JPS6348914B2 - - Google Patents

Info

Publication number
JPS6348914B2
JPS6348914B2 JP58131045A JP13104583A JPS6348914B2 JP S6348914 B2 JPS6348914 B2 JP S6348914B2 JP 58131045 A JP58131045 A JP 58131045A JP 13104583 A JP13104583 A JP 13104583A JP S6348914 B2 JPS6348914 B2 JP S6348914B2
Authority
JP
Japan
Prior art keywords
resin
resistance value
resistance
carbon
resistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58131045A
Other languages
Japanese (ja)
Other versions
JPS6023460A (en
Inventor
Setsuo Suzuki
Junko Takeda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP58131045A priority Critical patent/JPS6023460A/en
Publication of JPS6023460A publication Critical patent/JPS6023460A/en
Publication of JPS6348914B2 publication Critical patent/JPS6348914B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は合成樹脂積層板上に形成せしめる印刷
抵抗素子作成のための電気抵抗体用塗料に関する
ものである。即ち、樹脂およびカーボンより成る
混合系の電気抵抗用塗料に係るものであり、特に
有機基板を基体としたハイブリツドIC作製にお
いて用いられるカーボン〜レジン系抵抗塗料を提
供せんとするものである。近年厚膜回路と半導体
を同一基板上に塔載する謂ゆるハイブリツドIC
の伸びが著じるしい。従来この用途に用いられる
基板はアルミナ基板等のセラミツクがほとんどで
あり、この基板上にガラスをバインダーとするペ
ーストを用いて電極、抵抗を印刷焼成により形成
し、この上に半導体を塔載するのが一般的な方法
である。然しながらセラミツク系のHICはその信
頼性は高いものの製造に高温を用いるため、製造
工程が複雑になること、回路形成後の加工が出来
ない(例えば穴アケ等)、壊れ易い等の欠点もあ
るため、この分野でも有機基板によるHIC作製の
検討が成されて来ている。この方法は銅張り積層
板のエツチング加工により回路電極を形成し、こ
の電極間に印刷により抵抗を形成し、更に電極上
に半導体を塔載しようとするものである。然しな
がら該方式の末だ実用化の域に達していない根本
的な理由として、カーボン抵抗塗料の抵抗値安定
性が悪いことがあげられる。即ちHIC作製工程で
は熱のかかる工程(ハンダ工程、粉体塗装工程
等)が多く、初期に調整した抵抗値が変化してし
まうという問題が有り、加えてプレツシヤークツ
カーテスト(PCT)の如き厳しい湿熱処理に対
しても抵抗値変化があつてはならないといつた要
求性能も充たさなければならず、有機物バインダ
ー抵抗塗料を以つて有機基板HICを作製せんとい
つた考えは従来不可能に近いと考えられていた。 本願発明者等はこれらの現状に鑑み、何んとか
有機基板HIC用カーボン抵抗塗料を開発せんと鋭
意検討を重ね本発明に到達した。勿論HICの抵抗
をカバー出来る塗料が得られれば一般の抵抗塗料
としても優れていることは論をまたない。即ちフ
エノール系樹脂と油溶性メラミン樹脂の混合物
に、カーボンブラツクおよび/またはグラフアイ
ト粉末を適当な溶剤を用いて分散せしめた抵抗塗
料のみが上記の性能を満足するものであることを
見い出した点に本発明の意義が有る。本願発明を
成すに当つて本発明者らは以下のような現象を発
見しており、この現象を巧みに利用したのが本発
明である。即ち難問であるPCT性能について検
討した結果、フエノール系樹脂単独の場合は、
PCT処理により抵抗値は正の方向にドリフトす
るのに対して、油溶性メラミン樹脂単独で塗料を
調整した場合、PCT処理により負の方向にドリ
フトするという事実を見い出した。また両者を混
合したものはその中間の値を示し、混合比を適宜
調整することにより限り無く変化の零に近い抵抗
塗料が得られるということを見い出した。その理
由については定かでは無いが、興味ある事実であ
り、これにより従来不可能とされていたHIC用抵
抗塗料が得られる様になつたものである。 以下に本発明の詳細につき述べる。 本願発明で用いられるレゾール型フエノール系
樹脂としては、フエノールレゾール、アルキルフ
エノールレゾール、キシレン樹脂変性フエノール
レゾール等のレゾール類はすべて使用可能である
が、一般にはアンモニア触媒によるフエノールレ
ゾールが用いられる。一方耐湿性、高架橋密度の
観点から油溶性メラミン樹脂が本発明達成の為に
用いられる。また油溶性メラミン樹脂はフエノー
ルレゾールとの相溶性の良いことが要求されるの
で、一般にはブチルエーテル化メラミンを用いる
のが好ましい。次いで両樹脂を混合する。混合割
合は実験により可及的にPCTテストで抵抗値変
化の少ない点を採用すべきであるが、一般にはフ
エノール樹脂単独の場合の正側へのドリフトより
油溶性メラミン樹脂単独の場合の負側へのドリフ
トが大きいので、油溶性メラミン樹脂の添加量は
フエノール樹脂に対して少ない。フエノール樹
脂:油溶性メラミン樹脂の比が10:1〜10:10の
範囲(重量)が好ましい。10:1より油溶性メラ
ミン樹脂の比率が小さいと油溶性メラミンの負側
へのドリフト寄与が少なく、10:10以上であると
負側へのドリフトになつてしまう。また用いられ
るカーボンは一般の導電性カーボン類はすべて使
用可能であり、アセチレンブラツク等の鎖状構造
の発達したカーボンブラツク類とかグラフアイト
類が単独もしくは併用で用いられる。特に両者の
併用は抵抗値安定化の上で好ましい。またカーボ
ン類の添加量は所望の抵抗値に対応せしめて適宜
調整可能である。 上述の如く樹脂とカーボンを混合するが通常は
粘度調整印刷性調整のため溶剤が用いられる、こ
の場合の溶剤は印刷中に揮発しないという条件が
必要となるため揮発速度の遅い溶剤が好んで用い
られる。一般にはブチルカルビトール、ブチルカ
ルビトールアセテート、ブタノール、ベンジルア
ルコール等の溶剤を単独もしくは併用して用いら
れるが、両樹脂に対して良溶媒であればすべて使
用可能である。これら樹脂とカーボンと溶剤を主
な成分とした混合物を混練してカーボンペースト
を得るが、混練にはボールミル、三本インクロー
ルなどが用いられる。次いで抵抗値が適宜調整さ
れたカーボンペーストを、銅箔回路板の電極間に
印刷により形成せしめ焼成するが、この場合の温
度は一般のカーボン抵抗塗料と同様で良く、150
℃〜200℃の範囲が用いられる。勿論この温度は
有機基板の耐熱性との関係で設定されなければな
らない。従つて焼成温度を高く取れる有機基板が
抵抗値安定性の上から好ましく、一般にはポリイ
ミド系銅張板、耐熱エポキシ樹脂銅張板が好まし
い。次に形成された抵抗および回路を端子部およ
び半導体マウント部(電極部)を残してレジスト
被覆を施こし、加熱硬化させる。この後抵抗体を
トリミングにより所望の抵抗値に調整する。この
結果抵抗体つきHIC用回路板が得られる。この状
態のものが従来の抵抗体つきセラミツク回路板に
相当するものである。また必要に応じて端子部お
よび電極部、ステツチ部のみ金メツキを施こして
も良い。次いでICを塔載し金線ボンデイングを
施こし、次いで金線ボンドされたIC部のみをチ
ツプコート樹脂(一般にはシリコン樹脂)を用い
て封じ、これも加熱硬化させる。次にチツプ部品
を必要に応じて半田を用いて塔載し、その後端子
に半田を用いてリードをとりつけ、最後の工程と
してエポキシ樹脂粉体塗料により外装を施こす。
この様にして足つきのHICが得られる。この様に
最終製品が得られる迄に印刷されたカーボン抵抗
体は熱にさらされるため、初期のトリミング後の
抵抗値からのブレ、即ちドリフトが生じてしま
う。この熱工程の温度および時間の代表例は以下
の如くである。 チツプ部品の塔載 150℃ 0.5Hr 金線ボンデイング 150℃ 数分 チツプコート樹脂の加熱硬化 100℃ 3Hr 端子リードの半田取りつけ 220℃ 数秒 外装粉体樹脂の加熱硬化 150℃ 2Hr以上 この様な熱工程を経た後でも初期値に対して3
%以下の安定性が要求される。また最後に抵抗値
の信頼性試験としてプレツシヤークツカーテスト
(条件、125℃、2.3気圧)があり、50Hr処理後で
の変化量が3%以内とする性能が要求される。こ
れらの非常に厳しい性能要求をすべて満足するよ
うな有機樹脂をバインダーとするカーボン抵抗塗
料などは全く有り得ないと考えられていた。然る
に本発明者等らはフエノール系樹脂バインダー単
独の場合と油溶性メラミン樹脂系バインダー単独
の場合とでは抵抗値の熱および湿熱での変化が
正・負の関係に有り、両者を混合すると相殺され
て抵抗値変化は限り無く零に近づくという全く考
えられもしなかつた現象を見い出し本発明をなし
たものである。 以下に実施例につき述べる。 実施例 1 レゾール型フエノール樹脂(スミライトレジン
PR−51833、住友デユレズ(株)製) 50重量部 ブチルエーテル化メラミン樹脂(スーパーベツカ
ミンL−117−70B、大日本インキ(株)製)
40重量部 触媒(キヤタニツトP、日東化学製) 4重量部 カーボンブラツク(アセチレンブラツク)
22重量部 溶 剤 10重量部 を秤取し、インク混練用3本ロールを用いて20分
間撹拌混合しペースト状カーボン抵抗塗料を作製
した。次にこのペーストを予め用意した回路パタ
ーン(ガラスエポキシ基板)上にスクリーン印刷
によつて塗布し、120℃で20分間乾燥し、さらに
ソルダーレジストを印刷硬化後、150℃で4時間
加熱硬化せしめて抵抗付回路基板を作成した。こ
のようにして得られた印刷抵抗の抵抗値は2.19K
Ω/□であつた。次にハイブリツドIC組立てに
必要な工程、すなわちダイボンデイング用接着剤
硬化、ボンデイング、チツプコート用樹脂硬化、
チツプ部品塔載用接着剤硬化に相当する条件に従
い抵抗回路基板を加熱し熱履歴を加え、さらに半
田漬け、粉体外装を行ない、抵抗ネツトワークを
形成した。このとき印刷抵抗の抵抗値は2.14K
Ω/□であり、熱履歴を加える前に比して−2.28
%の変化であつた。次にこの試験片を125℃、2.3
気圧の高温加湿下で32時間放置後、抵抗値の測定
を行なつたところ2.18KΩ/□であり、プレツシ
ヤークツカー処理前に対して僅か+1.87%の抵抗
値変動であり、極めて優れた抵抗値安定性を示し
た。 実施例 2 レゾール型フエノール樹脂 50重量部 ブチルエーテル化メラミン樹脂 20 〃 触 媒 2 〃 カーボンブラツク 10 〃 グラフアイト 7 〃 溶 剤 16 〃 上述の処方のペーストを用いて、実施例1に示
した方法と全く同様にして、抵抗付回路基板を作
成した。得られた印刷抵抗の抵抗値は34.2KΩ/
□であつた。次に実施例1と同様にして熱履歴を
加え抵抗値変化率の測定を行なつたところ−1.90
%であり、さらにPCT(125℃、2.3気圧)32時間
後の抵抗値変化率はプレツシヤークツカー処理前
に対して+2.14%であり、すぐれた抵抗値安定性
を示した。 比較例 (処方1) レゾール型フエノール樹脂(PR−51833)
100重量部 カーボンブラツク 18 〃 グラフアイト 6 〃 溶 剤 10 〃 (処方2) ブチルエーテル化メラミン樹脂(L−117−70B)
100重量部 触媒(キヤタニツトP) 11 〃 カーボンブラツク(フアーネスブラツク)
21 〃 溶 剤 16 〃 処方例1、2について実施例と全く同様にして
抵抗値安定性の評価を行なつたところ、第1表の
通りであり、プレツシヤークツカー処理に対して
大きく抵抗値
The present invention relates to a paint for electrical resistors for producing printed resistor elements formed on synthetic resin laminates. That is, the present invention relates to a mixed electrical resistance paint consisting of a resin and carbon, and particularly aims to provide a carbon-resin resistance paint used in the production of a hybrid IC based on an organic substrate. In recent years, so-called hybrid ICs that mount thick film circuits and semiconductors on the same substrate have become popular.
There has been a remarkable increase in Conventionally, most of the substrates used for this purpose are ceramics such as alumina substrates, and electrodes and resistors are formed on these substrates by printing and baking using a paste with glass as a binder, and semiconductors are mounted on top of these. is a common method. However, although ceramic-based HICs are highly reliable, they also have drawbacks such as the complicated manufacturing process due to the use of high temperatures in manufacturing, the inability to process them after circuit formation (for example, damage to holes, etc.), and the ease of breakage. In this field as well, studies have been made on the production of HICs using organic substrates. This method involves forming circuit electrodes by etching a copper-clad laminate, forming a resistor between the electrodes by printing, and then mounting a semiconductor on the electrodes. However, the fundamental reason why this method has not reached the stage of practical application is that the resistance value stability of the carbon resistance paint is poor. In other words, the HIC manufacturing process involves many heat-intensive processes (soldering, powder coating, etc.), which causes the problem that the initially adjusted resistance value changes. It was also necessary to meet performance requirements such as no change in resistance even under such severe moist heat treatment, and the idea of creating an organic substrate HIC using an organic binder resistance paint was no longer possible. It was thought to be close. In view of these current circumstances, the inventors of the present application have conducted intensive studies to somehow develop a carbon resistance paint for HIC on organic substrates, and have finally arrived at the present invention. Of course, if a paint that can cover the resistance of HIC can be obtained, it goes without saying that it is also excellent as a general resistance paint. That is, we have discovered that only a resistance paint in which carbon black and/or graphite powder is dispersed in a mixture of phenolic resin and oil-soluble melamine resin using an appropriate solvent satisfies the above performance. This invention has significance. In making the present invention, the present inventors discovered the following phenomenon, and the present invention skillfully utilizes this phenomenon. In other words, as a result of considering the difficult problem of PCT performance, in the case of using phenolic resin alone,
We have discovered that while PCT treatment causes the resistance value to drift in the positive direction, when the paint is prepared using only oil-soluble melamine resin, the PCT treatment causes the resistance value to drift in the negative direction. It has also been found that a mixture of the two exhibits a value intermediate between the two, and that by appropriately adjusting the mixing ratio, a resistance paint with an infinitely close to zero change can be obtained. The reason for this is not clear, but it is an interesting fact, and it has made it possible to obtain HIC resistance paints, which was previously considered impossible. The details of the present invention will be described below. As the resol-type phenolic resin used in the present invention, all resols such as phenol resol, alkyl phenol resol, and xylene resin-modified phenol resol can be used, but generally, ammonia-catalyzed phenol resol is used. On the other hand, oil-soluble melamine resin is used to achieve the present invention from the viewpoint of moisture resistance and high crosslink density. Furthermore, since the oil-soluble melamine resin is required to have good compatibility with phenol resol, it is generally preferable to use butyl etherified melamine. Both resins are then mixed. The mixing ratio should be based on experimentation so that the resistance value changes as little as possible in the PCT test, but in general, the negative side for oil-soluble melamine resin alone is higher than the positive drift for phenolic resin alone. The amount of oil-soluble melamine resin added is small compared to the amount of phenolic resin, since the drift to phenol resin is large. The ratio of phenolic resin to oil-soluble melamine resin is preferably in the range of 10:1 to 10:10 (by weight). If the ratio of the oil-soluble melamine resin is smaller than 10:1, the contribution of the oil-soluble melamine to the negative side will be small, and if it is 10:10 or more, it will drift to the negative side. Further, as the carbon used, all general conductive carbons can be used, and carbon blacks with a developed chain structure such as acetylene black, or graphites can be used alone or in combination. In particular, it is preferable to use both in combination in order to stabilize the resistance value. Further, the amount of carbon added can be adjusted as appropriate depending on the desired resistance value. As mentioned above, resin and carbon are mixed, but usually a solvent is used to adjust the viscosity and printability.In this case, it is necessary that the solvent does not volatilize during printing, so a solvent with a slow volatilization rate is preferably used. It will be done. Generally, solvents such as butyl carbitol, butyl carbitol acetate, butanol, and benzyl alcohol are used alone or in combination, but any solvent can be used as long as it is a good solvent for both resins. A mixture containing these resins, carbon, and a solvent as main components is kneaded to obtain a carbon paste, and a ball mill, three-ink roll, or the like is used for kneading. Next, a carbon paste whose resistance value has been appropriately adjusted is printed between the electrodes of the copper foil circuit board and fired.
A range of 0.degree. C. to 200.degree. C. is used. Of course, this temperature must be set in relation to the heat resistance of the organic substrate. Therefore, an organic substrate that can be fired at a high temperature is preferable from the viewpoint of resistance value stability, and polyimide copper-clad boards and heat-resistant epoxy resin copper-clad boards are generally preferred. Next, the formed resistor and circuit are coated with a resist, leaving the terminal portion and the semiconductor mount portion (electrode portion), and then heated and cured. Thereafter, the resistance of the resistor is adjusted to a desired resistance value by trimming. As a result, a HIC circuit board with a resistor is obtained. This state corresponds to a conventional ceramic circuit board with a resistor. Furthermore, if necessary, only the terminal portions, electrode portions, and stitch portions may be plated with gold. Next, the IC is mounted on the tower and gold wire bonding is performed, and then only the gold wire bonded IC portion is sealed using chip coat resin (generally silicone resin), which is also heated and cured. Next, the chip parts are mounted using solder as necessary, then leads are attached to the terminals using solder, and as the final step, the exterior is applied with epoxy resin powder paint.
In this way, HIC with legs can be obtained. In this way, the printed carbon resistor is exposed to heat until the final product is obtained, resulting in deviation from the initial resistance value after trimming, that is, drift. Representative examples of the temperature and time of this thermal step are as follows. Mounting of chip parts 150℃ 0.5 hours Gold wire bonding 150℃ several minutes Heat curing of chip coat resin 100℃ 3 hours Soldering terminal leads 220℃ several seconds Heat curing of exterior powder resin 150℃ 2 hours or more After going through such a heat process 3 for the initial value even after
% stability is required. Lastly, there is a pressure resistance test (conditions: 125°C, 2.3 atm) as a reliability test of resistance value, which requires performance such that the change after 50 hours of treatment is within 3%. It was thought that a carbon resistance paint using an organic resin as a binder that would satisfy all of these very strict performance requirements would be impossible. However, the present inventors found that in the case of a phenolic resin binder alone and in the case of an oil-soluble melamine resin binder alone, the change in resistance value due to heat and moist heat has a positive and negative relationship, and when the two are mixed, they cancel each other out. The present invention was achieved by discovering a completely unthinkable phenomenon in which the change in resistance value approaches zero without limit. Examples will be described below. Example 1 Resol type phenolic resin (Sumilite Resin
PR-51833, manufactured by Sumitomo Durez Co., Ltd.) 50 parts by weight butyl etherified melamine resin (Super Betsukamine L-117-70B, manufactured by Dainippon Ink Co., Ltd.)
40 parts by weight catalyst (Catanit P, manufactured by Nitto Chemical) 4 parts by weight Carbon black (acetylene black)
22 parts by weight of solvent and 10 parts by weight were weighed out and stirred and mixed for 20 minutes using three ink kneading rolls to prepare a paste-like carbon resistance paint. Next, this paste was applied by screen printing onto a previously prepared circuit pattern (glass epoxy board), dried at 120℃ for 20 minutes, and after the solder resist was printed and cured, it was heated and cured at 150℃ for 4 hours. A circuit board with a resistor was created. The resistance value of the printed resistor obtained in this way is 2.19K
It was Ω/□. Next, the processes necessary for hybrid IC assembly, namely curing of adhesive for die bonding, curing of adhesive for bonding, curing of resin for chip coating,
The resistor circuit board was heated under conditions equivalent to curing adhesive for mounting chip components to give it a thermal history, and then soldered and coated with powder to form a resistor network. At this time, the resistance value of the printed resistor is 2.14K
Ω/□, -2.28 compared to before adding thermal history
% change. Next, this test piece was heated to 125°C for 2.3
After being left in a high temperature and humid environment at atmospheric pressure for 32 hours, the resistance value was measured to be 2.18KΩ/□, which was a slight change in resistance value of +1.87% compared to before the pressurization. It showed excellent resistance value stability. Example 2 Resol type phenolic resin 50 parts by weight Butyl etherified melamine resin 20 〃 Catalyst 2 〃 Carbon black 10 〃 Graphite 7 〃 Solvent 16 〃 Using the paste of the above formulation, the method shown in Example 1 was carried out completely. Similarly, a circuit board with a resistor was created. The resistance value of the obtained printed resistor was 34.2KΩ/
It was □. Next, the thermal history was added in the same manner as in Example 1, and the rate of change in resistance was measured -1.90
%, and the rate of change in resistance value after 32 hours of PCT (125°C, 2.3 atm) was +2.14% compared to before the pressure vacuum treatment, indicating excellent resistance value stability. Comparative example (formulation 1) Resol type phenolic resin (PR-51833)
100 parts by weight Carbon black 18 Graphite 6 Solvent 10 (Formulation 2) Butyl etherified melamine resin (L-117-70B)
100 parts by weight catalyst (Catanite P) 11 〃 Carbon black (Furness black)
21 〃 Solvent 16 〃 The resistance value stability of Formulation Examples 1 and 2 was evaluated in exactly the same manner as in the examples, and the results are as shown in Table 1. value

【表】 が変化し、高信頼性即ち、高度の抵抗値安定性を
要求される抵抗回路板として使用に耐えないもの
であつた。
[Table] changed, and it could not withstand use as a resistor circuit board that requires high reliability, that is, a high degree of resistance value stability.

Claims (1)

【特許請求の範囲】[Claims] 1 アンモニア触媒法で得られたレゾール型フエ
ノール樹脂と油溶性メラミン樹脂とが、レゾール
型フエノール樹脂:油溶性メラミン樹脂の混合割
合が10:1〜10:10の範囲で配合された混合ワニ
ス中に、カーボンブラツクおよび/またはグラフ
アイトの微粉末を溶剤を用いて分散させて成るこ
とを特徴とする電気抵抗体用塗料。
1. A resol-type phenolic resin obtained by an ammonia catalyst method and an oil-soluble melamine resin are mixed in a mixed varnish in which the mixing ratio of resol-type phenolic resin:oil-soluble melamine resin is in the range of 10:1 to 10:10. , carbon black and/or graphite fine powder dispersed therein using a solvent.
JP58131045A 1983-07-20 1983-07-20 Paint for electrical resistor Granted JPS6023460A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58131045A JPS6023460A (en) 1983-07-20 1983-07-20 Paint for electrical resistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58131045A JPS6023460A (en) 1983-07-20 1983-07-20 Paint for electrical resistor

Publications (2)

Publication Number Publication Date
JPS6023460A JPS6023460A (en) 1985-02-06
JPS6348914B2 true JPS6348914B2 (en) 1988-10-03

Family

ID=15048723

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58131045A Granted JPS6023460A (en) 1983-07-20 1983-07-20 Paint for electrical resistor

Country Status (1)

Country Link
JP (1) JPS6023460A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62152101A (en) * 1985-12-26 1987-07-07 住友ベークライト株式会社 Paint for electric resistor
JP2646630B2 (en) * 1988-03-09 1997-08-27 東レ株式会社 Color filter
JPH03172370A (en) * 1989-12-01 1991-07-25 Toyo Ink Mfg Co Ltd Coating composition
RU2042694C1 (en) * 1994-11-01 1995-08-27 Товарищество с ограниченной ответственностью "ТИКО" Conducting dye

Also Published As

Publication number Publication date
JPS6023460A (en) 1985-02-06

Similar Documents

Publication Publication Date Title
KR100377309B1 (en) An Improved Method To Embed Passive Components
JP2011510139A (en) Conductive adhesive
KR100678533B1 (en) Conductive powder and method for preparing the same
JP5228921B2 (en) Conductive paste
JPS6348914B2 (en)
JP2009070650A (en) Functional conductive coating, its manufacturing method, and printed wiring board
JPS6248001A (en) Manufacture of electric resistance element
KR100795571B1 (en) Paste for thick-film resistor, manufacturing method thereof and thick-film resistor
JPH0461703A (en) Electroconductive paste for printing
JPH07312302A (en) Chip-like electronic part
JP2000082332A (en) Conductive paste composition for via filling
JPH01159908A (en) Thermosetting silver paste composition with excellent heat resistance
JPH0864469A (en) Electrode material and chiplike electronic component using the same
KR100908609B1 (en) Thermosetting thick film resistor paste, manufacturing method thereof and thick film resistor
JPH01275622A (en) Epoxy resin composition
JPH0238459A (en) Composition suited for organic thick film resistance element
JPH11224532A (en) Conductive copper paste composition
RU2043667C1 (en) Conductor paste
JPS62147701A (en) Carbon system resistance paste
JPS60130495A (en) Conductive paste
KR100366284B1 (en) Silver-copper paste composition for filling through hole of printed circuit board
KR101501488B1 (en) Paste for Thick-film Resistor and Method thereof
JPH02163150A (en) Electrically conductive paste
JPH0339536B2 (en)
JPH0218591B2 (en)