no need to increase the size of the cathode structure, making it more compact, and without changing the design of the electron gun that has been used so far. , it can be applied directly to cathode ray tubes and image pickup tubes. Furthermore, by using the radiation plate 8, the power consumption can be further reduced.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、従来の直熱含浸形1ta極構体の一部を示す
斜視図、第2図(a)、 (b)は直熱含浸形陰極の斜
視図、第3図(a) 、 (b) 、 (c) 、 (
d) 、 (e)は1本発明の直熱含浸形陰極構体作製
に用いた部品の斜視図、第4図(a)、 (b)、 (
c)および第5図(a) 、 (b) 。 (C)は本発明により作製された直熱含浸形陰極構体を
示す図である。 1・・・含浸形陰極、2・・・直熱用ヒータ(発熱体)
、21・・・平坦部、22・・・脚部、23・・・腕部
、3・・・絶縁基体、4・・・支持材、5・・・金属カ
ップ、6・・・従来のステム、8・・・輻射板。 χ1図 を 第 2 図 χ 3 (2) 聞 4 図 蛮 第 5 図
Figure 1 is a perspective view showing a part of a conventional direct heat impregnation type 1ta electrode structure, Figures 2 (a) and (b) are perspective views of a direct heat impregnation type cathode, and Figures 3 (a) and ( b) , (c) , (
d), (e) are perspective views of parts used in the production of the direct heat impregnation type cathode assembly of the present invention, and Figures 4 (a), (b), (
c) and Figures 5(a) and (b). (C) is a diagram showing a direct heat impregnation type cathode structure produced according to the present invention. 1... Impregnated cathode, 2... Direct heating heater (heating element)
, 21... Flat part, 22... Leg part, 23... Arm part, 3... Insulating base, 4... Support material, 5... Metal cup, 6... Conventional stem , 8...Radiation plate. Figure χ1 is shown in Figure 2.

Claims (1)

【特許請求の範囲】 1、絶縁基体と該絶縁基体に植設された支持材および含
浸形陰極と発熱体からなる直熱含浸形陰極とから構成さ
れる陰極構体において、絶縁基体に植設された支持材と
発熱体の接続を絶縁基体の裏面で実施したことを特徴と
する直熱含浸形陰極構体。 2、絶縁基体に貫通した孔を設け、該孔内に発熱体の一
部が含まれるように組み立てられたことを特徴とする特
許請求の範囲第1項記載の直熱含浸形陰極構体。 3、絶縁基体の貫通した孔内に、金属薄板からなる輻射
板を設けたことを特徴とする特許請求の範囲第2項記載
の直熱含浸形陰極構体。
[Claims] 1. In a cathode structure composed of an insulating base, a support material implanted in the insulating base, and a directly heated impregnated cathode consisting of an impregnated cathode and a heating element, A direct heat impregnated cathode assembly characterized in that the support material and the heating element are connected on the back side of the insulating base. 2. The direct heat impregnation type cathode assembly according to claim 1, wherein the insulating substrate is provided with a penetrating hole, and is assembled so that a part of the heating element is contained within the hole. 3. The direct heat impregnation type cathode structure according to claim 2, characterized in that a radiation plate made of a thin metal plate is provided in the hole through which the insulating substrate passes.
JP60140309A 1985-06-28 1985-06-28 Directly heating impregnated cathode structure Pending JPS6151723A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60140309A JPS6151723A (en) 1985-06-28 1985-06-28 Directly heating impregnated cathode structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60140309A JPS6151723A (en) 1985-06-28 1985-06-28 Directly heating impregnated cathode structure

Publications (1)

Publication Number Publication Date
JPS6151723A true JPS6151723A (en) 1986-03-14

Family

ID=15265795

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60140309A Pending JPS6151723A (en) 1985-06-28 1985-06-28 Directly heating impregnated cathode structure

Country Status (1)

Country Link
JP (1) JPS6151723A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0720197A1 (en) * 1994-12-28 1996-07-03 Samsung Display Devices Co., Ltd. Directly heated cathode structure
EP0720198A1 (en) * 1994-12-29 1996-07-03 Samsung Display Devices Co., Ltd. Directly heated cathode structure and manufacturing method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51112166A (en) * 1975-03-27 1976-10-04 Matsushita Electric Ind Co Ltd Impregnated cathode
JPS556433U (en) * 1978-06-26 1980-01-17
JPS5530170A (en) * 1978-08-25 1980-03-03 Mitsubishi Electric Corp Direct heat type cathode frame

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51112166A (en) * 1975-03-27 1976-10-04 Matsushita Electric Ind Co Ltd Impregnated cathode
JPS556433U (en) * 1978-06-26 1980-01-17
JPS5530170A (en) * 1978-08-25 1980-03-03 Mitsubishi Electric Corp Direct heat type cathode frame

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0720197A1 (en) * 1994-12-28 1996-07-03 Samsung Display Devices Co., Ltd. Directly heated cathode structure
US5703429A (en) * 1994-12-28 1997-12-30 Samsung Display Devices Co., Ltd. Directly heated cathode structure
EP0720198A1 (en) * 1994-12-29 1996-07-03 Samsung Display Devices Co., Ltd. Directly heated cathode structure and manufacturing method thereof
US5701052A (en) * 1994-12-29 1997-12-23 Samsung Display Devices Co., Ltd. Directly heated cathode structure

Similar Documents

Publication Publication Date Title
CN108878232B (en) Hot cathode assembly for vacuum electronic devices
US5444327A (en) Anisotropic pyrolytic graphite heater
US4178530A (en) Electron tube with pyrolytic graphite heating element
US3528156A (en) Method of manufacturing heated cathode
JPS6151723A (en) Directly heating impregnated cathode structure
JP2741235B2 (en) Indirectly heated cathode of deuterium discharge tube
US3246197A (en) Cathode heater having an aluminum oxide and tungesten coating
JPS5842141A (en) Pierce type electron gun
WO2000045417A1 (en) Electrode for discharge tube and discharge tube using it
JPS6062034A (en) Hot-cathode frame body
US2843781A (en) Sublimation reducing cathode connector
JPS612227A (en) Directly heated impregnated cathode
JPS6350814B2 (en)
JPH0737484A (en) Thermionic radiation negative electrode
KR100265781B1 (en) Oxide cathode
JPH05205696A (en) Electrode for discharge lamp and manufacture of the same
KR920008302B1 (en) A form strucutre of dispenser-type cathode
JPS6338813B2 (en)
JPS5840743A (en) Metal ion source
JPS62213030A (en) Impregnated type cathode
JP2023173840A (en) Indirect heated cathode and method of manufacturing the same
KR920006821Y1 (en) A form structure of dispenser type cathode
JPH02162633A (en) Hollow cathode
JPS59209242A (en) Direct-heated cathode
KR930007523Y1 (en) Crt structure