JPS6350015A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS6350015A
JPS6350015A JP19454486A JP19454486A JPS6350015A JP S6350015 A JPS6350015 A JP S6350015A JP 19454486 A JP19454486 A JP 19454486A JP 19454486 A JP19454486 A JP 19454486A JP S6350015 A JPS6350015 A JP S6350015A
Authority
JP
Japan
Prior art keywords
film
resist
semiconductor substrate
oxide film
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19454486A
Other languages
Japanese (ja)
Inventor
Junichiro Kuno
久野 純一郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP19454486A priority Critical patent/JPS6350015A/en
Publication of JPS6350015A publication Critical patent/JPS6350015A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prevent discharge between a mask pattern and a semiconductor substrate and to prevent breakage of a thin oxide film or the like, by providing a conductive thin film between the mask pattern and the substrate before implanting dopant ions. CONSTITUTION:An aluminium film 5 as a conducting film is deposited over the entire surface of an MOS transistor Tr including a field oxide film 2 on a semiconductor substrate 1. Resist G is then formed selectively and boron ions for example are implanted in the entire surface. The boron ions do not reach the substrate 1 through the resist 6, field oxide film 2 and a gate electrode 4 because they are trapped. However, a part of charges of the ions escape through the film 2 to a clamp suporting the substrate 1. Even if charges are stored in the resist 6, no discharge is caused between the resist and the substrate 1 since the film 5 has a field shielding effect and, hence, there is no possibility of breaking the gate oxide film 3. Further, the boron ions are implanted into source/drain regions of the MOS transistor through the film 5 and diffusion layers 7 are formed in said regions.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、半導体装置製造方法に関し、特に半導体基板
表面に所望の不純物をイオン注入する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for manufacturing a semiconductor device, and more particularly to a method for ion-implanting desired impurities into the surface of a semiconductor substrate.

〔従来の技術〕[Conventional technology]

従来、この種の半導体装置製造方法は、半導体基板表面
にイオン注入のマスク材料としてレジストを用いて所望
のマスクパターンを形成し前記マスクパターンを通して
不純物をイオン注入し、半導体基板表面に所望の不純物
領域を形成していた。
Conventionally, this type of semiconductor device manufacturing method uses a resist as a mask material for ion implantation to form a desired mask pattern on the surface of a semiconductor substrate, and implants impurity ions through the mask pattern to form a desired impurity region on the surface of the semiconductor substrate. was forming.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上述した従来の半導体装置製造方法は、イオン注入マス
クパターンをレジストを半導体基板表面に塗布、被着形
成後、所定のパターンによって写真蝕刻形成していた為
、絶縁物質であるレジスト中に、イオン他人時の不純物
イオンの電荷が蓄損し、半導体基板とレジストとの間に
放電現象が発生し、半導体基板上の特にMO8型トラン
ジスタのゲート絶縁膜の様な薄い絶縁膜が破壊されると
いう欠点がおった。
In the conventional semiconductor device manufacturing method described above, an ion implantation mask pattern is formed by coating a resist on the surface of a semiconductor substrate, depositing it, and then photo-etching it according to a predetermined pattern. The drawback is that the charge of impurity ions accumulates and dissipates, and a discharge phenomenon occurs between the semiconductor substrate and the resist, which destroys the thin insulating film on the semiconductor substrate, especially the gate insulating film of the MO8 type transistor. Ta.

上述した従来の半導体装置製造方法に対して、本発明は
半導体基板及び半導体基板表面上の薄い絶縁膜等をイオ
ン注入時のマスク材と電界的にシールドする効果が得ら
れ、かつ、イオン注入時、所望の不純物イオンが透過可
能な導電性薄膜を形成することである。更に、上述した
導電性薄膜は、イオン注入装置に半導体基板を固定する
際に、−定電位に保たれた導電性クランプで固定するこ
とにより一層の効果が得られる。
In contrast to the conventional semiconductor device manufacturing method described above, the present invention has the effect of electrically shielding a semiconductor substrate and a thin insulating film on the surface of the semiconductor substrate with a mask material during ion implantation. , to form a conductive thin film through which desired impurity ions can pass. Further, when the above-mentioned conductive thin film is fixed to the ion implantation apparatus, a further effect can be obtained by fixing the semiconductor substrate with a conductive clamp maintained at a constant potential of -.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の半導体装置の製造方法は、半導体基板上全面に
導電性薄膜を形成する工程と、前記導電性薄膜上全面に
イオン注入時のイオン?マスキングするマスク材料を形
成する工程と、前記マスク材料を必要な部分金銭して除
去する工程と、所望する不純物を前記半導体基板表面に
イオン注入する工程金倉んで構成さj、る。
The method for manufacturing a semiconductor device of the present invention includes a step of forming a conductive thin film on the entire surface of the semiconductor substrate, and a step of forming ions during ion implantation on the entire surface of the conductive thin film. The method is comprised of a step of forming a mask material for masking, a step of removing a necessary portion of the mask material, and a step of ion-implanting desired impurities into the surface of the semiconductor substrate.

〔実施例〕〔Example〕

次に、本発明をMO8型トランジスタのSD領領域選択
的に拡散層を形成する方法に適用した一実施例について
詳細に説明する。
Next, an embodiment in which the present invention is applied to a method of selectively forming a diffusion layer in the SD region of an MO8 type transistor will be described in detail.

第1図に本発明を適用するMO8型トランジスタの断面
図を示す。半導体基板1の表面上に形成された厚さ0.
8μm のフィールド酸化膜2とそのフィールド酸化膜
2で囲まれた領域」二の厚さ50〜400Aのゲート酸
化膜3と前記ゲート酸化膜3上に形成されたゲート電極
4から成る複数のP140S型トランジスタの8D領域
に選択的に拡散層を形成する為に、まず、第21凶に示
す様に半導体基板1上に形成されたフィールドff12
化膜2を含むMO8型トランジスタ上全面に導電性薄膜
として厚さ100〜500Aの薄いアルミニウム膜2を
蒸着、もしくけスバヴタにより形成し、その後所望する
トランジスタにのみイオン注入する為の厚さ1.5〜2
.0μmのレジスト3を選択的に形成し、全面に例えば
、エネルギー10〜300に−evのボロンをイオン注
入する。この場合レジスト6、フィールド酸化膜2゜及
びゲート電極4ば、十分な厚さを持つのでボロンイオン
は、レジスト6、フィールド酸化膜2゜ゲート電極4全
通して半導体基板1まで到達せずに、レジスト6、フィ
ールド酸化膜2及びゲート電極4中にトラップgfLる
が、イオンの電荷の一部は、導電性薄膜であるアルミニ
ウム膜を通して半導体基板1を支えている、クランプに
逃げる。
FIG. 1 shows a cross-sectional view of an MO8 type transistor to which the present invention is applied. A layer having a thickness of 0.0 mm formed on the surface of the semiconductor substrate 1.
A plurality of P140S type devices are formed of a field oxide film 2 of 8 μm in thickness, a region surrounded by the field oxide film 2, a gate oxide film 3 with a thickness of 50 to 400 Å, and a gate electrode 4 formed on the gate oxide film 3. In order to selectively form a diffusion layer in the 8D region of the transistor, first, a field ff12 is formed on the semiconductor substrate 1 as shown in the 21st column.
A thin aluminum film 2 with a thickness of 100 to 500 Å is deposited as a conductive thin film on the entire surface of the MO8 type transistor including the oxidized film 2, and then formed by evaporation, and then deposited to a thickness of 1.0 mm to implant ions only into desired transistors. 5-2
.. A resist 3 with a thickness of 0 μm is selectively formed, and boron ions with an energy of 10 to 300, for example, −ev are implanted over the entire surface. In this case, the resist 6, field oxide film 2, and gate electrode 4 have sufficient thickness, so boron ions do not pass through the resist 6, field oxide film 2, and gate electrode 4 all the way to the semiconductor substrate 1. Although the ion charges are trapped in the resist 6, the field oxide film 2, and the gate electrode 4, some of the ion charges escape to the clamp supporting the semiconductor substrate 1 through the aluminum film, which is a conductive thin film.

更に、アルミニウム膜5は電界シールド効果を持つので
、たとえレジスト6中に電荷が蓄積しても半導体基板1
との間で放電が起きることはなく、ゲート酸化膜3が破
壊されるおそれは無い。
Furthermore, since the aluminum film 5 has an electric field shielding effect, even if charges accumulate in the resist 6, the semiconductor substrate 1
There is no possibility that a discharge will occur between the gate oxide film 3 and the gate oxide film 3.

また、ゲート酸化膜3上のアルミニウム膜5は十分に薄
いので、ボロ/イオンはMOS)ランシストのSD領領
域注入さ扛る。イオン注入により8D領域の拡散層形成
後、レジスト6を剥離し、アルミニウム膜5をリン酸で
エツチング除去することによって、第3図の様にMO8
型トランジスタの8D領域に選択的に拡散層7を形成す
ることができる。
Furthermore, since the aluminum film 5 on the gate oxide film 3 is sufficiently thin, boron/ions are implanted into the SD region of the MOS transistor. After forming a diffusion layer in the 8D region by ion implantation, the resist 6 is peeled off and the aluminum film 5 is etched away with phosphoric acid to form an MO8 as shown in FIG.
The diffusion layer 7 can be selectively formed in the 8D region of the type transistor.

他の実施例はMO8型トランジスタのSD領領域選択的
に拡散層を形成する方法に適用したものである。本発明
全適用するMO8型トランジスタの断面図は、実施例1
と同様第1図に示す。第4図は本発明の実施例2の断面
図である。第4図に示す様に半導体基板1上に形成され
たフィールド酸化膜2を含むMO8型トランジスタ全面
に、リン?含むシリコン膜8をコーティング形成し、更
に実施例1と同様レジス)6fC選択的に形成後全面に
イオン注入することにより、所望するSD領領域拡散層
を形成する。その後、レジスト6を剥離し、更に電気炉
で高温熱処理することにより、第5図に示す様にリンを
含むシリコン膜8は、半導体基板1上に形成されたフィ
ールド領域2.ゲート酸化膜3、及びゲート開極4をカ
バーする安定した絶縁膜9として残す。即ちこの実施例
2では、導電性薄膜であるリン?含むシリコン膜8をイ
オン注入後に熱処理して絶縁膜9と1−で使用するので
安定したゲート酸化膜3と絶縁膜8とを持つMO8型ト
ランジスタのSD領領域拡散層7を選択的に形成でき、
1だ、半導体装置の工程を大幅((短縮することができ
る。
Another embodiment is applied to a method of selectively forming a diffusion layer in the SD region of an MO8 type transistor. A cross-sectional view of an MO8 type transistor to which the present invention is fully applied is Example 1.
Similarly, it is shown in FIG. FIG. 4 is a sectional view of Embodiment 2 of the present invention. As shown in FIG. 4, phosphorus is applied over the entire surface of the MO8 type transistor including the field oxide film 2 formed on the semiconductor substrate 1. A desired SD region diffusion layer is formed by coating a silicon film 8 containing silicon, selectively forming a resist (6fC) as in Example 1, and then implanting ions over the entire surface. Thereafter, the resist 6 is peeled off and further heat-treated at a high temperature in an electric furnace, so that the silicon film 8 containing phosphorus is removed from the field area 2 formed on the semiconductor substrate 1, as shown in FIG. A stable insulating film 9 covering the gate oxide film 3 and the gate opening 4 is left. That is, in this Example 2, phosphorus, which is a conductive thin film, is used. Since the silicon film 8 containing the silicon film 8 is heat-treated after ion implantation and used as the insulating films 9 and 1-, the SD region diffusion layer 7 of the MO8 type transistor having a stable gate oxide film 3 and the insulating film 8 can be selectively formed. ,
1. The semiconductor device process can be significantly shortened.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明は不純物をイオン注入する
際に、マスクパターンと半導体基板の間に形成された導
電性薄膜で゛電界をシールドすることができる。したが
って、半導体基板に導電性薄膜を形成せずにマスクパタ
ーン全形成する従来の方法と異なり、マスクパターンと
基板との間で放電が起り、薄い酸化膜等を破壊すること
無くイオン注入できる。
As described above, the present invention can shield an electric field with a conductive thin film formed between a mask pattern and a semiconductor substrate when impurity ions are implanted. Therefore, unlike the conventional method in which a mask pattern is entirely formed without forming a conductive thin film on a semiconductor substrate, a discharge occurs between the mask pattern and the substrate, and ions can be implanted without destroying a thin oxide film or the like.

【図面の簡単な説明】[Brief explanation of drawings]

第1図から第5図は本発明の実施例を工程順に示す断面
図である。 1・・・・・・半導体基板、2・・・・・・フィールド
酸化膜、3・・・・・・ゲート酸化膜、4・・・・・・
ゲート電極、5・・・・・・アルミニウム膜、6・・・
・・・レジスト、7・・・・・・拡散層、8・・・・・
・シリコン膜、9・・・・・・絶縁膜。 7一
FIGS. 1 to 5 are cross-sectional views showing an embodiment of the present invention in the order of steps. 1...Semiconductor substrate, 2...Field oxide film, 3...Gate oxide film, 4...
Gate electrode, 5... Aluminum film, 6...
...Resist, 7... Diffusion layer, 8...
・Silicon film, 9...Insulating film. 71

Claims (1)

【特許請求の範囲】[Claims] 半導体基板上全面に導電性薄膜を形成する工程と、前記
導電性薄膜上全面にイオン注入時のイオンをマスキング
するマスク材料を形成する工程と、前記マスク材料を必
要な部分を残して除去する工程と、所望する不純物を前
記半導体基板表面にイオン注入する工程を含むことを特
徴とする半導体装置の製造方法。
A step of forming a conductive thin film over the entire surface of the semiconductor substrate, a step of forming a mask material for masking ions during ion implantation over the entire surface of the conductive thin film, and a step of removing the mask material leaving only necessary portions. and a step of ion-implanting desired impurities into the surface of the semiconductor substrate.
JP19454486A 1986-08-19 1986-08-19 Manufacture of semiconductor device Pending JPS6350015A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19454486A JPS6350015A (en) 1986-08-19 1986-08-19 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19454486A JPS6350015A (en) 1986-08-19 1986-08-19 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPS6350015A true JPS6350015A (en) 1988-03-02

Family

ID=16326295

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19454486A Pending JPS6350015A (en) 1986-08-19 1986-08-19 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS6350015A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02246323A (en) * 1989-03-20 1990-10-02 Fujitsu Ltd Manufacture of semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02246323A (en) * 1989-03-20 1990-10-02 Fujitsu Ltd Manufacture of semiconductor device

Similar Documents

Publication Publication Date Title
US4149307A (en) Process for fabricating insulated-gate field-effect transistors with self-aligned contacts
KR940008728B1 (en) Semiconductor device and manufacturing method thereof
US5346841A (en) Method of manufacturing semiconductor device using ion implantation
GB2128807A (en) Improvements in or relating to a method for fabricating an MOS device
JPS63314868A (en) Manufacture of mos semiconductor device
EP0162774B1 (en) Improvements in integrated circuit chip processing techniques and integrated circuit chip produced thereby
JPH033388B2 (en)
JPS6350015A (en) Manufacture of semiconductor device
JPH1131812A (en) Charge-transfer device and manufacture of the same
JP2569809B2 (en) Method for manufacturing semiconductor device
JPS60160168A (en) Manufacture of mos semiconductor device
KR100244789B1 (en) Method for manufacturing semiconductor device
JP2624371B2 (en) Method for manufacturing semiconductor device
JPS6146964B2 (en)
JPH02186625A (en) Manufacture of semiconductor device
JPH02105518A (en) Manufacture of semiconductor integrated circuit
JPS60133757A (en) Manufacture of thin film transistor
JP3166263B2 (en) Method for manufacturing thin film transistor
JPS6149473A (en) Manufacture of polycide gate mos ic
JPS61264763A (en) Manufacture of semiconductor element
JPS6243341B2 (en)
JPS63234520A (en) Manufacture of semiconductor device
JPS58170030A (en) Manufacture of semiconductor device
JPH08204189A (en) Manufacture of semiconductor device
JPH04322423A (en) Manufacture of semiconductor device