JPH1027538A - Impregnated cathode and cathode-ray tube using the same - Google Patents

Impregnated cathode and cathode-ray tube using the same

Info

Publication number
JPH1027538A
JPH1027538A JP17893496A JP17893496A JPH1027538A JP H1027538 A JPH1027538 A JP H1027538A JP 17893496 A JP17893496 A JP 17893496A JP 17893496 A JP17893496 A JP 17893496A JP H1027538 A JPH1027538 A JP H1027538A
Authority
JP
Japan
Prior art keywords
cathode
metal
impregnated
scandium
impregnated cathode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17893496A
Other languages
Japanese (ja)
Inventor
Isato Amano
勇人 天野
Susumu Sasaki
進 佐々木
Tomio Yaguchi
富雄 矢口
Naoko Matsuzaki
尚子 松▲崎▼
Emiko Yamada
絵実子 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP17893496A priority Critical patent/JPH1027538A/en
Publication of JPH1027538A publication Critical patent/JPH1027538A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrodes For Cathode-Ray Tubes (AREA)
  • Solid Thermionic Cathode (AREA)

Abstract

PROBLEM TO BE SOLVED: To enhance the force and the total amount by which metal scandium is supplied to the surface of an impregnated cathode of basic constitution to enhance an electron emission characteristic and reliability by providing an intermediate layer between the surface of the cathode and the metal scandium. SOLUTION: An Sc-covered impregnated cathode is formed by first forming an intermediate layer 1 composed mainly of a high-melting-point metal, such as tungsten or molybdenum, over the upper surface of a basic impregnated cathode 4. A cover film 2 composed chiefly of metal scandium is formed over the upper surface of the intermediate layer 1, and an outermost surface layer 3 composed chiefly of a high-melting-point metal such as tungsten or molybdenum is formed as the adsorbent surface of a monolayer. In this case, the intermediate layer 1 of the high-melting-point metal is at least one kind of metal selected from a group consisting of osmium, iridium, rhenium, and platinum, in addition to tungsten and molybdenum. Preferably the film thickness of the intermediate layer 1 is 50 to 1nm.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はブラウン管,撮像管
等の電子管に好適な含浸形陰極、特に良好な電子放出特
性を発現させるための金属スカンジウムを含む表面被覆
膜層を有する含浸形陰極に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an impregnated cathode suitable for an electron tube such as a cathode ray tube and an image pickup tube, and more particularly to an impregnated cathode having a surface coating film layer containing scandium for exhibiting good electron emission characteristics. .

【0002】[0002]

【従来の技術】含浸形陰極は高電流密度動作が可能な陰
極であり、電子管の高出力化、特にブラウン管では高輝
度化,高精細化のために欠くことのできない陰極であ
る。
2. Description of the Related Art An impregnated cathode is a cathode capable of operating at a high current density, and is an indispensable cathode for increasing the output of an electron tube, particularly for a cathode ray tube for achieving higher brightness and higher definition.

【0003】含浸形陰極の基本構成は、タングステンか
らなる耐熱多孔質基体に、BaOを主体に、他にAl2
3やCaOを水素雰囲気中又は真空中で加熱溶融し、
含浸させた陰極である。この溶融含浸した物質を、一般
に含浸剤と称する。含浸形陰極は動作時で、常に、10
00℃程度に加熱されており、耐熱多孔質基体と含浸剤
は反応し、バリウムを遊離する。バリウムは拡散により
陰極表面に供給され、同様に陰極内部または電子管内部
雰囲気中から供給された酸素と共に、陰極表面つまりタ
ングステン基体上に吸着する。このように、金属表面に
バリウムと酸素から成る吸着層(単分子層)が形成され
ると、金属表面の仕事関数が実質的に引き下げられ、電
子放出が容易となる。これが、含浸形陰極の動作原理で
あり、これに対する詳細な考察は、例えば、ジャーナル
・オブ・フィジックス D:アプライド・フィジック
ス,第15巻(1982年)第1519頁から第152
9頁(J. Phys. D: Appl. Phys.,15(1982)pp1519-152
9)に記載されている。
The basic structure of the impregnated cathode is heat porous substrate made of tungsten, mainly of BaO, other Al 2
O 3 and CaO are heated and melted in a hydrogen atmosphere or vacuum,
The impregnated cathode. This melt impregnated material is generally referred to as an impregnant. The impregnated cathode is always in operation
Heated to about 00 ° C., the heat-resistant porous substrate reacts with the impregnating agent to release barium. Barium is supplied to the surface of the cathode by diffusion, and is adsorbed on the surface of the cathode, that is, the tungsten substrate, together with oxygen supplied from the inside of the cathode or the inside of the electron tube. As described above, when the adsorption layer (monomolecular layer) composed of barium and oxygen is formed on the metal surface, the work function of the metal surface is substantially reduced, and electron emission becomes easy. This is the operating principle of the impregnated cathode, and detailed considerations are given in, for example, Journal of Physics D: Applied Physics, 15 (1982), pp. 1519 to 152.
Page 9 (J. Phys. D: Appl. Phys., 15 (1982) pp1519-152
9).

【0004】含浸形陰極は電子放出部分が基本的に金属
であるため、電気的な抵抗が小さい。そのため含浸形陰
極は、アルカリ土類金属炭酸塩を原材料とする電気的に
高抵抗な酸化物カソードのような、ジュール発熱による
陰極材料自体の分解に起因する陰極劣化は生じない。従
って、含浸形陰極は、酸化物陰極に比較し高電流密度動
作が可能である。
[0004] The impregnated cathode has a small electrical resistance because the electron-emitting portion is basically a metal. Therefore, the impregnated cathode does not suffer from cathode degradation due to decomposition of the cathode material itself due to Joule heat, such as an electrically high resistance oxide cathode made of alkaline earth metal carbonate. Therefore, the impregnated cathode can operate at a higher current density than the oxide cathode.

【0005】しかし、含浸形陰極は、高電流密度動作が
可能な反面、酸化物陰極の動作温度およそ750℃に比
較して、より高温で動作させる必要がある。前述の基本
構成の含浸形陰極の場合、10A/cm2 の電流密度を得
るためにはおよそ1100℃に加熱する必要がある。
[0005] However, while the impregnated cathode can operate at a high current density, it must be operated at a higher temperature than the operating temperature of the oxide cathode of about 750 ° C. In the case of the impregnated cathode having the above-described basic configuration, it is necessary to heat the cathode to about 1100 ° C. in order to obtain a current density of 10 A / cm 2 .

【0006】このため、含浸形陰極の改良は、この動作
温度を低下させることを目的に行われている。例えば、
前述の基本構成の含浸形陰極の表面にオスミウムを被覆
した含浸形陰極が開発され、その動作温度はおよそ10
00℃に低下した。これに関しては、アイイーイー プ
ロシーディングズ(IEE Proc.),128,Pt1,No.1(1981)pp
19-32 に記載されている。さらに、タングステンやモリ
ブデン等の高融点金属と共に、スカンジウムを含む薄膜
を被覆した含浸形陰極は、900℃で前述の電流密度動
作が可能である。以下ではこれをSc被覆型含浸形陰極
と記述するが、これに関しては、米国特許第4,626,470
号、ならびにジャパニーズ ジャーナルオブ アプライ
ド フィジックス(Jpn. J. Appl. Phys.)27,No.8(1988)
pp1411-1414に記載されている。
[0006] For this reason, the impregnation type cathode has been improved for the purpose of lowering the operating temperature. For example,
An impregnated cathode in which the surface of the impregnated cathode having the above-described basic configuration is coated with osmium has been developed, and its operating temperature is about 10%.
The temperature dropped to 00 ° C. In this regard, IEE Proc., 128, Pt1, No. 1 (1981) pp.
19-32. Further, the impregnated cathode coated with a thin film containing scandium together with a high melting point metal such as tungsten or molybdenum can perform the above-described current density operation at 900 ° C. In the following, this will be described as a Sc-coated impregnated cathode, but in this regard, U.S. Pat. No. 4,626,470
No. 8 and the Japanese Journal of Applied Physics (Jpn. J. Appl. Phys.) 27 , No. 8 (1988)
pp1411-1414.

【0007】Sc被覆型含浸形陰極の被覆膜は、被覆膜
の高融点金属をタングステンに選ぶ場合、スパッタ成膜
法により、タングステン金属とスカンジウム金属、また
はこれら金属とこれらの酸化物等で構成されるスパッタ
ターゲットを用いて成膜することができる。そして、活
性化のために1150℃程度に陰極を加熱すると、被覆
膜表面に、タングステン多孔質部よりバリウムが供給さ
れ、被覆膜中よりスカンジウムが供給され、これらと酸
素から単分子層が形成される。その結果として仕事関数
が低下し、良好な電子放出を可能とすると考えられる。
これらに関してはJpn. J. Appl. Phys.28,No.3(1989)pp
490-494 に記載されている。つまり、Sc被覆型含浸形
陰極の良好な電子放出特性を発現させるためには、バリ
ウムと共に、被覆膜中より表面にスカンジウムを供給
し、単分子層を形成する必要がある。
When the coating film of the Sc coating type impregnated cathode is selected from tungsten as the high melting point metal of the coating film, a tungsten metal and scandium metal, or a metal and these oxides, etc. are formed by a sputtering film forming method. A film can be formed using the configured sputter target. Then, when the cathode is heated to about 1150 ° C. for activation, barium is supplied from the tungsten porous portion to the surface of the coating film, scandium is supplied from the coating film, and a monomolecular layer is formed from these and oxygen. It is formed. As a result, it is considered that the work function is lowered and good electron emission is enabled.
These are described in Jpn. J. Appl. Phys. 28 , No. 3 (1989) pp.
490-494. That is, in order to exhibit good electron emission characteristics of the Sc-coated impregnated cathode, it is necessary to supply scandium to the surface from the coating film together with barium to form a monomolecular layer.

【0008】スカンジウム酸化膜を含む被覆膜から、陰
極表面にスカンジウムを供給するためにはスカンジウム
酸化物を還元し、遊離スカンジウムを生成しなければな
らない。酸化物の還元は、タングステンやバリウムとの
反応により行われる。スカンジウムを酸化物ではなく金
属として成膜すれば、還元反応が必要でなく、陰極の特
性向上や信頼性の向上が期待できる。ここで問題となる
点は、基本構成の含浸形陰極の表面でのバリウム酸化物
と金属スカンジウムとの反応である。両者の反応によっ
てBa2Sc25,Ba3Sc49,Ba1Sc24 等の
化合物が生成される。この化合物は、単分子層の形成に
必要なスカンジウムを遊離しにくい。したがって、これ
らの化合物が生成されると、被覆膜のスカンジウムを金
属的に成膜する効果が失われてしまう。また効果的なス
カンジウム供給部の減少により、本来期待されるより短
寿命となる。
In order to supply scandium to the cathode surface from the coating film containing the scandium oxide film, the scandium oxide must be reduced to generate free scandium. Reduction of the oxide is performed by reaction with tungsten or barium. If scandium is formed as a metal instead of an oxide, a reduction reaction is not required, and improvement in characteristics and reliability of the cathode can be expected. The problem here is the reaction between barium oxide and scandium on the surface of the impregnated cathode having the basic structure. Compounds such as Ba 2 Sc 2 O 5 , Ba 3 Sc 4 O 9 , and Ba 1 Sc 2 O 4 are produced by the reaction between the two . This compound hardly releases scandium necessary for forming a monolayer. Therefore, when these compounds are generated, the effect of metallically forming scandium on the coating film is lost. Also, the effective scandium supply is reduced, resulting in a shorter life than originally expected.

【0009】[0009]

【発明が解決しようとする課題】上述したように、含浸
形陰極の低温動作化を可能とするSc被覆型含浸形陰極
で、電子放出特性や信頼性向上のために被覆膜を金属的
に成膜した場合には、スカンジウムがバリウム酸化物と
反応し、遊離スカンジウムを生成しにくい化合物となっ
てしまうため、十分な効果が得られない問題があった。
As described above, this is an Sc-coated impregnated cathode capable of operating the impregnated cathode at a low temperature. In order to improve electron emission characteristics and reliability, the coating film is metallic. When a film is formed, scandium reacts with barium oxide and becomes a compound that hardly generates free scandium, so that there is a problem that a sufficient effect cannot be obtained.

【0010】本発明の目的は、Sc被覆型含浸形陰極
で、これを解決することにあり、そのための被覆膜構成
を提供することにある。
An object of the present invention is to solve this problem with an Sc-coated impregnated cathode, and to provide a coating film configuration for that purpose.

【0011】[0011]

【課題を解決するための手段】上記技術的課題は、基本
構成の含浸形陰極の表面と金属スカンジウムとの間に中
間層を設け、この反応を防ぐための障壁層とすることに
より解決される。たとえば、金属スカンジウムを表面被
覆膜として用いたSc被覆型含浸形陰極で、陰極表面と
表面被覆膜との間に50nm〜1μmの厚さのタングス
テンやモリブデン等の高融点金属を中間層として設け
る。
The above technical problem can be solved by providing an intermediate layer between the surface of the impregnated cathode having the basic structure and metal scandium, and forming a barrier layer for preventing this reaction. . For example, in a Sc-coated type impregnated cathode using metal scandium as a surface coating film, a high melting point metal such as tungsten or molybdenum having a thickness of 50 nm to 1 μm is used as an intermediate layer between the cathode surface and the surface coating film. Provide.

【0012】陰極表面と金属スカンジウムからなる表面
被覆膜との間に中間層を設けたことにより、バリウム酸
化物と金属スカンジウムの反応を防ぐことができる。こ
れにより、遊離スカンジウム生成に還元反応を必要とし
ない金属スカンジウム膜の特性を引き出せるため、電子
放出特性が良く十分な寿命が可能となる。
By providing the intermediate layer between the cathode surface and the surface coating film made of metal scandium, the reaction between barium oxide and metal scandium can be prevented. As a result, the characteristics of the metal scandium film that does not require a reduction reaction to generate free scandium can be brought out, so that the electron emission characteristics are good and a sufficient life can be achieved.

【0013】[0013]

【発明の実施の形態】図1に本発明の含浸形陰極の構成
の実施例を、図2に従来の構成例を模式的に示す。図2
に示すように従来のSc被覆型含浸形陰極は、基本構成
である基本型含浸形陰極4の上面に、金属スカンジウム
を主体とする下部被覆膜20を形成する。そして、単分
子層の吸着面としてタングステンやモリブデン等の高融
点金属を主体とする最表面層30を形成する。
FIG. 1 shows an embodiment of the structure of an impregnated cathode of the present invention, and FIG. 2 schematically shows a conventional example of the structure. FIG.
As shown in (1), in the conventional Sc-coated impregnated cathode, a lower coating film 20 mainly composed of scandium metal is formed on the upper surface of the basic impregnated cathode 4 which is a basic structure. Then, an outermost surface layer 30 mainly composed of a high melting point metal such as tungsten or molybdenum is formed as an adsorption surface of the monomolecular layer.

【0014】これに対し、本発明のSc被覆型含浸形陰
極は、基本型含浸形陰極の上面にまず、タングステンや
モリブデン等の高融点金属を主体とする中間層1を形成
する。その上面に金属スカンジウムを主体とする被覆膜
2を形成し、さらに、単分子層の吸着面としてタングス
テンやモリブデン等の高融点金属を主体とする最表面層
3を形成する。
On the other hand, in the Sc-coated impregnated cathode of the present invention, first, an intermediate layer 1 mainly composed of a refractory metal such as tungsten or molybdenum is formed on the upper surface of the basic impregnated cathode. A coating film 2 mainly composed of scandium metal is formed on the upper surface, and an outermost surface layer 3 mainly composed of a high melting point metal such as tungsten or molybdenum is formed as an adsorption surface of a monomolecular layer.

【0015】本実施例では、100nmの中間層1,2
00nm の被覆膜2及び700nmの最表面層3を電
子ビーム加熱による蒸着法により、それぞれモリブデ
ン,金属スカンジウム,モリブデンを蒸着源とし、連続
蒸着により成膜した。基本型含浸形陰極4は、タングス
テン粉末をプレス,焼結したのち、BaOを主体とする
酸化物つまり含浸剤42を含浸した。含浸剤としては、
BaO,CaO,Al23を4:1:1に混合したもの
を用いた。そして、この含浸剤42を、水素雰囲気中で
1900℃に加熱溶融し、タングステンの焼結体つまり
多孔質体41に含浸した。本実施例で用いた基本型含浸
形陰極4の大きさ及び形状は、直径1.2mm,厚さ0.4
mmの円筒状のペレットである。
In this embodiment, the intermediate layers 1 and 2 having a thickness of 100 nm are used.
The coating film 2 having a thickness of 00 nm and the outermost surface layer 3 having a thickness of 700 nm were formed by vapor deposition using electron beam heating, using molybdenum, scandium, and molybdenum as vapor deposition sources, respectively, by continuous vapor deposition. The basic impregnated cathode 4 was obtained by pressing and sintering a tungsten powder and then impregnating with an oxide mainly composed of BaO, that is, an impregnating agent 42. As the impregnating agent,
A mixture of BaO, CaO, and Al 2 O 3 in a ratio of 4: 1: 1 was used. Then, the impregnating agent 42 was heated and melted at 1900 ° C. in a hydrogen atmosphere to impregnate the sintered body of tungsten, that is, the porous body 41. The size and shape of the basic impregnated cathode 4 used in the present example were 1.2 mm in diameter and 0.4 mm in thickness.
It is a cylindrical pellet of mm.

【0016】図3は放出電流の加熱時間依存性を示す図
である。本実施例の含浸形陰極を従来陰極と比較してい
る。比較陰極は、電子ビーム加熱による蒸着法より、下
部被覆膜20として金属スカンジウムを200nm,最
表面層30としてモリブデンを700nm形成したもの
を用いた。横軸は真空容器中での1000℃での加熱時
間であり、縦軸は850℃での放出電流量である。測定
は、陽極を陰極から7mm離して配置し、陽極に4kVの
電圧を印加して行った。
FIG. 3 is a diagram showing the dependence of the emission current on the heating time. The impregnated cathode of this embodiment is compared with a conventional cathode. As the comparative cathode, one formed by forming 200 nm of scandium metal as the lower coating film 20 and 700 nm of molybdenum as the outermost surface layer 30 by an evaporation method using electron beam heating was used. The horizontal axis represents the heating time at 1000 ° C. in the vacuum vessel, and the vertical axis represents the amount of emission current at 850 ° C. The measurement was performed by disposing the anode at a distance of 7 mm from the cathode and applying a voltage of 4 kV to the anode.

【0017】図3より、従来の中間層1を含まない被覆
膜構成の陰極は、約2時間程度まで放出電流の立上りが
見られるものの、それ以降は大きく低下する。これは、
基本型含浸形陰極4の表面でバリウム酸化物と金属スカ
ンジウムとの反応が進み、単分子層の形成に必要な遊離
スカンジウムの供給を阻害しているためである。これに
対して、本実施例の含浸形陰極は、約3時間程度で良好
な電子放出特性を示し、10時間までに放出電流の低下
は見られない。また、中間層1は含浸剤に対する隔壁の
効果を有するために均一な膜の範囲である必要があり、
実効的に50nm以上が必要となる。そして、単分子層の
構成要素であるバリウムは微細に生じる穴より供給する
必要から、1μmを超える膜厚は好ましくない。
As shown in FIG. 3, in the conventional cathode having the coating film structure not including the intermediate layer 1, the emission current rises up to about 2 hours, but after that, the emission current drops significantly. this is,
This is because the reaction between the barium oxide and the metal scandium proceeds on the surface of the basic impregnated cathode 4 and hinders the supply of free scandium necessary for forming a monolayer. On the other hand, the impregnated cathode of this example shows good electron emission characteristics in about 3 hours, and no decrease in emission current is observed by 10 hours. Further, the intermediate layer 1 needs to be in a uniform film range in order to have a partition effect on the impregnating agent,
Effectively, 50 nm or more is required. Barium, which is a component of the monomolecular layer, needs to be supplied from a finely formed hole, so that a film thickness exceeding 1 μm is not preferable.

【0018】本実施例では、含浸剤として、BaO,C
aO,Al23を4:1:1に混合したものを用いた。
しかし、含浸剤組成は本発明の効果とは本質的に無関係
である。これは5:3:2や他の組成のものでも同様の
効果を示すことは明らかである。さらに、本実施例の被
覆膜の構成要素として金属スカンジウム以外には、モリ
ブデンを用いて説明した。しかし、中間層1について
は、単分子吸着により仕事関数が低下するものであれば
よく、タングステン等の他の高融点金属もモリブデンと
同様に用いることができ、これらの混合物でも問題な
い。
In this embodiment, BaO, C
A mixture of aO and Al 2 O 3 in a ratio of 4: 1: 1 was used.
However, the impregnant composition is essentially irrelevant to the effect of the present invention. It is clear that the same effect can be obtained with 5: 3: 2 and other compositions. Further, molybdenum was used as a component of the coating film of the present embodiment in addition to scandium metal. However, the intermediate layer 1 only needs to have a work function lowered by single molecule adsorption, and other high-melting metals such as tungsten can be used in the same manner as molybdenum.

【0019】また、最表面層3については、その材料は
陰極加熱後に隔壁として働けるものがよく、オスミウ
ム,イリジウム,レニウム及び白金等の高融点金属が望
ましい。金属スカンジウムの被覆膜2は、蒸着法により
成膜したが、これはCVD法など他の成膜手段を用いて
も良い。また、中間層1および最表面層3の成膜には電
子ビーム蒸着法を用いたが、同様に他の成膜手段を用い
ても良い。
The outermost surface layer 3 is preferably made of a material capable of functioning as a partition after heating the cathode, and is preferably a high melting point metal such as osmium, iridium, rhenium and platinum. Although the metal scandium coating film 2 is formed by a vapor deposition method, other film forming means such as a CVD method may be used. In addition, although the intermediate layer 1 and the outermost surface layer 3 are formed by the electron beam evaporation method, other film forming means may be used similarly.

【0020】また、実施例は、含浸形陰極について説明
したが、本発明の含浸形陰極はブラウン管に使用される
ものであり、その概略構成を図4に示す。61はパネ
ル、62はファンネル、63はネック部、64は蛍光面
(画面)、65はシャドウマスク、66は磁気シール
ド、67は偏向ヨーク、68はピュリティ調整マグネッ
ト、69はセンタービームスタティックコンバーゼンス
調整マグネット、610はサイドビームスタティックコ
ンバーゼンス調整マグネット、611は電子銃である。
本発明の含浸形陰極は電子銃611の端に具備され、発
生した電子ビーム612は蛍光面64に集束させられ
る。本発明の含浸形陰極を使用したブラウン管は従来の
含浸形陰極を用いたものに比べ、陰極から熱的要因に対
する高い信頼性を持つことは明白である。従って本発明
は、本発明の含浸形陰極を使用したブラウン管を含む。
Although the embodiment has been described with reference to the impregnated cathode, the impregnated cathode of the present invention is used for a cathode ray tube, and its schematic configuration is shown in FIG. 61 is a panel, 62 is a funnel, 63 is a neck, 64 is a phosphor screen (screen), 65 is a shadow mask, 66 is a magnetic shield, 67 is a deflection yoke, 68 is a purity adjustment magnet, 69 is a center beam static convergence adjustment magnet. , 610 is a side beam static convergence adjusting magnet, and 611 is an electron gun.
The impregnated cathode of the present invention is provided at the end of the electron gun 611, and the generated electron beam 612 is focused on the phosphor screen 64. It is clear that the cathode ray tube using the impregnated cathode of the present invention has higher reliability against the thermal factors from the cathode than the cathode ray tube using the conventional impregnated cathode. Accordingly, the present invention includes a cathode ray tube using the impregnated cathode of the present invention.

【0021】[0021]

【発明の効果】本発明の被覆膜の構成を持つ含浸形陰極
によれば、陰極表面へのスカンジウムの供給力及び総供
給量を向上できる。その結果、電子放出特性や信頼性の
向上が図られる。
According to the impregnated cathode having the structure of the coating film of the present invention, the supply power and the total supply of scandium to the cathode surface can be improved. As a result, electron emission characteristics and reliability are improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例のSc被覆型含浸形陰極の模
式的断面図。
FIG. 1 is a schematic sectional view of an Sc-coated impregnated cathode according to one embodiment of the present invention.

【図2】従来のSc被覆型含浸形陰極の模式的断面図。FIG. 2 is a schematic cross-sectional view of a conventional Sc-coated impregnated cathode.

【図3】本発明と従来例のSc被覆型含浸形陰極の放出
電流の加熱時間依存性を示す特性図。
FIG. 3 is a characteristic diagram showing the heating time dependence of the emission current of the Sc-coated impregnated cathodes of the present invention and the conventional example.

【図4】本発明の含浸形陰極の使用形態を説明するブラ
ウン管の断面図。
FIG. 4 is a cross-sectional view of a cathode ray tube for explaining a use mode of the impregnated cathode of the present invention.

【符号の説明】[Explanation of symbols]

1…中間層、2…被覆膜、3…最表面層、4…基本型含
浸形陰極。
DESCRIPTION OF SYMBOLS 1 ... Intermediate layer, 2 ... Coating film, 3 ... Outermost surface layer, 4 ... Basic impregnation type cathode.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 松▲崎▼ 尚子 東京都国分寺市東恋ケ窪一丁目280番地 株式会社日立製作所中央研究所内 (72)発明者 山田 絵実子 東京都国分寺市東恋ケ窪一丁目280番地 株式会社日立製作所中央研究所内 ──────────────────────────────────────────────────の Continuing on the front page (72) Inventor Matsu ▲ Saki ▼ Naoko 1-280 Higashi-Koigakubo, Kokubunji-shi, Tokyo Inside the Central Research Laboratory of Hitachi, Ltd. Central Research Laboratory, Hitachi, Ltd.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】多孔質タングステン基体にバリウムを含む
酸化物を含浸させたいわゆる含浸形陰極の表面に、少な
くとも金属スカンジウムを含む被覆膜を持つ陰極におい
て、含浸形陰極の表面と金属スカンジウムの間に高融点
金属の中間層を設けることを特徴とする含浸形陰極。
1. A cathode having a coating film containing at least metal scandium on a surface of a so-called impregnated cathode in which a porous tungsten substrate is impregnated with an oxide containing barium, wherein a cathode is provided between the surface of the impregnated cathode and the metal scandium. An impregnated cathode, wherein an intermediate layer of a high melting point metal is provided thereon.
【請求項2】請求項1に記載の上記高融点金属の中間層
が、タングステン,モリブデン,オスミウム,イリジウ
ム,レニウム及び白金からなる群から選ばれた少なくと
も一種類の金属である含浸形陰極。
2. The impregnated cathode according to claim 1, wherein the intermediate layer of the refractory metal is at least one metal selected from the group consisting of tungsten, molybdenum, osmium, iridium, rhenium and platinum.
【請求項3】請求項1または2に記載の上記中間層の膜
厚が50nm〜1μmである含浸形陰極。
3. An impregnated cathode according to claim 1, wherein said intermediate layer has a thickness of 50 nm to 1 μm.
【請求項4】請求項1に記載の上記被覆膜が、金属スカ
ンジウムを主体とする被覆膜と高融点金属の被覆膜から
なる多層構造を持ち複数層構造の多層構造を持つ含浸形
陰極。
4. The impregnated type wherein the coating film according to claim 1 has a multilayer structure comprising a coating film mainly composed of scandium metal and a coating film of a high melting point metal and has a multilayer structure of a plurality of layers. cathode.
【請求項5】請求項1,2,3または4に記載の含浸形
陰極を用いたブラウン管。
5. A cathode ray tube using the impregnated cathode according to claim 1, 2, 3, or 4.
JP17893496A 1996-07-09 1996-07-09 Impregnated cathode and cathode-ray tube using the same Pending JPH1027538A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17893496A JPH1027538A (en) 1996-07-09 1996-07-09 Impregnated cathode and cathode-ray tube using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17893496A JPH1027538A (en) 1996-07-09 1996-07-09 Impregnated cathode and cathode-ray tube using the same

Publications (1)

Publication Number Publication Date
JPH1027538A true JPH1027538A (en) 1998-01-27

Family

ID=16057205

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17893496A Pending JPH1027538A (en) 1996-07-09 1996-07-09 Impregnated cathode and cathode-ray tube using the same

Country Status (1)

Country Link
JP (1) JPH1027538A (en)

Similar Documents

Publication Publication Date Title
Jenkins A review of thermionic cathodes
US6791251B2 (en) Metal cathode and indirectly heated cathode assembly having the same
JPH1027538A (en) Impregnated cathode and cathode-ray tube using the same
Gaertner et al. Vacuum electron sources and their materials and technologies
JPH0765693A (en) Oxide cathode
KR970009775B1 (en) Manufacture of impregnated type cathode
KR0142704B1 (en) Impregnated dispenser cathode
JP2585232B2 (en) Impregnated cathode
US2792273A (en) Oxide coated nickel cathode and method of activation
US2686886A (en) Electric discharge tube
JPH065198A (en) Cathode including cathode element
JPH08236008A (en) Impregnated cathode and electron tube using it
JPH08138536A (en) Impregnated cathode, manufacture thereof, and cathode-ray tube using this
JPH09198996A (en) Impregnated cathode and cathode-ray tube with it
JPH06150811A (en) Manufacture of impregnated type cathode and electron tube
JPH04280029A (en) Impregnation type cathode
KR100249208B1 (en) Impregnated cathode
US20230202930A1 (en) Electron-emitting ceramic
KR100235995B1 (en) Impregnation treatment type cathode
JPH06124647A (en) Impregnated type cathode, its manufacture, and manufacture of electron tube
Yamamoto Recent development of cathodes used for cathode ray tubes
JP2001256882A (en) Impregnated cathode for electron tube and electron tube using it
JPH0765695A (en) Oxide cathode
JPH09180624A (en) Impregnated cathode and electron tube using the same
JPH06124648A (en) Impregnated type cathode and electron tube using this