JPS62147701A - Carbon system resistance paste - Google Patents

Carbon system resistance paste

Info

Publication number
JPS62147701A
JPS62147701A JP60287786A JP28778685A JPS62147701A JP S62147701 A JPS62147701 A JP S62147701A JP 60287786 A JP60287786 A JP 60287786A JP 28778685 A JP28778685 A JP 28778685A JP S62147701 A JPS62147701 A JP S62147701A
Authority
JP
Japan
Prior art keywords
resin
resistance
carbon
paste
parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60287786A
Other languages
Japanese (ja)
Other versions
JPH0567041B2 (en
Inventor
木口屋 幸雄
諸田 英雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Cosmos Electric Co Ltd
Tokyo Kosumosu Denki KK
Original Assignee
Tokyo Cosmos Electric Co Ltd
Tokyo Kosumosu Denki KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Cosmos Electric Co Ltd, Tokyo Kosumosu Denki KK filed Critical Tokyo Cosmos Electric Co Ltd
Priority to JP60287786A priority Critical patent/JPS62147701A/en
Publication of JPS62147701A publication Critical patent/JPS62147701A/en
Publication of JPH0567041B2 publication Critical patent/JPH0567041B2/ja
Granted legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 ビ) 産業上の利用分野 本発明は、ハイプリ、ドICに使用される印刷抵抗回路
板に関し、特にハンダリフローによシミ子部品を搭載す
る為の印刷抵抗回路板に関するものである。
Detailed Description of the Invention B) Industrial Field of Application The present invention relates to a printed resistor circuit board used in high-performance ICs, and more particularly to a printed resistor circuit board for mounting shim parts by solder reflow. It is something.

(ロ) 従来の技術 近年、特に軽薄短小化に向けて実装密度の高いハイブリ
ッドICが要望されてきており、そのために、抵抗体は
チップ搭載方式でなく基板上に抵抗ペーストをスクリー
ン印刷後、焼成して形成させる方式が進められてきてい
る。ノ・イプリ、ド■Cは用途によシ異なるが、通常セ
ラミンク基板が多く用いられ、この基板上にグレーズ系
ペーストを用いて電極、抵抗体等を印刷、焼成した後、
電子部品を搭載している。しかしながら、このセラミッ
ク系ハイブリッドICは高価なグレーズ系ペーストを使
用していることと、これを焼成するために800℃以上
の高温を要する為、製造原価が高くなるばかりでなく、
実装密度をより高くするには両面実装が不可欠であるが
、セラミンク基板はスルーホール用の多数の孔明は加工
が難しく、且つ孔明けされた基板は強度が低下すること
及び破損し易いという欠点を有している。従って最近で
は、この分野でセラミックに代わって紙フェノールやガ
ラスエポキン樹脂基板等の有機基板によるハイブリッド
ICが要望されてきている。この方法は、銅張シ樹脂積
層板のエツチング加工法、又は絶縁基板にフルアディテ
ィブ法等で電極回路を形成させ、その電極間に炭素系抵
抗ペーストを印刷した後、焼成して抵抗体を形成させる
ものである。他方、別の電極間には、チップコンデンサ
やトランジスタ等の電子部品を搭載してハイブリッドI
Cにするものである。従って、この場合に使用される炭
素系抵抗ペーストは、電気的特性に優れていることはも
ちろん、印刷性に優れていると共にハンダリフローの高
温に耐え得るものでなければならない。これまでに炭素
系抵抗ペーストの物性改良を目的とした多くの研究が行
なわれてきた。例えば、フェノール樹脂に環状脂肪族エ
ポキシ樹脂を混入したものを結合剤とした抵抗体やビス
フェノールA−ホルムアルデヒド縮合体のアクリル酸エ
ステル溶液と導電性粒子とからなる抵抗ペーストを電子
線放射により硬化させた抵抗体は、耐熱性、耐湿性に優
れているし、又エポキシ変性したポリイミド系樹脂を結
合剤とした抵抗体は耐熱性に優れていることが知られて
いる。更に又、レゾール型フェノール系樹脂とアミン系
樹脂との二成分からなる結合剤を用いた抵抗体は、プレ
ッシャークツカーテスト後の抵抗値変化が小さいと言わ
れている。しかしながら、従来技術により得られる抵抗
ペーストをハイブリッドIC用印刷抵抗回路板に使用し
ても、ハンダリフロー後の抵抗値変化が大きく、又耐熱
性や耐湿性が十分でないばかりか、スクリーン印刷時に
抵抗ペーストのニジミやカスレを生じる等、印刷性に問
題があるので、高性能、高信頼性が益々要望されてきて
いるハイプリ、ドIC分野での実用に際して十分に満足
できるまでには至っていない。
(b) Conventional technology In recent years, there has been a demand for hybrid ICs with high packaging density, especially in order to make them lighter, thinner, shorter, and smaller.For this purpose, resistors are manufactured by screen-printing a resistor paste on a substrate and then baking it instead of using a chip-mounting method. A method in which the material is formed by Ceramink substrates are usually used, and electrodes, resistors, etc. are printed on this substrate using a glaze paste, and then baked.
It is equipped with electronic parts. However, this ceramic hybrid IC uses an expensive glaze paste and requires a high temperature of 800°C or more to bake it, which not only increases manufacturing costs, but also
Double-sided mounting is essential to achieve higher packaging density, but ceramic substrates have the disadvantage that the large number of holes for through-holes is difficult to process, and the board with holes decreases in strength and is easily damaged. have. Therefore, recently, there has been a demand in this field for hybrid ICs using organic substrates such as paper phenol or glass epoxy resin substrates in place of ceramic substrates. In this method, an electrode circuit is formed by etching a copper-clad resin laminate or by a full additive method on an insulating substrate, and a carbon-based resistance paste is printed between the electrodes, and then fired to form a resistor. It is something that makes you On the other hand, electronic components such as chip capacitors and transistors are mounted between other electrodes to create a hybrid I.
C. Therefore, the carbon-based resistance paste used in this case must not only have excellent electrical properties but also printability and be able to withstand the high temperatures of solder reflow. Many studies have been conducted to date to improve the physical properties of carbon-based resistance pastes. For example, a resistor using a phenolic resin mixed with a cycloaliphatic epoxy resin as a binder, or a resistor paste consisting of an acrylic acid ester solution of a bisphenol A-formaldehyde condensate and conductive particles is cured by electron beam radiation. Resistors have excellent heat resistance and moisture resistance, and it is known that resistors using epoxy-modified polyimide resin as a binder have excellent heat resistance. Furthermore, it is said that a resistor using a two-component binder consisting of a resol type phenolic resin and an amine resin has a small change in resistance value after a pressure tester test. However, even if the resistor paste obtained by the conventional technology is used for printed resistor circuit boards for hybrid ICs, the resistance value changes significantly after solder reflow, and not only does it have insufficient heat resistance and moisture resistance, but also the resistor paste is used during screen printing. Since there are problems with printability, such as bleeding and fading, it has not yet reached the point where it is fully satisfactory for practical use in the field of high-performance ICs and high-performance ICs, where high performance and high reliability are increasingly required.

0号 発明の目的 ′ 本発明の目的は、有機基板を用いた印刷抵抗回路板
の製造に際して、従来の炭素系抵抗体の欠点である耐熱
性、耐湿性等を改善すると共にスクリーン印刷での優れ
た印刷性を有する炭素系抵抗ペーストを提供することに
ある。
No. 0 Object of the Invention' The object of the present invention is to improve heat resistance, moisture resistance, etc., which are the shortcomings of conventional carbon-based resistors, and to improve the advantages of screen printing when manufacturing printed resistor circuit boards using organic substrates. An object of the present invention is to provide a carbon-based resistance paste having excellent printability.

に) 発明の構成 上記目的に鑑み、本発明者らは、結合剤としてエポキシ
樹脂50〜75%、メラミン樹脂15〜30%、クレゾ
ール樹脂10〜20%からなる三成分系初期縮重合混合
物を使用し、これにカーボンブラック、黒鉛等の導電性
粒子とポリ四沸化エチレン、空化硼素等の有機や無機の
充てん剤とを混入して高沸点有機溶剤と共にロールミル
等で混線、分散することにより、電気的特性を損うこと
なく、極めて印刷性に優れた炭素系抵抗ペーストが得ら
れることを見い出し本発明に到達したものである。
B) Structure of the Invention In view of the above object, the present inventors used a three-component initial condensation polymerization mixture consisting of 50 to 75% epoxy resin, 15 to 30% melamine resin, and 10 to 20% cresol resin as a binder. Then, by mixing conductive particles such as carbon black or graphite with organic or inorganic fillers such as polytetrafluoroethylene or boron oxide, and mixing and dispersing them with a high boiling point organic solvent using a roll mill etc. The inventors have discovered that a carbon-based resistance paste with extremely excellent printability can be obtained without impairing electrical characteristics, and have arrived at the present invention.

本発明による三成分系樹脂溶液は、炭素系抵抗ペースト
の製造に極めて適した粘弾性を有している為、スクリー
ン印刷時のニジミやカスレ等がなく、レベリングが良好
であシ、従来のものに比して印刷性が極めて優れている
。又、この炭素系抵抗ペーストを絶縁基板上に印刷後、
焼成することにより共縮重合反応、架橋反応等、t≠廓
反応過程を経て非常に複雑な三次元構造をもつ硬化物が
生成(ホ) 実施例の説明 次に実施例により本発明を説明する。
The three-component resin solution according to the present invention has viscoelasticity that is extremely suitable for the production of carbon-based resistance paste, so there is no bleeding or fading during screen printing, and the leveling is good, compared to the conventional one. Printability is extremely superior compared to . Also, after printing this carbon-based resistance paste on an insulating substrate,
By firing, a cured product with a very complex three-dimensional structure is produced through a t≠circle reaction process such as a cocondensation polymerization reaction and a crosslinking reaction (e).Explanation of Examples Next, the present invention will be explained with reference to Examples. .

(実施例1) 本発明による炭素系抵抗ペーストの組成割合(重量比)
の−例を以下に示す。
(Example 1) Composition ratio (weight ratio) of carbon-based resistance paste according to the present invention
An example is shown below.

■ エポキシ樹脂=55部 (エピコート1007、シェル化学) ■ ブチルエーテル化メラミン樹脂=30部(ニーパン
208E−60、三井東圧化学)■ クレゾール樹脂−
15部 (PL−21109、群栄化学) ■ 触媒:4部 ■〜■を混合して結合剤とし、この中にカーボンブラッ
クを17.9部と有機・無機光てん剤: 60.7部を
混入させ、ブチルカルピトールと共にロールミル等で混
練、分散させて炭素系抵抗ペーストを製造した。得られ
た抵抗ペーストの面積抵抗値は10にΩ/口でアシ、こ
れをエツチング加工により任意の回路電極を形成した銅
張りガラスエポキン慎1脂積層板上に印刷したところ、
レベリングが良好であり、且つ印刷のニジミやカスレが
なく極めて印刷性に優れていた。次に焼成によって抵抗
体を形成せしめ、更に部品搭載部を残して絶縁レジスト
を被覆させてハイブリッドIC用印刷抵抗回路板を得た
。この印刷抵抗回路板にICやチップ部品を搭載するた
めにハンダリフローを行なったところ、その抵抗値変化
は〜1.5%と小さかった〇又、+25℃を基準として
一30〜+85℃の温度範囲における抵抗温度係数は−
250ppm/’cであシ、85°C,1000時間の
耐熱試験後の抵抗値変化は−4,5%、・10°C19
0〜95%L H,1000時間の耐湿試験後の抵抗値
変化は+3%であり、いずれも値が小さく優れた電気的
特性を示した。
■ Epoxy resin = 55 parts (Epicote 1007, Shell Chemical) ■ Butyl etherified melamine resin = 30 parts (Niepan 208E-60, Mitsui Toatsu Chemical) ■ Cresol resin -
15 parts (PL-21109, Gunei Chemical) ■ Catalyst: 4 parts ■ ~ ■ are mixed to form a binder, and in this, 17.9 parts of carbon black and 60.7 parts of organic/inorganic photonic agent are mixed. A carbon-based resistance paste was produced by mixing and dispersing the mixture with butyl calpitol in a roll mill or the like. The obtained resistor paste had a sheet resistance value of 10 Ω/hole, and was printed on a copper-clad glass Epokin resin laminate on which arbitrary circuit electrodes were formed by etching.
The leveling was good, and there was no bleeding or fading in the print, and the printability was extremely excellent. Next, a resistor was formed by firing, and an insulation resist was coated leaving the component mounting area, thereby obtaining a printed resistor circuit board for a hybrid IC. When we performed solder reflow to mount ICs and chip components on this printed resistor circuit board, the resistance value change was as small as ~1.5%. Also, the temperature range from -30 to +85℃ with +25℃ as the standard The temperature coefficient of resistance in the range is −
At 250ppm/'c, resistance change after heat resistance test at 85°C for 1000 hours is -4.5%, 10°C19
The change in resistance value after a 1000 hour humidity test at 0 to 95% LH was +3%, and both values were small and showed excellent electrical properties.

(実施例2) 実施例1と同じ製造方法で組成割合(M量比)を以下の
ようにする。
(Example 2) Using the same manufacturing method as in Example 1, the composition ratio (M amount ratio) is set as follows.

■ エポキシ樹脂=60部 ■ ブチルエーテル化メラミン樹脂:30部■ クレゾ
ール樹脂:20部 ■ 触媒:4部 ■〜■を混合して結合剤とし、この中にカーボンブラッ
ク: 19.6部と黒鉛:5.4部と有様・無機光てん
剤: 53.7部を混入させ、ブチルカルピトールと共
にロールミルで混練、分散させて炭素系抵抗ペーストを
製造した。得られた抵抗ペーストの面積抵抗値はIKΩ
/口であり、これを用いて実施例1と全く同様な方法で
印刷抵抗回路板を製作したところ、印刷時のニジミやカ
スレ等がなく印刷性が優れていた。得られた印刷抵抗回
路板のハンダリフロー後の抵抗値変化は一1チと小さが
った。
■ Epoxy resin = 60 parts ■ Butyl etherified melamine resin: 30 parts ■ Cresol resin: 20 parts ■ Catalyst: 4 parts ■ ~ ■ are mixed to make a binder, and in this, carbon black: 19.6 parts and graphite: 5 .4 parts and 53.7 parts of an inorganic photonic agent were mixed therein and kneaded and dispersed together with butylcarpitol in a roll mill to produce a carbon-based resistance paste. The area resistance value of the obtained resistance paste is IKΩ
When a printed resistor circuit board was manufactured using this in exactly the same manner as in Example 1, there was no bleeding or fading during printing, and the printability was excellent. The change in resistance value of the obtained printed resistor circuit board after solder reflow was as small as 11 inches.

又、−30〜+85°Cにおける抵抗温度係数は、−2
00ppm7℃であり、85°c、1oo−o時間の耐
熱試験後の抵抗値変化は−3,5%、40″C,’90
〜95係R,H,1000時間の耐湿試験後の抵抗値変
化は十2%であシ、いずれも値が小さく優れた電気的特
性を示した。
Also, the temperature coefficient of resistance at -30 to +85°C is -2
00ppm 7℃, resistance value change after heat resistance test of 85℃, 1oo-o hour is -3.5%, 40''C, '90
The change in resistance value after the 1,000 hour humidity test was 12%, both of which were small and showed excellent electrical properties.

(比較例) 比較例として、結合剤にエポキシ樹脂とメラミン樹脂と
の二成分を用いた場合の組成割合の一例(重量比)を以
下に示す。
(Comparative Example) As a comparative example, an example of the composition ratio (weight ratio) when two components of an epoxy resin and a melamine resin are used as a binder is shown below.

■ エポキシ樹脂ニア0部 ■ ブチルエーテル化メラミン樹脂:3部部■ 触媒:
4部 ■〜■を混合して結合剤とし、この中に実施例1と同様
にカーボン5プラック:17.9部と有機・無機光てん
剤: 60.7部を混入させ、ブチルカルピトールと共
にロールミルで混線、分散させて炭素系抵抗ペーストを
製造した。得られた抵抗ペーストの面積抵抗値は8にΩ
/口であシ、これを用いて実施例1と全く同様な方法で
印刷抵抗回路板を製作すべく印刷、焼成を行なったとこ
ろ、印刷時にニジミが生じて精密な抵抗パターンが得ら
れなかった。得られた印刷抵抗回路板について実施例1
と同様な試験を行なったところ、ハンダリフロー後の抵
抗値変化は−1,6%、−30〜+85℃における抵抗
温度係数は−300ppm7℃、85°C,1000時
間の耐熱試験後の抵抗値変化は−・1.8%、40”C
190〜95 % rL、 I−1,1,000時間の
耐湿試験後の抵抗値変化は+3.2%であり、いずれも
実施例1に比して値が大きかった。
■ Epoxy resin 0 parts ■ Butyl etherified melamine resin: 3 parts ■ Catalyst:
4 parts ■ to ■ are mixed to form a binder, and in the same manner as in Example 1, 17.9 parts of carbon 5 plaque and 60.7 parts of organic/inorganic photonic agent are mixed, and mixed with butyl calpitol. A carbon-based resistance paste was produced by mixing and dispersing in a roll mill. The area resistance value of the obtained resistor paste is 8Ω
When I printed and fired this to produce a printed resistance circuit board in exactly the same manner as in Example 1, bleeding occurred during printing and a precise resistance pattern could not be obtained. . Example 1 for the obtained printed resistor circuit board
When a similar test was conducted, the resistance value change after solder reflow was -1.6%, and the temperature coefficient of resistance at -30 to +85°C was -300 ppm.The resistance value after a heat resistance test at 7°C and 85°C for 1000 hours. Change is -・1.8%, 40"C
The resistance value change after the 1,000 hour humidity test at 190 to 95% rL, I-1, was +3.2%, both of which were larger than in Example 1.

(へ)発明の効果 上記の実施例から判るように本発明による炭素系抵抗ペ
ーストは、エポキシ樹脂、メラミン樹脂、クレゾール樹
脂からなる三成分系初期縮重合物を結合剤として使用す
ることにより、従来の耐熱抵抗ペーストの印刷時におけ
る流動性、腰切れ、レベリング等印刷適性に欠けている
点を大幅に改良したものであって、絶縁基板上に印刷す
ることにより、ニジミやカスレ等を生じない膜厚ムラが
小さい精密抵抗パターンが形成できる。従って、本発明
による炭素系抵抗ペーストを用いて得られた印刷抵抗回
路板の抵抗値は非常に安定しており、例えばハイブリッ
ドIC製造工程中のハンダリフロー後の抵抗値変化は極
めて小さく、且つ耐熱性、耐湿性等電気的特性に優れた
精密度の高いものが容易に製造できる。又、優れた電気
的特性を有する炭素系抵抗ネットワークが安価に製造で
きる等、産業上の効果は大きい。
(F) Effects of the Invention As can be seen from the above examples, the carbon-based resistance paste of the present invention can be manufactured by using a three-component initial condensation polymer consisting of an epoxy resin, a melamine resin, and a cresol resin as a binder. This is a film that has significantly improved the lack of printing suitability such as flowability, stiffness, and leveling when printing the heat-resistant resistance paste of , and by printing on an insulating substrate, it is a film that does not cause bleeding or fading. Precise resistance patterns with small thickness unevenness can be formed. Therefore, the resistance value of the printed resistance circuit board obtained using the carbon-based resistance paste according to the present invention is very stable, and the change in resistance value after solder reflow during the hybrid IC manufacturing process is extremely small, and it is heat resistant. High-precision products with excellent electrical properties such as heat resistance and moisture resistance can be easily produced. In addition, the present invention has great industrial effects, such as the ability to manufacture carbon-based resistance networks with excellent electrical characteristics at low cost.

Claims (2)

【特許請求の範囲】[Claims] (1)カーボンブラック、黒鉛等の導電性粒子とポリ四
沸化エチレン、窒化硼素等の有機や無機の充てん剤等を
主成分とし、平均分子量が900〜2900のビスフェ
ノールA型エポキシ樹脂とブチルエーテル化メラミン樹
脂とメタクレゾール樹脂又はメタクレゾールとパラクレ
ゾールとの混合クレゾール樹脂とからなる三成分系初期
縮重合物を結合剤として使用したことを特徴とする炭素
系抵抗ペースト。
(1) Bisphenol A type epoxy resin with an average molecular weight of 900 to 2900 and butyl etherification, whose main components are conductive particles such as carbon black and graphite, and organic or inorganic fillers such as polytetrafluoroethylene and boron nitride. A carbon-based resistance paste characterized in that a three-component initial condensation polymer consisting of a melamine resin and a metacresol resin or a mixed cresol resin of metacresol and para-cresol is used as a binder.
(2)三成分系結合剤の重量混合比がエポキシ樹脂50
〜75%、メラミン樹脂15〜30%、クレゾール樹脂
10〜20%の範囲内である特許請求の範囲第(1)項
記載の炭素系抵抗ペースト。
(2) The weight mixing ratio of the three-component binder is epoxy resin 50
75%, melamine resin 15-30%, and cresol resin 10-20%.
JP60287786A 1985-12-23 1985-12-23 Carbon system resistance paste Granted JPS62147701A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60287786A JPS62147701A (en) 1985-12-23 1985-12-23 Carbon system resistance paste

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60287786A JPS62147701A (en) 1985-12-23 1985-12-23 Carbon system resistance paste

Publications (2)

Publication Number Publication Date
JPS62147701A true JPS62147701A (en) 1987-07-01
JPH0567041B2 JPH0567041B2 (en) 1993-09-24

Family

ID=17721721

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60287786A Granted JPS62147701A (en) 1985-12-23 1985-12-23 Carbon system resistance paste

Country Status (1)

Country Link
JP (1) JPS62147701A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007165709A (en) * 2005-12-15 2007-06-28 Hitachi Chem Co Ltd Liquid composition, resistor film and forming method thereof, resistive element, and wiring board
JP2007165708A (en) * 2005-12-15 2007-06-28 Hitachi Chem Co Ltd Print resistor, print ink, and wiring board

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007165709A (en) * 2005-12-15 2007-06-28 Hitachi Chem Co Ltd Liquid composition, resistor film and forming method thereof, resistive element, and wiring board
JP2007165708A (en) * 2005-12-15 2007-06-28 Hitachi Chem Co Ltd Print resistor, print ink, and wiring board

Also Published As

Publication number Publication date
JPH0567041B2 (en) 1993-09-24

Similar Documents

Publication Publication Date Title
KR100377309B1 (en) An Improved Method To Embed Passive Components
EP1553131A1 (en) Compositions with polymers for advanced materials
KR101186525B1 (en) Coating composition having excellent insulation and heat dissipation characteristics and printed circuit board using of the same
CN101798439A (en) Halogen-free high-thermal-conductivity resin composition and conductive adhesive film made from same
JP3142465B2 (en) Conductive copper paste composition
JPS62147701A (en) Carbon system resistance paste
CN115124880A (en) Insulating ink for packaging semiconductor passive element, preparation method and application
KR100750331B1 (en) Thermosetting carbon resistance paste composition
JPS60103075A (en) Composition for ceramic substrate
JPS6348914B2 (en)
JPH03293701A (en) Paste composition for organic thick film resistor
JPH06139817A (en) Conductive silver paste composition
KR100366284B1 (en) Silver-copper paste composition for filling through hole of printed circuit board
JP2835451B2 (en) Carbon resin resistance paste
JPS63122770A (en) Resist ink composition
JPS62162312A (en) Manufacture of printed resistance circuit board
JPH05194895A (en) Gold ink composition
JPH0238459A (en) Composition suited for organic thick film resistance element
JP2543167B2 (en) Conductive resin composition
JPH0619073B2 (en) Electrical resistance paint
JPH0122313B2 (en)
JPS6110201A (en) Resistance circuit board
KR101501488B1 (en) Paste for Thick-film Resistor and Method thereof
KR100955291B1 (en) Though hole paste composition for pcb and method for production thereof
JPH0318674B2 (en)