JPH024549B2 - - Google Patents

Info

Publication number
JPH024549B2
JPH024549B2 JP59242031A JP24203184A JPH024549B2 JP H024549 B2 JPH024549 B2 JP H024549B2 JP 59242031 A JP59242031 A JP 59242031A JP 24203184 A JP24203184 A JP 24203184A JP H024549 B2 JPH024549 B2 JP H024549B2
Authority
JP
Japan
Prior art keywords
sample
weight
temperature
resistivity
content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59242031A
Other languages
Japanese (ja)
Other versions
JPS61122159A (en
Inventor
Kenichi Hoshi
Takashi Yoshimi
Shoichi Tosaka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Yuden Co Ltd
Original Assignee
Taiyo Yuden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Yuden Co Ltd filed Critical Taiyo Yuden Co Ltd
Priority to JP59242031A priority Critical patent/JPS61122159A/en
Publication of JPS61122159A publication Critical patent/JPS61122159A/en
Publication of JPH024549B2 publication Critical patent/JPH024549B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は、多層配線基板等の材料として使用さ
れる絶縁性磁器組成物に関する。 〔従来の技術〕 アルミナ磁器は、Mo,W等を内部導体とした
多層回路基板として用いられている。 この種の多層回路基板は、次ぎの方法によつて
製作する。まず、Al2O3粉末が96%と、残部が
SiO2,MgO,CaO等の粉末からなる磁器原料と、
ポリビニルブチラール等からなるバインダを混練
してスラリ状にする。これからドクターブレード
法等により、長尺の未焼成磁器シートを作製す
る。これを所定の寸法に切断し、その表面に
Mo,W等の導電ペーストを用いて配線パターン
をスクリーン印刷する。これを複数枚積層し、圧
着したものを、還元雰囲気中に於いて、1500〜
1600℃の温度で焼成してアルミナ磁器多層回路基
板を得る。 〔発明が解決しようとする問題点〕 多層回路基板に使用される従来のアルミナ磁器
は、熱膨張係数が7.5×10-6/℃と大きく、熱衝
撃に弱いという問題があつた。従つて、従来の磁
器から作られた多層回路基板に数十度の温度差の
熱衝撃を与えるとクラツクが発生する。 このため、多層配線基板に電子部品を半田付け
する際には、同基板を半田の溶けている温度と
ほゞ同等の温度まで、ゆつくり時間をかけて加熱
していく予熱工程を必要とした。 本発明の目的は、熱膨張係数が7.5×10-6/℃
より小さな絶縁性磁器組成物を提供することによ
つて、上記のような問題を解決することである。 〔問題を解決するための手段〕 本発明の絶縁性磁器組成物は、Al2O3を25〜60
重量%と、SiO2を10〜40重量%と、CaO,SrO,
BaOの1種以上からなる成分を1〜20重量%と、
MgOを1〜15重量%と、B2O3を3〜30重量%
と、Li2Oを0.1〜3重量%とからなるものである。 〔実施例〕 次ぎに本発明の実施例について説明する。まず
Al2O3粉末180gと、SiO2粉末30gと、CaO3粉末
53.55gと、MgO粉末15gと、Li2CO3粉末0.75g
と、B2O3粉末44.7gとを、磁器製ボールミルポ
ツトに入れ15時間混合した。これを空気中におい
て800℃で仮焼成し、再び上記ポツトで15時間粉
砕して混合粉末を得た。この粉末200gにアクリ
ル樹脂24gと、アリルスルホン酸1gと、水60g
とを加えて、10時間混合してスラリーを得た。こ
のスラリーからドクターブレード法により、厚さ
0.27mmの未焼成磁器シートを作製し、これを10cm
角に切断した。 そしてこのシートから次ぎの3種類の未焼成試
料を作つた。一つは上記シートから直径16mmの円
形に打ち抜いた円板形のものである。他の一つは
上記シートを17枚重ねて圧着したものを、長さ36
mm、幅4mm、厚さ4mmの寸法に切断した角形のも
のである。そしてもう一つは上記シートNiを主
成分とする導電ペーストを用いて配線パターンを
印刷し、これを6枚重ね、さらにその上に印刷し
ないシートを1枚重ねて、これを圧着し、15×30
×1.5mmの寸法に切断した積層体である。 これらを空気中で毎時100℃の割合で600℃まで
昇温し、この温度のまゝ、炉内の雰囲気をN297
容量%とH23容量%のガスで置換した。続いて
950℃の温度で3時間焼成した後、この雰囲気の
まゝ常温まで冷却した。 こうして焼成された試料の内、まず円板形の試
料には、両主面にIn−Gaの合金を直径10mmに塗
布して電極を設けた。そしてこれについて25℃の
温度で1MHzの周波数における静電容量Cを測定
し、その値から比誘電率εを求めた。その結果、
比誘電率εは6.9であつた。また、同じ条件で測
定したクオリテイーフアクタQは、1800であつ
た。さらに上記電極間に500Vの直流を印加し、
印加直後から60秒後の絶縁抵抗値を測定し、その
値から抵抗率ρを求めた。その結果、抵抗率ρは
8×1014Ωcmであつた。 次ぎに角形の試料を使用して、20〜500℃の温
度間に於ける線膨張係数αの測定を行つた。その
結果、線膨張係数αは5.9×106/℃であつた。 また、積層体の試料については、これを予熱せ
ずに常温から250℃の溶融半田槽中に3秒間浸漬
した後引き上げ、続いて常温まで自然冷却し、こ
れによつてクラツク等が発生したか否かを見た。
この結果、クラツク等の発生は認められなかつ
た。 なお、これらの試験結果を別表の試料No.1の欄
に示す。 以下別表の試料No.2〜56についても、上記試料
No.1と同じ方法と条件で各欄に記載された組成を
有する絶縁磁器組成物から3種類の試料を作り、
これらについてそれぞれ同様の試験を実施した。
但し、焼成温度は各試料毎に異なり、それぞれ各
欄に示す温度で行つた。また、これら試料の内、
No.2〜56は、上記試料No.1と同じ非酸化雰囲気中
で焼成したが、試料No.1b,5b,10b,15b,20b,
25b,30b,35b,40b,45b,50b,55bについて
は、それぞれ試料1,5,10,15,20,25,30,
35,40,45,50,55と同じ組成比のものを、空気
中で焼成した。なお、後者の試料には、配線パタ
ーン用の導電ペーストとしてPdを主な導電成分
としたものを使用した。 この結果、上記試料1〜56は、何れも比誘電率
εが5〜8、Qが1000〜2000、抵抗率ρが1×
1014〜3×1015Ωcmであつた。これらの具体的な
数値の掲載は省略する。 〔比較例〕 上記実施例と比較のため、同じ方法と条件で本
発明の組成要件を満たさない磁器組成物から3種
の試料を作つた。そしてそれぞれについて同様の
試験を実施し、この結果を別表の試料No.57〜67の
欄に示した。なお、これらは何れも上記試料No.1
と同じ非酸化雰囲気中において、それぞれ別表各
欄に示す温度で焼成した。 〔作用〕 本発明による磁器組成物の成分を上記のように
限定した理由を、上記実施例と比較例の結果を参
照しながら説明する。 (1) SiO2の含有量が10〜40重量%の範囲にある
ものは、これを850℃〜1000℃の温度で焼成す
ることにより、比誘電率ε、Q,抵抗率ρ等に
ついて、それそれ前掲の値が得られた。また、
線膨張係数αは7.5×10-6/℃より小さかつた。 一方、これよりSiO2の含有量が少ない試料、
例えば5重量%の試料57では抗折強度やQが上
記のものより小さかつた。また、この含有量が
多い試料、例えば45重量%の試料58も抗折強度
と抵抗率ρが上記のものよりも小さかつた。 (2) CaO,SrO,BaOの1種以上からなる成分が
1〜20重量%の範囲にあるものは、これを850
〜1000℃の温度で焼成することにより、比誘電
率ε,Q,抵抗率ρ等について、それぞれ前掲
の値が得られた。また、線膨張係数αが3.0〜
6.0×10-6%℃と小さかつた。 これら成分の含有量がこれより少ない試料、
例えば0.5重量%の試料66と、逆に多い試料、
例えば25重量%の試料67とは、抗折強度と抵抗
率ρが上記の値より小さかつた。 (3) Al2O3の含有量が25〜60重量%の範囲にある
ものは、これを850〜1000℃の温度で焼成する
ことにより、比誘電率ε,Q,抵抗率ρ等につ
いて、それぞれ前掲の値が得られた。また、線
膨張係数αが3.0〜6.0×10-6/℃と小さかつた。 一方、この成分の含有量がこれより少ない試
料、例えば15重量%の試料59は、抗折強度が上
記のものより低くかつた。これとは逆に、含有
量の多い例えば70重量%の試料60は比誘電率ε
と線膨張係数αが上記のものより大きかつた。 (4) B2O3の含有量が3〜30重量%のものは、こ
れを850〜1000℃の温度で焼成することにより、
比誘電率ε,Q,抵抗率ρ等について、それぞ
れ前掲の値が得られた。また、線膨張係数αが
小さかつた。 この成分の含有量がそれより少ない試料、例
えば1重量%の試料61は、抵抗率ρやQが上記
のものより小さかつた。これとは逆にこの成分
の多い40重量%の試料62は気泡が生じ、基板用
の材料として不適当であつた。 (5) Li2Oの含有率が0.1〜3重量%の範囲にある
ものは、抵抗率ρが、1014Ωcm以上を示し、線
膨張係数が3.0〜6.0×10-6/℃と小さかつた。 しかし、Li2Oの成分の含有量がこれより少
ないものは線膨張係数αが上記のものより大き
い。また、3重量%を越える試料63では、線膨
張係数αが3.0〜6.0×10-6/℃と小さかつたが、
抵抗率ρが1013Ωcm以下と低かつた。 (6) MgOの含有量が1〜15重量%の範囲にある
ものは、これを850〜1000℃の温度で焼成する
ことにより、比誘電率ε,Q,抵抗率ρ等がそ
れぞれ前掲の値を示した。また、線膨張係数α
が3.0×10-6/℃と小さかつた。 一方、この成分の含有量がこれより少ないも
のは気泡があり抗折強度が上記のものより弱か
つた。これとは逆に含有量が多いもの、例えば
20重量%の試料65は、Qと抵抗率ρが上記のも
のより低かつた。 〔発明の効果〕 以上説明した通り、本発明の絶縁磁器組成物に
よれば、3.0〜6.0×10-6/℃と小さい線膨張係数
αが得られる。従つてこの磁器組成物を用いた多
層回路基板等は、230℃程度の温度差による熱衝
撃を受けてもクラツク等が発生しない。よつて、
上記基板等に230℃の温度で半田付けする際に、
常温から基板をゆつくりこの温度まで加熱する予
熱工程を省略することができる。
[Industrial Application Field] The present invention relates to an insulating ceramic composition used as a material for multilayer wiring boards and the like. [Prior Art] Alumina porcelain is used as a multilayer circuit board using Mo, W, etc. as an internal conductor. This type of multilayer circuit board is manufactured by the following method. First, Al 2 O 3 powder is 96% and the rest is
Porcelain raw materials made of powders such as SiO 2 , MgO, CaO, etc.
A binder made of polyvinyl butyral or the like is kneaded into a slurry. From this, a long unfired porcelain sheet is produced by a doctor blade method or the like. Cut this to the specified size and apply it to the surface.
Screen print the wiring pattern using conductive paste such as Mo or W. Multiple layers of these are laminated and crimped together, and then heated to a temperature of 1500~
An alumina porcelain multilayer circuit board is obtained by firing at a temperature of 1600℃. [Problems to be Solved by the Invention] Conventional alumina porcelain used in multilayer circuit boards has a large coefficient of thermal expansion of 7.5×10 -6 /°C, and has a problem of being susceptible to thermal shock. Therefore, if a conventional multilayer circuit board made of porcelain is subjected to a thermal shock with a temperature difference of several tens of degrees, cracks will occur. For this reason, when soldering electronic components to a multilayer wiring board, a preheating process was required to slowly heat the board to a temperature that was almost the same as the melting temperature of the solder. . The purpose of the present invention is to have a thermal expansion coefficient of 7.5×10 -6 /°C.
The objective is to solve the above problems by providing a smaller insulating porcelain composition. [Means for solving the problem] The insulating porcelain composition of the present invention contains 25 to 60% Al 2 O 3
wt%, SiO 2 from 10 to 40 wt%, CaO, SrO,
1 to 20% by weight of a component consisting of one or more types of BaO,
1-15% by weight of MgO and 3-30% by weight of B 2 O 3
and 0.1 to 3% by weight of Li 2 O. [Example] Next, an example of the present invention will be described. first
180g of Al 2 O 3 powder, 30g of SiO 2 powder, and CaO 3 powder
53.55g, 15g of MgO powder, and 0.75g of Li 2 CO 3 powder
and 44.7 g of B 2 O 3 powder were placed in a porcelain ball mill pot and mixed for 15 hours. This was calcined at 800° C. in air and pulverized again in the pot for 15 hours to obtain a mixed powder. 200g of this powder, 24g of acrylic resin, 1g of allylsulfonic acid, and 60g of water.
and mixed for 10 hours to obtain a slurry. From this slurry, the thickness is
A 0.27mm unfired porcelain sheet is made and this is 10cm long.
Cut into corners. The following three types of unfired samples were made from this sheet. One is a disk-shaped piece with a diameter of 16 mm punched out from the above sheet. The other one is made by stacking 17 of the above sheets and crimping them together to a length of 36 cm.
It is a rectangular piece cut into dimensions of 4 mm, width 4 mm, and thickness 4 mm. The other is to print a wiring pattern using the above-mentioned sheet Ni-based conductive paste, stack 6 sheets of this, then layer one unprinted sheet on top of that, and press-bond this. 30
This is a laminate cut into a size of 1.5 mm. These were heated in air at a rate of 100°C per hour to 600°C, and at this temperature the atmosphere inside the furnace was changed to N 2 97
% by volume and replaced with 3% by volume of H2 gas. continue
After firing at a temperature of 950° C. for 3 hours, it was cooled to room temperature in this atmosphere. Among the samples fired in this way, the disk-shaped sample was coated with In-Ga alloy to a diameter of 10 mm on both main surfaces and provided with electrodes. Then, the capacitance C at a frequency of 1 MHz was measured at a temperature of 25° C., and the relative dielectric constant ε was determined from the measured value. the result,
The dielectric constant ε was 6.9. Furthermore, the quality factor Q measured under the same conditions was 1800. Furthermore, apply 500V DC between the above electrodes,
The insulation resistance value was measured 60 seconds after the application, and the resistivity ρ was determined from that value. As a result, the resistivity ρ was 8×10 14 Ωcm. Next, using a rectangular sample, the linear expansion coefficient α was measured at a temperature of 20 to 500°C. As a result, the linear expansion coefficient α was 5.9×10 6 /°C. Regarding the laminate sample, it was immersed in a molten solder bath at room temperature to 250°C for 3 seconds without preheating, then pulled out, and then naturally cooled to room temperature. I saw whether or not.
As a result, no cracks or the like were observed. The test results are shown in the column for sample No. 1 in the attached table. Regarding sample Nos. 2 to 56 in the attached table below, the above samples
Three types of samples were made from insulating porcelain compositions having the compositions listed in each column using the same method and conditions as No. 1.
Similar tests were conducted on each of these.
However, the firing temperature differed for each sample, and the firing was performed at the temperatures shown in each column. Also, among these samples,
Nos. 2 to 56 were fired in the same non-oxidizing atmosphere as sample No. 1, but samples Nos. 1b, 5b, 10b, 15b, 20b,
For 25b, 30b, 35b, 40b, 45b, 50b, 55b, samples 1, 5, 10, 15, 20, 25, 30,
Items with the same composition ratios as 35, 40, 45, 50, and 55 were fired in air. Note that for the latter sample, a conductive paste for wiring patterns containing Pd as the main conductive component was used. As a result, the above samples 1 to 56 all have a dielectric constant ε of 5 to 8, a Q of 1000 to 2000, and a resistivity ρ of 1×
It was 10 14 to 3×10 15 Ωcm. The publication of these specific figures will be omitted. [Comparative Example] For comparison with the above example, three types of samples were made from a porcelain composition that did not meet the compositional requirements of the present invention using the same method and conditions. Similar tests were conducted on each sample, and the results are shown in the columns of sample Nos. 57 to 67 in the attached table. Note that these are all samples No. 1 above.
The materials were fired in the same non-oxidizing atmosphere as in the above, at the temperatures shown in each column of the separate table. [Operation] The reason why the components of the porcelain composition according to the present invention are limited as described above will be explained with reference to the results of the above-mentioned Examples and Comparative Examples. (1) If the content of SiO 2 is in the range of 10 to 40% by weight, the specific permittivity ε, Q, resistivity ρ, etc. can be determined by firing it at a temperature of 850℃ to 1000℃. The values listed above were obtained. Also,
The linear expansion coefficient α was smaller than 7.5×10 −6 /°C. On the other hand, samples with less SiO 2 content than this,
For example, sample 57 containing 5% by weight had a bending strength and Q smaller than those mentioned above. In addition, a sample with a high content of this material, for example, sample 58 with a content of 45% by weight, also had a bending strength and a resistivity ρ smaller than those mentioned above. (2) If the content of one or more of CaO, SrO, and BaO is in the range of 1 to 20% by weight,
By firing at a temperature of ~1000°C, the values listed above were obtained for the relative permittivity ε, Q, resistivity ρ, etc., respectively. In addition, the linear expansion coefficient α is 3.0~
It was small at 6.0×10 -6 %℃. Samples containing less of these components,
For example, sample 66 with 0.5% by weight, conversely, sample with more
For example, sample 67 containing 25% by weight had bending strength and resistivity ρ smaller than the above values. (3) If the content of Al 2 O 3 is in the range of 25 to 60% by weight, by firing it at a temperature of 850 to 1000°C, the relative permittivity ε, Q, resistivity ρ, etc. The values listed above were obtained for each. Further, the coefficient of linear expansion α was as small as 3.0 to 6.0×10 −6 /°C. On the other hand, a sample containing a smaller amount of this component, for example sample 59 with a content of 15% by weight, had a bending strength lower than that of the above-mentioned sample. On the contrary, sample 60 with a large content, for example 70% by weight, has a relative dielectric constant ε
and linear expansion coefficient α were larger than those above. (4) Those with a B 2 O 3 content of 3 to 30% by weight can be baked at a temperature of 850 to 1000°C.
The above-mentioned values were obtained for the relative dielectric constants ε, Q, resistivity ρ, and the like. Moreover, the coefficient of linear expansion α was small. A sample containing a smaller amount of this component, for example sample 61 with a content of 1% by weight, had a resistivity ρ and Q smaller than those mentioned above. On the contrary, sample 62 containing a large amount of this component (40% by weight) produced bubbles and was unsuitable as a material for a substrate. (5) Those with a Li 2 O content in the range of 0.1 to 3% by weight exhibit a resistivity ρ of 10 14 Ωcm or more, a small linear expansion coefficient of 3.0 to 6.0×10 -6 /℃, and Ta. However, when the content of the Li 2 O component is lower than this, the linear expansion coefficient α is larger than the above-mentioned one. In addition, in sample 63 containing more than 3% by weight, the coefficient of linear expansion α was as small as 3.0 to 6.0×10 -6 /°C;
The resistivity ρ was low at 10 13 Ωcm or less. (6) If the MgO content is in the range of 1 to 15% by weight, by firing it at a temperature of 850 to 1000℃, the relative permittivity ε, Q, resistivity ρ, etc. will be the values listed above. showed that. Also, linear expansion coefficient α
was small at 3.0×10 -6 /℃. On the other hand, those with a lower content of this component had bubbles and had a bending strength lower than that of the above-mentioned ones. On the other hand, those with high content, such as
Sample 65 at 20% by weight had lower Q and resistivity ρ than those mentioned above. [Effects of the Invention] As explained above, according to the insulating porcelain composition of the present invention, a linear expansion coefficient α as low as 3.0 to 6.0×10 −6 /° C. can be obtained. Therefore, multilayer circuit boards and the like using this ceramic composition do not develop cracks even when subjected to thermal shock due to a temperature difference of about 230°C. Afterwards,
When soldering to the above board etc. at a temperature of 230℃,
The preheating step of gradually heating the substrate from room temperature to this temperature can be omitted.

【表】【table】

【表】【table】

【表】【table】

【表】【table】

Claims (1)

【特許請求の範囲】[Claims] 1 Al2O3を25〜60重量%と、SiO2を10〜40重量
%と、CaO,SrO,BaOの1種以上からなるもの
を1〜20重量%と、MgOを1〜15重量%と、
B2O3を3〜30重量%と、Li2Oを0.1〜3重量%と
からなることを特徴とする絶縁性磁器組成物。
1 25-60% by weight of Al 2 O 3 , 10-40% by weight of SiO 2 , 1-20% by weight of one or more of CaO, SrO, BaO, and 1-15% by weight of MgO. and,
An insulating ceramic composition comprising 3 to 30% by weight of B2O3 and 0.1 to 3% by weight of Li2O .
JP59242031A 1984-11-16 1984-11-16 Insulative ceramic composition Granted JPS61122159A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59242031A JPS61122159A (en) 1984-11-16 1984-11-16 Insulative ceramic composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59242031A JPS61122159A (en) 1984-11-16 1984-11-16 Insulative ceramic composition

Publications (2)

Publication Number Publication Date
JPS61122159A JPS61122159A (en) 1986-06-10
JPH024549B2 true JPH024549B2 (en) 1990-01-29

Family

ID=17083238

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59242031A Granted JPS61122159A (en) 1984-11-16 1984-11-16 Insulative ceramic composition

Country Status (1)

Country Link
JP (1) JPS61122159A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03119359U (en) * 1990-03-13 1991-12-09

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6247196A (en) * 1985-08-26 1987-02-28 松下電器産業株式会社 Ceramic multilayer substrate

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03119359U (en) * 1990-03-13 1991-12-09

Also Published As

Publication number Publication date
JPS61122159A (en) 1986-06-10

Similar Documents

Publication Publication Date Title
EP0219807A2 (en) Low temperature fired ceramics
JPH024549B2 (en)
US4783431A (en) Insulative ceramic composition
JPS60227311A (en) Insulating porcelain composition
JPH0585496B2 (en)
JPS63222043A (en) Low-temperature sintering ceramic
JPH0686327B2 (en) Ceramic substrate composition
JPH0585498B2 (en)
JPS60137869A (en) Insulative ceramic composition
JPH0428121B2 (en)
JPS6235696A (en) Ceramic substrate for electric circuit and manufacture thereof
JPH0220583B2 (en)
JPH0480869B2 (en)
JPH07147487A (en) Low-temperature burned ceramic multilayer wiring board
JPH0477442B2 (en)
JPH0428127B2 (en)
JPH0428128B2 (en)
JPS6350306B2 (en)
JPH0428122B2 (en)
JPH0428123B2 (en)
JPH0469584B2 (en)
JPH0480866B2 (en)
JPH03112856A (en) Composition for ceramic base board
JPH0428125B2 (en)
JPH0477443B2 (en)

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term