JPH065198A - Cathode including cathode element - Google Patents

Cathode including cathode element

Info

Publication number
JPH065198A
JPH065198A JP4276893A JP4276893A JPH065198A JP H065198 A JPH065198 A JP H065198A JP 4276893 A JP4276893 A JP 4276893A JP 4276893 A JP4276893 A JP 4276893A JP H065198 A JPH065198 A JP H065198A
Authority
JP
Japan
Prior art keywords
cathode
particles
refractory metal
cathode element
porous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4276893A
Other languages
Japanese (ja)
Inventor
Georg Gaertner
ゲルトナー ゲオルグ
Hans Dr Lydtin
リドティン ハンス
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koninklijke Philips NV
Original Assignee
Philips Gloeilampenfabrieken NV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Philips Gloeilampenfabrieken NV filed Critical Philips Gloeilampenfabrieken NV
Publication of JPH065198A publication Critical patent/JPH065198A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J1/00Details of electrodes, of magnetic control means, of screens, or of the mounting or spacing thereof, common to two or more basic types of discharge tubes or lamps
    • H01J1/02Main electrodes
    • H01J1/13Solid thermionic cathodes
    • H01J1/14Solid thermionic cathodes characterised by the material

Abstract

PURPOSE: To obtain a high emission electric current density at a prescribed temperature and a long service life by allowing a negative electrode element to contain metal particles of a prescribed average diameter. CONSTITUTION: An emission negative electrode element 1 is formed in an I negative electrode element negative electrode 2. The element 2 consists of a porous matrix 3 impregnated with BaCa alminic acid 4. In the element 1, tungsten particles 5 having the average diameter of 30nm constitutes a support frame surrounding a porous space 6 where an ionized gaseous cloud is generated during its operation, and separated oxides of Sc2 O3 having the same diameter as the tungsten particles are mixed. Respondent to a supply of Ba to an arrow 8 direction, for an instance when the negative electrode is operated at 900 deg.C, a surface complex 9 of Ba-Sc-O is formed on the surface of tungsten elements 5 pointing towards holes. As the result, emission electric current density 110A/cm<2> is obtained at 900 deg.C and an intensity area 4kV/mm, and its service life of not less than 3000 hours at a temperature of 965 deg.C is obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、2つの向かい合った面
間に高融点金属(特にタングステン、タンタル、レニウ
ム、イリジウム、オスミウムのような)からなる多孔性
陰極素子を含む陰極に関する。
FIELD OF THE INVENTION The present invention relates to a cathode containing a porous cathode element composed of a refractory metal (especially tungsten, tantalum, rhenium, iridium, osmium) between two facing surfaces.

【0002】[0002]

【従来の技術】性能要求が増々厳しくなるので、真空電
子管、例えば、受像管、X線管及び高周波数及びマイク
ロ波技術の一般的な管の電子エミッタは可能な低い操作
温度で放出電流密度が高く、寿命が長く、残留気体の毒
性に対して抵抗性が高く及び電子衝撃の間の挙動が安定
でなければならない。
2. Description of the Related Art Due to the increasingly stringent performance requirements, the electron emitters of vacuum electron tubes, such as picture tubes, x-ray tubes and common tubes of high frequency and microwave technology, have emission current densities at the lowest possible operating temperatures. It must be high, long-lived, highly resistant to residual gas toxicity and stable in behavior during electron impact.

【0003】HDTV陰極は20A/cm2 の放出電流
密度を有し、作動温度は1000℃より十分に低く、一
方20000時間より寿命が長いことが要求される。今
日の高性能のX線管の陰極は10-3mbarまでの比較的高
い残留気体の圧力で且つ強いイオン衝撃の下で10A/
cm2 の放出電流密度を有する。
HDTV cathodes have emission current densities of 20 A / cm 2 , operating temperatures well below 1000 ° C., while long lifetimes above 20000 hours are required. The cathode of today's high-performance X-ray tubes has a relatively high residual gas pressure of up to 10 -3 mbar and under strong ion bombardment 10 A /
It has an emission current density of cm 2 .

【0004】陰極の最も重要な性質の基準は、その寿命
を通じて安定した高い放出電流密度である。電子に対し
て所定の動作機能を有する既知の材料では、電子放出は
温度の増加につれて指数関数的に増加し得る。しかしな
がら、このことはパワーの散逸の増加、放射固体構造体
又はその加熱素子の機械的安定性の減少、放射材料の蒸
発のためにディスペンサ材料の急激な消耗及び管の系成
分(例えば格子)の有害な汚染を引き起こすことがあ
り、その結果、それ自体は電子放射に好ましい温度増加
に限度を設けなければならない。
The most important property criterion of the cathode is its high emission current density which is stable throughout its life. In known materials with a certain operating function for electrons, the electron emission can increase exponentially with increasing temperature. However, this may result in increased power dissipation, reduced mechanical stability of the radiant solid structure or its heating elements, rapid exhaustion of the dispenser material due to evaporation of the radiant material and system components (eg, lattice) of the tube. It can cause harmful pollution, which must itself limit the temperature increase that is preferred for electron emission.

【0005】高温操作ではわずかの高融点金属のみ、特
に耐熱性を有する金属W,Re 及びTa が適当である。
これは低蒸発速度の要求を同時に満たさなければならな
いからである。
For high temperature operation, only a few refractory metals, especially the heat resistant metals W, Re and Ta, are suitable.
This is because the requirements of low evaporation rate must be met at the same time.

【0006】純粋な金属の高温操作の利点は陰極表面の
汚染(ポイゾニング)が低いこと及びイオン衝撃に対し
て感度が低いことである。純粋なタングステンでさえ5
A/cm2 を超える高放出電流密度及び103 hを超え
る寿命に対して不適である。一方、このような放出条件
を、電子動作機能を減ずるために適当な表面錯体(吸着
質/基質双極子層)を形成することにより満たさなけれ
ばならない。そして、比較的低い操作温度で且つ少ない
エネルギーロスで高放出電流密度が得られる。実際上は
W/ThO2 , W/Th,W/Ba, W/BaO, W/
Sc2 3 /Ba O/CaO/Al2 3 の材料の組合
せを用いる。
The advantages of high temperature operation of pure metals are low contamination of the cathode surface (poisoning) and low sensitivity to ion bombardment. Even pure tungsten is 5
Not suitable for high emission current densities exceeding A / cm 2 and lifetimes exceeding 10 3 h. On the other hand, such release conditions must be met by forming a suitable surface complex (adsorbate / substrate dipole layer) to reduce the electronic working function. Then, a high emission current density can be obtained at a relatively low operating temperature and with a small energy loss. Actually, W / ThO 2 , W / Th, W / Ba, W / BaO, W /
A material combination of Sc 2 O 3 / Ba 2 O / CaO / Al 2 O 3 is used.

【0007】低動作機能及び低蒸発速度を同時に有する
錯体を形成した放出表面の可能な限りの均一な被膜を考
慮すべきである。実際上は、この目的達成のために、例
えば、含浸、上部層、混合金属基材、多層及び制御され
た多孔性ディスペンサー陰極のような構造的に変形した
陰極を用いることを試みる。従来の構造的に変形した陰
極の未だ不適当な放出に対する原因は例えば、蒸発/ス
パッタリング後に孔又は粒子境界からの分配が不適であ
るために、又は残留気体による表面位置の汚染のために
含浸した陰極におけるBaOによる放出陽極表面の被膜
程度が不充分なことによる。
One should consider as uniform a coating as possible of the complexed emission surface which simultaneously has a low operating function and a low evaporation rate. In practice, for this purpose one attempts to use structurally modified cathodes such as impregnation, top layers, mixed metal substrates, multilayers and controlled porosity dispenser cathodes. The causes for the still inadequate emission of conventional structurally deformed cathodes are, for example, impregnated after evaporation / sputtering due to inadequate distribution from the pores or grain boundaries, or due to contamination of the surface sites with residual gases. This is because the degree of coating on the surface of the emission anode with BaO at the cathode is insufficient.

【0008】このような陰極の実施態様においては、よ
り高温にて達成される高放出電流密度は寿命に負担とな
る。最悪の場合には、表面部分を不可逆的に純粋な基材
金属の値を越えて作動機能を増加する素子又は分子で被
膜する。蒸発又はイオン衝撃のための作動機能の損失−
吸着質の減少(例えばSc2 3 からSc)を再生可能
であるが、その効果においては同様に有害である。
In such a cathode embodiment, the high emission current densities achieved at higher temperatures are a life burden. In the worst case, the surface part is irreversibly coated with elements or molecules that increase the working function beyond the value of the pure base metal. Loss of operating function due to evaporation or ion bombardment −
Reducing adsorbates (eg Sc 2 O 3 to Sc) can be regenerated, but is equally detrimental in their effectiveness.

【0009】上述の型の陰極素子を含むディスペンサー
陰極は欧州特許公開第0442163 号明細書によりI陰極と
して既知である。例えばBaOのような酸化物粒子は材
料構造中に埋め込まれている。
A dispenser cathode comprising a cathode element of the type described above is known from EP 0442163 as I cathode. Oxide particles, such as BaO, are embedded in the material structure.

【0010】[0010]

【発明が解決しようとする課題】従って、本発明の目的
は、所定の温度でより高い放出電流密度及び長い寿命を
達成可能な上述のタイプの陰極素子を提供することであ
る。この目的は、陰極素子が、平均直径が1000nm
より小さい高融点金属の粒子を含み、片面又は両面から
利用できる孔を有することで解決される。
SUMMARY OF THE INVENTION It is therefore an object of the present invention to provide a cathode device of the type described above which is capable of achieving higher emission current densities and longer lifetimes at a given temperature. For this purpose, the cathode element has an average diameter of 1000 nm.
The solution is to have smaller refractory metal particles and have pores available on one or both sides.

【0011】[0011]

【課題を解決するための手段】高融点金属及び平均直径
が1000nmより小さいナノ−構造の粒子を含む陰極
が以下のことを特徴とする。即ち、陰極素子が、平均直
径が1000nmより小さく、均一な分散にて多孔性陰
極素子に連結した粒子から完全になり、陰極素子の全体
積の5〜90%が、周囲に対して開いており、距離がな
く、孔により構成され、1000nmより小さい隣り合
う粒子間の無充填の孔からなる。
A cathode comprising a refractory metal and nano-structured particles having an average diameter of less than 1000 nm is characterized as follows. That is, the cathode element is made up of particles having an average diameter of less than 1000 nm and connected to the porous cathode element in a uniform distribution, and 5 to 90% of the total volume of the cathode element is open to the surroundings. , With no distance, composed of pores, consisting of unfilled pores between adjacent particles smaller than 1000 nm.

【0012】更に、陰極は、多孔性陰極素子が高融点金
属の粒子及び金属酸化物の粒子(例えばSc2 3 , Y
2 3 , Eu2 3 , La2 3 , TnO2 )からな
り、加熱可能な基体上に形成されることを特徴とする。
Further, in the cathode, the porous cathode element has high melting point metal particles and metal oxide particles (for example, Sc 2 O 3 , Y).
2 O 3 , Eu 2 O 3 , La 2 O 3 , TnO 2 ) and is formed on a heatable substrate.

【0013】以下に、本発明の陰極素子を“放出陰極素
子(effusion cathode element)”として述べる。これ
は操作中に電子が表面に最も近い密につまった孔から真
空中に“放出する”からである。アルカリ土類金属酸化
物を含まない場合でさえ、本発明の放出陰極電子を例え
ば既知のタイプのI陰極に対して上部層又は被膜素子と
して使用できる。一方、本発明の放出陰極素子は完全な
陰極として使用できるように、アルカリ土類金属酸化物
の粒子をも含み得る。
The cathode element of the present invention will be described below as an "effusion cathode element". This is because during operation electrons "emit" into the vacuum from the tightly packed holes closest to the surface. Even without alkaline earth metal oxides, the emission cathode electrons of the invention can be used as a top layer or coating element, for example for I-cathodes of known type. On the other hand, the emission cathode device of the present invention may also contain particles of an alkaline earth metal oxide so that it can be used as a complete cathode.

【0014】粒子の均一な分散は、体積(20)The uniform distribution of particles is determined by the volume (20)

【外1】 を有する各体積素子において、直径dを有する粒子の数
は平均直径〔外1〕が±20%未満であることとは違う
ことを意味することがわかる。こにおいて、〔外1〕を
粒子の統計的な種々の直径dの平均値として定義する。
別の角度位置にて測定した立体拡張(spatial extensio
n) の平均値は完全ではない球状の粒子の直径dである
ことがわかる。本発明の放出陰極素子は特にOs 又はR
u の既知の上部被膜をも有し得る。
[Outer 1] It can be seen that, in each volume element having, the number of particles having the diameter d means that the average diameter [outer 1] is different from less than ± 20%. Here, [outer 1] is defined as the average value of various statistically different diameters d of the particles.
Spatial extensio measured at different angular positions
It can be seen that the average value of n) is the diameter d of the imperfect spherical particles. The emission cathode device of the present invention is particularly suitable for Os or R
It may also have a known top coat of u.

【0015】本発明の放出陰極素子において、電子放出
に重要な素子及び化合物は均一な微細な分散にて且つ孔
の高度な全表面積を有して互いに結びつく。孔は開いて
おり、もって、固体状態材料がない通路を通って放出陰
極素子の外側両面から利用できるので、本発明の放出陰
極体の活性表面がかなり増加する。開孔を通って表面に
最も近い領域にアルカリ土類金属の原子を分配すること
はより容易である。結果として、高放出電流密度が比較
的低い操作温度にて達成できる。
In the emission cathode device of the present invention, the devices and compounds important for electron emission combine with each other in a uniform fine distribution and with a high total surface area of the pores. The holes are perforated and thus available on both outer sides of the emitting cathode element through the passages free of solid state material, which significantly increases the active surface of the emitting cathode body of the present invention. It is easier to partition the atoms of the alkaline earth metal through the holes to the region closest to the surface. As a result, high emission current densities can be achieved at relatively low operating temperatures.

【0016】又、本発明の装置はイオン衝撃(スパッタ
リング)及び残留基体(ポイゾニング)に鈍感である。
事実、スパッタリング効果は表面に最も近い孔構造の領
域ではなく、外側表面においてのみ影響がある。構造の
内側部分の望ましくない残留気体の体積は、操作条件下
では妨害される。これはこの領域にある粒子の自由表面
は望ましい原子/分子を高度に有するからである。
The device of the present invention is also insensitive to ion bombardment (sputtering) and residual substrate (poisoning).
In fact, the sputtering effect only affects the outer surface, not the area of the pore structure closest to the surface. The undesired residual gas volume of the inner part of the structure is disturbed under operating conditions. This is because the free surface of the particles in this region has a high degree of desired atoms / molecules.

【0017】既知の陰極と比べると、これらの利点は、
放出陰極素子が少なくとも90%が5〜100nmの
間、好ましくは30〜50nmの間の直径を有する粒子
を含む場合に特に有意義である。粒子の直径が小さけれ
ば小さい程、利用可能な活性表面の全体と放出陰極素子
の外側表面との比が大きくなる。粒子の直径(d<1n
m)が小さすぎると、又、孔の直径が小さすぎると、孔
はあまり効果的ではなくなる。というのは、直径dが1
nmより小さい粒子を含む構造は750゜の操作温度で
一定した安定を維持しないからである。固体状態構造の
10%より多い粒子が50nmより大きい直径を有する
場合、本発明の陰極のイオン衝撃に対する顕著な抵抗性
が大きく影響する。
Compared with the known cathodes, these advantages are:
It is of particular significance if the emitting cathode element comprises particles, at least 90% of which have a diameter between 5 and 100 nm, preferably between 30 and 50 nm. The smaller the particle diameter, the greater the ratio of the total available active surface to the outer surface of the emissive cathode device. Particle diameter (d <1n
If m) is too small and the diameter of the pores is too small, the pores will be less effective. Because the diameter d is 1
This is because structures containing particles smaller than nm do not maintain constant stability at an operating temperature of 750 °. When more than 10% of the particles of the solid-state structure have a diameter of more than 50 nm, the remarkable resistance of the cathode of the invention to ion bombardment has a great influence.

【0018】高融点金属化合物は固体状態粒子の全体積
の30%超過、特に約50〜90%の量からなる。アル
カリ土類金属酸化物の粒子を含む本発明の放出陰極体の
約50%の値が有利であることがわかった。金属量が3
0%より少ない場合は放出陰極素子の十分に満足な金属
導電性はもはや保証できない。
The refractory metal compound comprises an amount of more than 30% of the total volume of the solid-state particles, in particular about 50-90%. A value of about 50% has been found to be advantageous for emission cathode bodies according to the invention which contain particles of alkaline earth metal oxides. The amount of metal is 3
Below 0%, a sufficiently satisfactory metallic conductivity of the emitting cathode element can no longer be guaranteed.

【0019】本発明の別の実施態様において、酸化粒子
は少なくとも部分的に薄い金属外皮で覆われており、又
は金属粒子の少なくとも一部が薄い酸化被膜層で覆われ
ている。勿論、被膜層は、とても薄く、透明構造を有し
ているので、被覆されたコアは被膜層を通して活性にな
る。非常に高い放出電流密度が、放出陰極素子の上部の
孔体積が下部より大きい場合に可能となる。
In another embodiment of the invention, the oxide particles are at least partially covered with a thin metal skin, or at least a portion of the metal particles are covered with a thin oxide coating layer. Of course, the coating layer is so thin and has a transparent structure that the coated core becomes active through the coating layer. Very high emission current densities are possible when the hole volume at the top of the emitting cathode device is larger than at the bottom.

【0020】[0020]

【実施例】図3において、放出陰極素子1をI陰極素子
2に形成する。I陰極素子2はアルミン酸BaCa4を
含浸した多孔性Wマトリックス3からなる。放出陰極素
子1の体積素子の構造を図1に示す。30nmの平均値
径のタングステン粒子5は操作中に電子気体雲を生じる
多孔性スペース6まわりの支持フレームを構成する。ほ
ぼ同径を有するSc2 3 の分離酸化物粒子7を混合し
ている。I陰極素子2(図3)から矢印8の方向へのB
aの補給に応答して例えば、900℃で陰極を操作する
際に孔に向かって指向するW粒子5の表面にBa−Sc
−Oの表面錯体9を形成する。900℃且つ約4kV/
mmの強度域で、110A/cm2の放出電流密度(矢
印10及び11で示す電子流れ方向)を50時間の操作
の後、測定した。これらの実験室テストでは、既知の陰
極素子に比べてかなり良好な値を既に得ている。965
℃で3000時間以上の寿命を何の問題もなく達成し
た。
EXAMPLE In FIG. 3, an emission cathode element 1 is formed on an I cathode element 2. The I cathode element 2 comprises a porous W matrix 3 impregnated with BaCa 4 aluminate. The structure of the volume element of the emission cathode device 1 is shown in FIG. Tungsten particles 5 with a mean value diameter of 30 nm constitute the support frame around the porous space 6 which produces an electron gas cloud during operation. Sc 2 O 3 separated oxide particles 7 having almost the same diameter are mixed. B from the I cathode element 2 (FIG. 3) in the direction of arrow 8
In response to the replenishment of a, for example, when operating the cathode at 900 ° C., the Ba-Sc is deposited on the surface of the W particles 5 which are oriented towards the pores.
The surface complex 9 of —O is formed. 900 ° C and about 4kV /
In the intensity region of mm, an emission current density of 110 A / cm 2 (electron flow direction indicated by arrows 10 and 11) was measured after 50 hours of operation. These laboratory tests have already obtained considerably better values than known cathode devices. 965
A life of more than 3000 hours at 0 ° C was achieved without any problems.

【0021】図2の実施態様において、Sc2 3 コア
12及びBaOコア13(又はCaOコアも)をW被膜
14a及び14bでそれぞれ包む。Ba−Sc−Oの放
出被膜を孔スペース15に向かって指向する二重被膜粒
子のW表面に形成する。矢印16,17の方向に流れる
電子流れに対して、850℃且つ約4kV/mmの強度
域にて95A/cm2 の流れ密度を測定した。既知の粉
末−冶金学的に製造された陰極素子において、これは開
孔構造を有していないが、多くても80A/cm2 を比
較可能な条件下で達成できた。本発明により達成された
好ましい値を実験室において非−最適化テスト試料で測
定したことを考慮すべきである。本発明の素子にて要求
される開孔を特にPCVDのような堆積法により達成で
きた。焼結法はあまり適当でないことがわかった。
In the embodiment of FIG. 2, the Sc 2 O 3 core 12 and the BaO core 13 (or also the CaO core) are wrapped with W coatings 14a and 14b, respectively. A Ba-Sc-O release coating is formed on the W surface of the double-coated particles which is directed towards the pore space 15. A flow density of 95 A / cm 2 was measured in the intensity region of 850 ° C. and about 4 kV / mm for the electron flow flowing in the directions of arrows 16 and 17. In the known powder-metallurgically produced cathode elements, which have no open pore structure, at most 80 A / cm 2 could be achieved under comparable conditions. It should be considered that the preferred values achieved according to the invention have been determined in the laboratory on non-optimized test samples. The required apertures in the device of the invention could be achieved especially by deposition methods such as PCVD. It has been found that the sintering method is not very suitable.

【0022】図4は、図2で示すような構造を有する折
曲形箔タイプの放出陰極素子20を示す。これは好まし
くはW,Ni,又はTiからなる支持体21上に配置さ
れる。支持体21は同時に放出電極素子20の被膜を製
造するための基体である。
FIG. 4 shows a bent foil type emission cathode device 20 having a structure as shown in FIG. It is arranged on a support 21, preferably made of W, Ni or Ti. The support 21 is at the same time a substrate for producing the coating of the emission electrode element 20.

【0023】本発明の放出陰極素子の金属導電率及びナ
ノ−構造均一構造のために、折曲形放出陰極素子20は
支持体21なしで直接加熱することもできる。熱流れ
(矢印18)が通過する際、矢印19の方向の電子流れ
が生じ得る。勿論、間接に加熱することもできる。例え
ば、図2のように、構成された放出陰極素子を抵抗熱素
子上に配置してもよい。
Due to the metal conductivity and nano-structured uniform structure of the inventive emission cathode device, the folded emission cathode device 20 can also be heated directly without the support 21. As the heat flow (arrow 18) passes through, electron flow in the direction of arrow 19 may occur. Of course, it is possible to heat indirectly. For example, as shown in FIG. 2, the configured emission cathode element may be arranged on the resistance heating element.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の放出陰極素子の体積素子の断面図であ
り、W及びSc2 3 粒子からなり、アルカリ土類金属
酸化物粒子ではなく、I陰極素子(図3)の上部層とし
て適当である。
1 is a cross-sectional view of a volume element of an emission cathode device of the present invention, comprising W and Sc 2 O 3 particles as an upper layer of an I cathode device (FIG. 3) instead of alkaline earth metal oxide particles. Appropriate.

【図2】完全なディスペンサー陰極として使用できるア
ルカリ土類金属酸化物粒子を有する実施態様を示す。
FIG. 2 shows an embodiment with alkaline earth metal oxide particles that can be used as a complete dispenser cathode.

【図3】図1に示した放出陰極素子をI陰極素子上に形
成した陰極素子の断面図である。
FIG. 3 is a cross-sectional view of a cathode device in which the emission cathode device shown in FIG. 1 is formed on an I cathode device.

【図4】図2に示したような構造を有する放出陰極素子
の流れ加熱折曲形の実施態様を示す。
FIG. 4 shows a flow-heated bent embodiment of an emission cathode device having a structure as shown in FIG.

【符号の説明】[Explanation of symbols]

1 放出陰極素子 2 I陰極素子 3 多孔性Wマトリックス 4 アルミン酸BaCa 5 W粒子 6 多孔性スペース 7 酸化物粒子 9 表面錯体 12 Sc2 3 13 BaO 14a W被膜 14b W被膜 15 孔スペース 20 放出陰極素子 21 支持体1 Emission Cathode Element 2 I Cathode Element 3 Porous W Matrix 4 BaCa 5 Aluminate 5 W Particle 6 Porous Space 7 Oxide Particle 9 Surface Complex 12 Sc 2 O 3 13 BaO 14 a W Coating 14 b W Coating 15 Pore Space 20 Emission Cathode Element 21 support

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 2つの向かい合った面の間に、高融点金
属を含んでなる多孔性陰極素子を含む陰極において、陰
極素子(1)が、平均直径が1000nmより小さい高
融点金属の粒子(5)を含み、且つ片面又は両面から利
用できる孔を有することを特徴とする陰極。
1. A cathode comprising a porous cathode element comprising a refractory metal between two facing faces, wherein the cathode element (1) comprises particles of refractory metal (5) having an average diameter of less than 1000 nm. ) And having a hole that can be used from one side or both sides.
【請求項2】 2つの向かい合った面の間に、高融点金
属を含んでなる多孔性陰極素子を含む陰極において、陰
極素子(1)が、平均直径が1000nmより小さい高
融点金属の粒子(5)及び平均直径が1000nmより
小さい金属酸化物の粒子(7)を含み、且つ片面又は両
面から利用できる孔を有することを特徴とする陰極。
2. A cathode comprising a porous cathode element comprising a refractory metal between two facing surfaces, the cathode element (1) comprising particles of refractory metal (5) having an average diameter of less than 1000 nm. ) And metal oxide particles (7) having an average diameter of less than 1000 nm and having pores accessible from one or both sides.
【請求項3】 多孔性陰極素子を加熱装置に形成するこ
とを特徴とする請求項2記載の陰極。
3. The cathode according to claim 2, wherein the porous cathode element is formed in a heating device.
【請求項4】 含浸剤(4)及び放出表面を備える多孔
性陰極体(3)を含む陰極において、陰極が放出表面上
に多孔性陰極素子(1)を含み、該素子が2つの向かい
合った面の間に高融点金属を含み、該陰極素子(1)
が、平均直径が1000nmより小さい高融点金属の粒
子(5)及び平均直径が1000nmより小さい金属酸
化物の粒子(7)を含み、且つ2つの面間に拡がる孔を
有することを特徴とする陰極。
4. A cathode comprising an impregnating agent (4) and a porous cathode body (3) provided with an emission surface, the cathode comprising a porous cathode element (1) on the emission surface, said elements being two opposed. A cathode element (1) containing a refractory metal between the surfaces
Comprising a refractory metal particle (5) having an average diameter of less than 1000 nm and a metal oxide particle (7) having an average diameter of less than 1000 nm, and having a hole extending between two surfaces. .
【請求項5】 少なくとも高融点金属及び平均直径が1
000nmより小さいナノ−構造粒子を含んでなる多孔
性陰極素子を含む陰極において、陰極素子(1)が、平
均直径が1000nmより小さく、均一な分散にて多孔
性陰極素子に連結した粒子(5,7)から完全になり、
陰極素子(1)の全体積の5〜90%が、周囲に対して
開いており、距離がなく、孔(6,15)により構成さ
れ、1000nmより小さい隣り合う粒子(5,7,1
4a,14b)間の無充填の孔(6,15)からなるこ
とを特徴とする陰極。
5. At least a refractory metal and an average diameter of 1
In a cathode comprising a porous cathode element comprising nano-structured particles smaller than 000 nm, the cathode element (1) has an average diameter of less than 1000 nm and particles (5, 5 connected to the porous cathode element in a uniform dispersion). Completed from 7),
5 to 90% of the total volume of the cathode element (1) is open to the surroundings, there is no distance, it is constituted by the holes (6, 15) and the adjacent particles (5, 7, 1) smaller than 1000 nm
Cathode characterized by comprising unfilled holes (6, 15) between 4a, 14b).
【請求項6】 多孔性陰極素子が、加熱可能な基体上に
形成された高融点金属の粒子(5)及び金属酸化物
(7)の粒子からなることを特徴とする請求項5記載の
陰極。
6. The cathode according to claim 5, wherein the porous cathode element is composed of refractory metal particles (5) and metal oxide (7) particles formed on a heatable substrate. .
【請求項7】 多孔性陰極素子が、高融点金属の粒子
(5)、又は高融点金属の粒子及び金属酸化物の粒子
(7)のみを含み、且つ陰極素子(1)がI陰極素子
(2)上に形成されることを特徴とする請求項5記載の
陰極。
7. The porous cathode element contains only refractory metal particles (5) or refractory metal particles and metal oxide particles (7), and the cathode element (1) is an I cathode element ( The cathode according to claim 5, which is formed on 2).
【請求項8】 多孔性陰極素子が、高融点金属(5)の
粒子及びアルカリ土類金属酸化物の粒子(13)、又は
高融点金属の粒子及び金属酸化物の粒子及びアルカリ土
類金属酸化物の粒子を含むことを特徴とする請求項5又
は6記載の陰極。
8. A porous cathode device comprising a refractory metal (5) particle and an alkaline earth metal oxide particle (13), or a refractory metal particle and a metal oxide particle and an alkaline earth metal oxide. 7. The cathode according to claim 5, wherein the cathode contains particles of the product.
【請求項9】 金属部分(5,14a,14b)が、全
陰極素子の30%より多い体積部分になることを特徴と
する請求項5〜8のうちいずれか1項に記載の陰極。
9. Cathode according to any one of claims 5 to 8, characterized in that the metal parts (5, 14a, 14b) make up more than 30% by volume of the total cathode element.
JP4276893A 1992-03-05 1993-03-03 Cathode including cathode element Pending JPH065198A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4206909:2 1992-03-05
DE4206909A DE4206909A1 (en) 1992-03-05 1992-03-05 THERMIONIC EMITTING CATHODE ELEMENT

Publications (1)

Publication Number Publication Date
JPH065198A true JPH065198A (en) 1994-01-14

Family

ID=6453269

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4276893A Pending JPH065198A (en) 1992-03-05 1993-03-03 Cathode including cathode element

Country Status (3)

Country Link
EP (1) EP0559283B1 (en)
JP (1) JPH065198A (en)
DE (2) DE4206909A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4400353A1 (en) * 1994-01-08 1995-07-13 Philips Patentverwaltung Controllable thermionic electron emitter
DE19652822A1 (en) 1996-12-18 1998-06-25 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh Sintered electrode
DE19855670A1 (en) * 1998-12-02 1999-12-09 Siemens Ag Steam generator operating method
DE102006024437B4 (en) * 2006-05-24 2012-08-09 Siemens Ag X-ray

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL266639A (en) * 1960-07-05
FR1410641A (en) * 1963-10-04 1965-09-10 Philips Nv Porous metal body and its manufacturing process
JPS58154131A (en) * 1982-03-10 1983-09-13 Hitachi Ltd Impregnation type cathode
US4986788A (en) * 1989-11-02 1991-01-22 Samsung Electron Devices Co., Ltd. Process of forming an impregnated cathode
KR920001335B1 (en) * 1989-11-10 1992-02-10 삼성전관 주식회사 Dispenser cathode

Also Published As

Publication number Publication date
EP0559283A1 (en) 1993-09-08
EP0559283B1 (en) 1996-11-13
DE59304447D1 (en) 1996-12-19
DE4206909A1 (en) 1993-09-09

Similar Documents

Publication Publication Date Title
US4783595A (en) Solid-state source of ions and atoms
JPS5821771B2 (en) Microwave tube with iridium cathode
US3558966A (en) Directly heated dispenser cathode
US4675570A (en) Tungsten-iridium impregnated cathode
JPH0628968A (en) Cathode containing solid body
US4178530A (en) Electron tube with pyrolytic graphite heating element
JPH065198A (en) Cathode including cathode element
JP2008524794A (en) Scandate impregnated cathode
EP0157634B1 (en) Tungsten-iridium impregnated cathode
US2931934A (en) Indirectly heated supply cathode
JP3715790B2 (en) Method for producing impregnated cathode for discharge tube
JP2023173840A (en) Indirect heated cathode and method of manufacturing the same
KR100235995B1 (en) Impregnation treatment type cathode
JP2001256882A (en) Impregnated cathode for electron tube and electron tube using it
KR0142704B1 (en) Impregnated dispenser cathode
JPH11195367A (en) Impregnated negative electrode structure, manufacture thereof, electron gun structure, and electron tube
KR100249208B1 (en) Impregnated cathode
KR0144050B1 (en) Impregnated Cathode
JPH06168660A (en) Impregnation type cathode and manufacture thereof
KR20020092015A (en) Cathode for Cathode Ray Tube and Method of manufacturing the same
JPH07105829A (en) Impregnated type cathode
JP2002025436A (en) Manufacturing method of impregnated type cathode structure
JPS6350814B2 (en)
JPH08236008A (en) Impregnated cathode and electron tube using it
JPH1027538A (en) Impregnated cathode and cathode-ray tube using the same