JPS6110201A - Resistance circuit board - Google Patents

Resistance circuit board

Info

Publication number
JPS6110201A
JPS6110201A JP59130058A JP13005884A JPS6110201A JP S6110201 A JPS6110201 A JP S6110201A JP 59130058 A JP59130058 A JP 59130058A JP 13005884 A JP13005884 A JP 13005884A JP S6110201 A JPS6110201 A JP S6110201A
Authority
JP
Japan
Prior art keywords
circuit board
resistance
resistor
resin
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59130058A
Other languages
Japanese (ja)
Inventor
諸田 英雄
正則 江口
木口屋 幸雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Cosmos Electric Co Ltd
Original Assignee
Tokyo Cosmos Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Cosmos Electric Co Ltd filed Critical Tokyo Cosmos Electric Co Ltd
Priority to JP59130058A priority Critical patent/JPS6110201A/en
Publication of JPS6110201A publication Critical patent/JPS6110201A/en
Pending legal-status Critical Current

Links

Landscapes

  • Parts Printed On Printed Circuit Boards (AREA)
  • Non-Adjustable Resistors (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は端子と電極をインサート成形したポリフェニレ
ンサルファイド基板を用い、回路には炭素系抵抗層を印
刷により形成させた耐湿性並びに耐熱特性の優れた抵抗
回路板に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a resistive circuit board that uses a polyphenylene sulfide substrate on which terminals and electrodes are insert-molded, and has a carbon-based resistive layer formed on the circuit by printing, and has excellent moisture resistance and heat resistance properties. be.

従来から小型のノ・イブリッドICや抵抗アレー等グレ
ーズ系抵抗体はセラミック基板上にグレーズ抵抗ペース
トを所定のパターンに印刷し800〜950Cの高温で
焼成させて製造されている。これ糸 らグレーズ抵抗体は耐湿性や耐熱性に優れた特性△ を有しているが、高価な抵抗ペーストやセラミ。
Conventionally, glazed resistors such as small hybrid ICs and resistor arrays have been manufactured by printing a glazed resistor paste in a predetermined pattern on a ceramic substrate and firing it at a high temperature of 800 to 950C. Glaze resistors such as these have excellent moisture resistance and heat resistance, but they are expensive resistance pastes and ceramics.

り基板を必要とするし又850C付近の高温で焼成しな
ければならない為、炭素抵抗体に比して製造原価が高、
くつくばかりでなく、端子材は等の作業が複雑で生産性
が低い等の欠点を有している。他方樹脂積層板上に炭素
系抵抗層を形成させた抵抗体は、耐湿特性、温度特性、
・・ンダ耐熱性等の緒特性において、セラミ、り基板を
用いたグレーズ系抵抗体に比してはるかに劣っているし
、又特に紙フェノールやガラス繊維エポキシ樹脂積層板
ではセラミ、り基板に比してハンダ処理工程において、
抵抗値変化が大きく又基板が変形したり、端末不良が起
きたりする。従って信頼性や耐湿、耐熱特性に優れ、且
つ安価な抵抗回路板の出現が強く要望されている。
Since it requires a separate substrate and must be fired at a high temperature around 850C, the manufacturing cost is higher than that of carbon resistors.
In addition to being sticky, terminal materials also have drawbacks such as complicated work and low productivity. On the other hand, a resistor with a carbon-based resistance layer formed on a resin laminate has excellent moisture resistance, temperature characteristics,
・・In terms of heat resistance and other properties, it is far inferior to glazed resistors using ceramic or resin substrates, and especially paper phenol or glass fiber epoxy resin laminates are inferior to ceramic or resin substrates. In contrast, in the soldering process,
The resistance value changes greatly, and the board may be deformed or terminal defects may occur. Therefore, there is a strong demand for an inexpensive resistor circuit board that has excellent reliability, moisture resistance, and heat resistance.

本発明は上記問題点を解決し極めて優れた耐湿、耐熱性
を有し、且つ信頼性の高い抵抗回路板を提供するもので
ある。
The present invention solves the above-mentioned problems and provides a resistor circuit board that has extremely excellent moisture resistance and heat resistance, and is highly reliable.

本発明者らは優れた抵抗回路板を得るには抵抗体の基板
の組成と抵抗層の結合剤の組成との間に極めて密接な関
係があることに留意し、金属端子をインサートしたポリ
フェニレンサルファイド成形基板と結合剤がジアリルイ
ソ7タレート樹脂の炭素抵抗体を用いて研究を進めた結
果、従来の炭素抵抗体に比して電気的緒特性並びに電極
部の信頼性が大幅に改良されることを見出し本発明に到
達したものである。
The present inventors noted that in order to obtain an excellent resistive circuit board, there is a very close relationship between the composition of the resistor substrate and the composition of the binder of the resistive layer. As a result of research using a molded substrate and a carbon resistor whose binder is diallyl iso-7-talate resin, it was found that the electrical characteristics and reliability of the electrode section were significantly improved compared to conventional carbon resistors. Heading This is what has led to the present invention.

本発明は、まず金属端子がインサートされた高結晶性ポ
リフェニレンサルファイド樹脂成形板を基板とする。こ
のポリフェニレンサルファイド樹脂は重合度が低く流動
性が大きいのでガラス繊維やミネラルフィラー等各種充
てん剤の含有物が使用θれる。又、極めて結晶性であっ
て成形の際、金型温度が低いと結晶化度も低く諸物愛・
が劣る高次にジアリルイソフタレートプレポリマーをブ
チルカルピトールに溶解しそれに触媒として、ターシャ
リ−ブチルパーベンゾエートを添加したものに炭素粒子
や窒化硼素、酸化チタン等の充てん剤をまぜロールミル
でよく混練することにより抵抗ペーストが得られる。こ
の際、ジアリルイノフタレートプレポリマーは分別沈澱
により低、重合物10〜3 oAり除去したものを使用
することが好ましい。この抵抗ペーストを前記絶縁基板
上に印刷し、焼成することにより、ジアリルイソフタレ
ートプレポリマーが付加重合によってβポリマーからγ
ポリマーに変化し三次元構造の強固な樹脂に硬化すると
同時に、他方基板のポリフェニレンサルノアイドも加熱
工程で結晶化がより進行し高温で一部架橋して緻密な三
次元構造にrくなる。このような反応が加熱工程中に抵
抗層と基板で同時に起り緻密な抵抗体が形成される結果
、耐湿、耐熱両特性の優れた抵抗体が得られるものと考
えられる。
In the present invention, first, a highly crystalline polyphenylene sulfide resin molded plate into which metal terminals are inserted is used as a substrate. Since this polyphenylene sulfide resin has a low degree of polymerization and high fluidity, it can be used containing various fillers such as glass fiber and mineral fillers. In addition, it is extremely crystalline, and during molding, if the mold temperature is low, the degree of crystallinity is low, making it difficult to
A high-order diallylisophthalate prepolymer with inferior properties is dissolved in butyl carpitol, and tertiary-butyl perbenzoate is added thereto as a catalyst, and fillers such as carbon particles, boron nitride, and titanium oxide are thoroughly kneaded in a mixing roll mill. A resistive paste is thereby obtained. In this case, it is preferable to use a diallylinophthalate prepolymer that has been removed by fractional precipitation to a low weight of 10 to 3 oA. By printing this resistance paste on the insulating substrate and baking it, β polymer is converted to γ by addition polymerization of diallylisophthalate prepolymer.
At the same time as it changes into a polymer and hardens into a strong resin with a three-dimensional structure, the polyphenylene sarnoide on the other substrate also progresses in crystallization during the heating process and partially crosslinks at high temperatures to form a dense three-dimensional structure. It is thought that such a reaction occurs simultaneously in the resistive layer and the substrate during the heating process, forming a dense resistor, resulting in a resistor with excellent moisture resistance and heat resistance.

以下、本発明の実施例を図面と共に説明する。Embodiments of the present invention will be described below with reference to the drawings.

まず、第1図に示すようなプレス加工により成形された
所定数の金属端子フレームを第2図に示すようなガラス
繊維含有ポリフェニレンサルファイド樹脂(1)に埋込
み、成形温度310 C±10C1金型温度140r:
±1Orで射出成形して絶縁基板とする。(2)は金属
端子のリード部分、(3)は金属端子の先端部分を基板
の表面に露出させた回路の取り出し電極部である。次に
低重合物25チを分別沈澱により除去したジアリルイソ
フタレート樹IIW(A)をプチルカルビト”−ルに溶
解し、触媒と゛してターシャリ−ブチルパーベンゾエー
トを添加したものにカーボンブラック(B)とミネラル
フィラー(C)を混入し、ロールミルで混練した抵抗ペ
ースト(組成割合はA:57%、B:1)%、C:32
チ)を前記絶縁基板(1)上に第3図に示すように所望
の回路パターンに印刷、焼成して炭素抵抗体(6)を形
成せしめ、取出し電極部(3)に銀導電体(5)を介し
て接続しその上に保護コートを施しだ。この抵抗体の面
積抵抗は3にΩ/口であった。尚、第3図及び第4図に
示す如く必要に応じて金属片4)を基板成形時に埋込ん
だり又、スルーホールによって導通加工することKより
、絶縁基板(1)の裏面にも形成された回路と接続させ
て高密度化をはかることもできる。
First, a predetermined number of metal terminal frames formed by press working as shown in Fig. 1 are embedded in glass fiber-containing polyphenylene sulfide resin (1) as shown in Fig. 2, and the molding temperature is 310 C ± 10 C1 mold temperature. 140r:
An insulating substrate is made by injection molding at ±1Or. (2) is the lead portion of the metal terminal, and (3) is the lead-out electrode portion of the circuit in which the tip portion of the metal terminal is exposed on the surface of the substrate. Next, diallyl isophthalate resin IIW (A) from which 25 units of low polymer were removed by fractional precipitation was dissolved in butyl carbitol, and carbon black (B) was added to the mixture to which tert-butyl perbenzoate was added as a catalyst. Resistance paste mixed with mineral filler (C) and kneaded with a roll mill (composition ratio A: 57%, B: 1)%, C: 32%
H) is printed in a desired circuit pattern on the insulating substrate (1) as shown in FIG. 3 and fired to form a carbon resistor (6), and a silver conductor (5 ) and a protective coat is applied over it. The sheet resistance of this resistor was 3Ω/hole. As shown in FIGS. 3 and 4, if necessary, metal pieces 4) may be embedded in the substrate during molding, or conductive processing may be performed using through holes, so that metal pieces 4) can also be formed on the back surface of the insulating substrate (1). It is also possible to increase the density by connecting it to other circuits.

以上のように製造された抵抗回路板はその媒末の信頼性
が非常に高く、且つi4湿特性は、周囲温度40C1相
対湿度90〜95%で72時間後の抵抗値変化率が−2
,7%、温度特性は一30t?で一1)0ppm/℃、
85Uで一40ppm/℃、半田耐熱性は半田リフロー
炉(ピーク温度220〜230tT、20秒間)K1回
流した時の抵抗値変化率は−0,8チ12回流した時は
−1,3チであった。これらの値はグレーズ系抵抗体の
電気的特性に近く、従来の炭素抵抗回路板では全く得ら
れなかったものである。又、紙フェノール樹脂積層板上
にエボキンーメラミン樹脂を結合剤とした炭素抵抗体は
、耐湿特性が非常に悪く、半田リフロー試験を行うと基
板がふくれて変形し抵抗値変化とそのばらつきが大きく
て実用に供し得なかった。又、ガラス繊維入りエポキシ
樹脂積層板を基板とした場合は、半田リフロー試験を行
うと基板の変色がひどく、抵抗値変化も6チと大きかっ
た。
The resistance circuit board manufactured as described above has very high reliability as a medium, and has i4 humidity characteristics such that the resistance value change rate after 72 hours is -2 at an ambient temperature of 40C and a relative humidity of 90 to 95%.
, 7%, temperature characteristics -30t? 1) 0 ppm/℃,
-40ppm/℃ for 85U, solder heat resistance is solder reflow oven (peak temperature 220-230tT, 20 seconds) When flowing K once, the resistance change rate is -0.8 inches When flowing 12 times, it is -1.3 inches there were. These values are close to the electrical characteristics of a glaze-based resistor, and are completely unobtainable with conventional carbon resistance circuit boards. In addition, a carbon resistor made of Evoquine-melamine resin as a binder on a paper phenolic resin laminate has extremely poor moisture resistance, and when a solder reflow test is performed, the board swells and deforms, resulting in changes in resistance and variations in resistance. It was too large to be put to practical use. Further, when a glass fiber-containing epoxy resin laminate was used as a substrate, the solder reflow test showed severe discoloration of the substrate and a large change in resistance value of 6 inches.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図より第4囲域で、いずれも本発明に係わり、第1
図は金属端子のフレーム、第2図は金属端子を埋込み一
体成形した基板、第3図は本発明の実施例を示す抵抗回
路板の斜視図である。第4図は抵抗回路板の側断面図で
拡大部分図である。 1けポリフェニレンサルファイド絶縁基板2は金属端子 3は金属端子の先端部で回路の取出し電極部4は基板の
表裏両面の回路を接続する金属片5は銀導電部 6は炭素抵抗体部
From FIG. 1, the fourth area is related to the present invention, and the first
FIG. 2 is a perspective view of a frame of metal terminals, FIG. 2 is a board in which metal terminals are embedded and integrally molded, and FIG. 3 is a perspective view of a resistive circuit board showing an embodiment of the present invention. FIG. 4 is a side sectional view and an enlarged partial view of the resistor circuit board. 1 piece polyphenylene sulfide insulating board 2 has metal terminal 3 at the tip of the metal terminal, circuit extraction electrode part 4 connects circuits on both the front and back sides of the board, metal piece 5 is silver conductive part 6 is carbon resistor part

Claims (2)

【特許請求の範囲】[Claims] (1)ポリフェニレンサルファイド樹脂を用いて端子と
電極をインサート成形してなる絶縁基板上に形成された
回路中の抵抗層が、炭素系粒子を主成分としそれに結合
剤としてジアリルフタレート樹脂を用いたものであるこ
とを特徴とする抵抗回路板。
(1) A resistive layer in a circuit formed on an insulating substrate with terminals and electrodes insert-molded using polyphenylene sulfide resin, whose main component is carbon-based particles and diallyl phthalate resin as a binder. A resistor circuit board characterized by:
(2)ジアリルイソフタレート樹脂が低重合物10〜3
0重量%を分別沈澱により除去されたものであることを
特徴とする特許請求範囲第1項記載の抵抗回路板。
(2) Diaryl isophthalate resin is a low polymer 10 to 3
2. A resistor circuit board according to claim 1, wherein 0% by weight is removed by fractional precipitation.
JP59130058A 1984-06-26 1984-06-26 Resistance circuit board Pending JPS6110201A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59130058A JPS6110201A (en) 1984-06-26 1984-06-26 Resistance circuit board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59130058A JPS6110201A (en) 1984-06-26 1984-06-26 Resistance circuit board

Publications (1)

Publication Number Publication Date
JPS6110201A true JPS6110201A (en) 1986-01-17

Family

ID=15025022

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59130058A Pending JPS6110201A (en) 1984-06-26 1984-06-26 Resistance circuit board

Country Status (1)

Country Link
JP (1) JPS6110201A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011249408A (en) * 2010-05-24 2011-12-08 Mems Core Co Ltd Wiring structure and method for producing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011249408A (en) * 2010-05-24 2011-12-08 Mems Core Co Ltd Wiring structure and method for producing the same

Similar Documents

Publication Publication Date Title
US6860000B2 (en) Method to embed thick film components
JP3532926B2 (en) Resistance wiring board and method of manufacturing the same
JPH0411495B2 (en)
KR20070105296A (en) Thick film conductor paste compositions for ltcc tape in microwave applications
US4397800A (en) Ceramic body having a metallized layer
US20020005507A1 (en) Conductive paste and printed wiring board using the same
US4529835A (en) Ceramic thick film circuit substrate
JP2001028476A (en) Forming method for circuit with no distortion
KR100744855B1 (en) High Thermal Cycle Conductor System
US4513062A (en) Ceramic body having a metallized layer
JPS6110201A (en) Resistance circuit board
JPS60103075A (en) Composition for ceramic substrate
JPS63122295A (en) Multilayer ceramic board with built-in electronic component
JP3111823B2 (en) Square chip resistor with circuit inspection terminal
JPH0537160A (en) Multilayer ceramics circuit board
JPH0686327B2 (en) Ceramic substrate composition
JPS62162312A (en) Manufacture of printed resistance circuit board
JPH0567041B2 (en)
JPH03269908A (en) Thick film composition and thick film hybrid integrated circuit (ic) using the same
JPS63208299A (en) Manufacture of multilayer hybrid ic substrate
JPH0368485B2 (en)
JPS6025002B2 (en) Porcelain substrate for forming glazed resistors
JPS6263488A (en) Manufacturing thick film substrate
JPH024549B2 (en)
JPS6110202A (en) Resistance circuit board