JPH0480869B2 - - Google Patents
Info
- Publication number
- JPH0480869B2 JPH0480869B2 JP59112620A JP11262084A JPH0480869B2 JP H0480869 B2 JPH0480869 B2 JP H0480869B2 JP 59112620 A JP59112620 A JP 59112620A JP 11262084 A JP11262084 A JP 11262084A JP H0480869 B2 JPH0480869 B2 JP H0480869B2
- Authority
- JP
- Japan
- Prior art keywords
- mol
- porcelain
- firing
- composition
- fired
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 229910052573 porcelain Inorganic materials 0.000 claims description 22
- 238000010304 firing Methods 0.000 claims description 17
- 239000000203 mixture Substances 0.000 claims description 15
- 229910018072 Al 2 O 3 Inorganic materials 0.000 claims description 7
- 229910004298 SiO 2 Inorganic materials 0.000 claims description 5
- 229910018068 Li 2 O Inorganic materials 0.000 claims description 3
- 239000000919 ceramic Substances 0.000 description 13
- 239000004020 conductor Substances 0.000 description 8
- 239000000463 material Substances 0.000 description 7
- 239000000758 substrate Substances 0.000 description 7
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 5
- 239000002994 raw material Substances 0.000 description 4
- 229910052709 silver Inorganic materials 0.000 description 4
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 3
- 229910052788 barium Inorganic materials 0.000 description 3
- 239000011230 binding agent Substances 0.000 description 3
- 229910052791 calcium Inorganic materials 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 239000011148 porous material Substances 0.000 description 3
- 239000004332 silver Substances 0.000 description 3
- 229910052712 strontium Inorganic materials 0.000 description 3
- 239000012856 weighed raw material Substances 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 2
- 229910052796 boron Inorganic materials 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 238000013508 migration Methods 0.000 description 2
- 230000005012 migration Effects 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 230000007935 neutral effect Effects 0.000 description 2
- 238000010298 pulverizing process Methods 0.000 description 2
- 238000005245 sintering Methods 0.000 description 2
- 229910052718 tin Inorganic materials 0.000 description 2
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 2
- 238000003466 welding Methods 0.000 description 2
- -1 (Ba Inorganic materials 0.000 description 1
- 229910052580 B4C Inorganic materials 0.000 description 1
- 229910004762 CaSiO Inorganic materials 0.000 description 1
- 229910006404 SnO 2 Inorganic materials 0.000 description 1
- 229910010413 TiO 2 Inorganic materials 0.000 description 1
- 229910010252 TiO3 Inorganic materials 0.000 description 1
- 239000010953 base metal Substances 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 239000005388 borosilicate glass Substances 0.000 description 1
- ODINCKMPIJJUCX-UHFFFAOYSA-N calcium oxide Inorganic materials [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 description 1
- 238000010344 co-firing Methods 0.000 description 1
- 229910052681 coesite Inorganic materials 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 229910052906 cristobalite Inorganic materials 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 239000003989 dielectric material Substances 0.000 description 1
- 238000007606 doctor blade method Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 239000001095 magnesium carbonate Substances 0.000 description 1
- ZLNQQNXFFQJAID-UHFFFAOYSA-L magnesium carbonate Chemical compound [Mg+2].[O-]C([O-])=O ZLNQQNXFFQJAID-UHFFFAOYSA-L 0.000 description 1
- 229910000021 magnesium carbonate Inorganic materials 0.000 description 1
- 235000014380 magnesium carbonate Nutrition 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 238000004806 packaging method and process Methods 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000007639 printing Methods 0.000 description 1
- 230000002250 progressing effect Effects 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 229910052682 stishovite Inorganic materials 0.000 description 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 1
- 229910052905 tridymite Inorganic materials 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 229910052882 wollastonite Inorganic materials 0.000 description 1
- 239000010456 wollastonite Substances 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Landscapes
- Compositions Of Oxide Ceramics (AREA)
- Inorganic Insulating Materials (AREA)
Description
(産業上の利用分野)
この発明は低温で焼成でき、特性的には、比抵
抗が高く、また誘電率が低くさらには誘電体損失
の小さい低温焼成用磁器組成物に関する。
(従来の技術)
電子機器の小型化に伴い、回路を構成する各種
の部品を実装するために磁器基板が数多く利用さ
れている。
最近ではさらに実装密度を上げるために多層磁
器基板へと開発が進んでいる。この多層磁器基板
の材料としては一般的にアルミナが知られてい
る。しかしながら、アルミナは焼成温度が1500〜
1600℃と高温であるため、焼成のために多くのエ
ネルギーが必要となる。また、アルミナと同時焼
成する内部誘導体材料もW、Moなどの高融点材
料を用いているが、これらの金属は比抵抗が高
く、回路抵抗そのものも高くなる欠点がある。
したがつて、アルミナより低温で焼成できる磁
器材料であれば、焼成のためのエネルギーが少な
くなるとともに、たとえば1000℃以下での焼成が
可能な場合、Ag、Ag−Pd、Cuなどの導電材料
を導体路として用いることができる他、抵抗材料
なども印刷して同時焼成するなどの利点がでてく
る。
このような低温焼成用の磁器材料としては、ア
ルミナに多量のガラス成分を添加したものがある
が、得られた磁器に空孔が多く存在し、空孔を介
して導体路間のマイグレーシヨンが発生するとい
う問題が見られる。また、BaSnO3にホウ素を多
量に添加したものもあるが、仮焼物がガラス状と
なり、この仮焼物の粉砕が困難になるばかりか、
ホウ素の蒸発が激しく、このため同時焼成したと
き導電材料と反応したり、焼成のための炉の炉材
に損傷を与えるといつた問題があつた。
(発明の目的)
したがつて、この発明は1000℃以下で焼成でき
る磁器組成物を提供することを目的とする。
また、この発明はその製造工程において粉砕等
の処理が行いやすい磁器組成物を提供することを
目的とする。
さらにこの発明は電気的には比抵抗が高く、ま
た誘電率が低く、さらには誘電体損失の小さい磁
器組成物を提供することを目的とする。
さらにまたこの発明は特に限定されるものでは
ないが多層磁器基板に適した磁器組成物を提供す
ることを目的とする。
(発明の構成)
この発明にかかる低温焼成用磁器組成物を要約
すれば、次の構成材料()〜()からなるも
のである。
() (Ba1-XMX)(Tii-yMy)O3が20〜40モ
ル%
ただし、M〓は、Sr、Ca、Mgのうち少なく
とも1種
Mは、Zr、Snのうち1種または2種
0≦x≦0.3、0≦y≦0.3、0≦x+y≦0.3
()SiO2が35〜65モル%
()B2O3が4〜25モル%
()Al2O3が2〜10モル%
() Li2O、Na2O、K2Oのうち少なくとも1種
が10モル%以下(0を含まず)
()BaO、CaOのうち1種または2種が2〜10モ
ル%
上記した組成範囲に限定したのは次のとおりで
ある。
すなわち、()の(Ba1-XMX)(Tii-yM
y)O3が20モル%未満では焼成温度が1000℃を越
え、一方40モル%を越えると誘電率が大きくなる
からである。
また、MX、Myのx、yについて、それぞ
れ0≦x≦0.3、0≦y≦0.3、0≦x+y≦0.3と
規定した。したがつて(Ba1-XMX)(Ti1-yM
y)O3としては、x=0、y=0の場合の
BaTiO3の他、(Ba、Ca)TiO3、(Ba、Ca)
(Ti、Zr)O3、(Ba、Sr)TiO3、(Ba、Sr)
(Ti、Sn)O3、(Ba、Sr、Ca、Mg)(Ti、Sn)
O3などの成分からなるものが含まれる。ここで
x、yおよびx+yの上限値を0.3以下としたの
は、x、yおよびx+yの量が増大するに伴い、
焼成温度が上昇する傾向にあり、特にx、yx+
yが0.3を越えると焼成温度が1000℃以上になる
からである。
SiO2について35〜65モル%としたのは、35モ
ル%未満または65モル%を越えると焼成温度が高
くなるからである。
B2Oについて4〜25モル%としたのは、4モル
%未満では焼結温度が高くなり、25モル%を越え
ると焼磁器同志の溶着が発生しやすくなるからで
ある。
Al2O3について2〜10モル%としたのは、2モ
ル%未満または10モル%を越えると焼成温度が高
くなるからである。
Li2O、Na2O、K2Oのうち少なくとも1種につ
いて10モル%以下(0を含まず)としたのは、10
モル%を越えると磁器同志の溶着が発生しやすく
なるからである。
BaOとCaOのうち1種または2種が2〜10モ
ル%としたのは、2モル%未満または10モル%を
越えると焼結温度が高くなるからである。
なお、(Ba1-xMX)(Ti1-yMy)O3はABO3
からなるペロブスカイト型の組成として表わされ
るが、AとBとの比率(モル比)を特性を損わな
い範囲で変化させることもこの発明に含まれる。
(実施例)
以下、この発明を実施例にもとづいて詳細に説
明する。
実施例 1
原料として、BaCO3、CaCO3、SrCO3、
MgCO3、TiO2、ZrO2、SnO2を準備し、第1表
に示す組成比率になるように秤量した。秤量原料
を混合した後1150℃で仮焼した。次にこれらの仮
焼粉末とSiO2、B4C、Al2O3、Li2CO3、K2CO3、
Na2CO3Ba2CO3、BaCO3、CaCO3の各原料を第
1表に示す組成比率の磁器が得られるように秤量
した。秤量原料を混合、粉砕し、バインダーを加
えて円板状に成形した。成形体を空気中850〜950
℃で焼成して磁器を作成した。
各磁器について、比抵抗、誘電率、誘電体損失
および抗折強度を測定した。
各諸特性についての測定条件は次のとおりであ
る。
比抵抗: D.C.1.5V
誘電率: 1MHz
誘電体損失: 1MHz
抗折強度: JISの規格による
第2表は各磁器の諸特性の測定結果を示したも
のである。
(Industrial Application Field) The present invention relates to a ceramic composition for low temperature firing that can be fired at low temperatures and has characteristics such as high resistivity, low dielectric constant, and low dielectric loss. (Prior Art) With the miniaturization of electronic devices, many ceramic substrates are being used to mount various components constituting circuits. Recently, development is progressing toward multilayer ceramic substrates to further increase packaging density. Alumina is generally known as a material for this multilayer ceramic substrate. However, alumina has a firing temperature of 1500~
Because the temperature is as high as 1,600℃, a lot of energy is required for firing. Further, high melting point materials such as W and Mo are used as internal dielectric materials to be fired simultaneously with alumina, but these metals have a drawback of high specific resistance and high circuit resistance themselves. Therefore, if it is a porcelain material that can be fired at a lower temperature than alumina, the energy for firing will be less, and if it is possible to fire at a temperature below 1000℃, conductive materials such as Ag, Ag-Pd, and Cu can be used. In addition to being able to be used as a conductor path, it also has the advantage of printing and co-firing resistive materials. Porcelain materials for such low-temperature firing include alumina with a large amount of glass added, but the resulting porcelain contains many pores, and migration between conductor paths occurs through the pores. I can see the problem occurring. In addition, there is also BaSnO 3 with a large amount of boron added, but the calcined product becomes glassy, which not only makes it difficult to crush the calcined product.
Boron evaporates rapidly, which caused problems such as reacting with conductive materials when fired simultaneously and damaging the furnace material for firing. (Object of the invention) Therefore, an object of the present invention is to provide a porcelain composition that can be fired at 1000°C or lower. Another object of the present invention is to provide a porcelain composition that is easy to process, such as pulverization, in its manufacturing process. A further object of the present invention is to provide a ceramic composition that has high electrical resistivity, low dielectric constant, and low dielectric loss. Furthermore, an object of the present invention is to provide a ceramic composition suitable for a multilayer ceramic substrate, although it is not particularly limited thereto. (Structure of the Invention) The porcelain composition for low-temperature firing according to the present invention can be summarized as consisting of the following constituent materials () to (). () ( Ba 1 - X M or 2 types 0≦x≦0.3, 0≦y≦0.3, 0≦x+y≦0.3 ()SiO 2 is 35 to 65 mol% () B 2 O 3 is 4 to 25 mol% () Al 2 O 3 is 2 ~10 mol% () At least one of Li 2 O, Na 2 O, and K 2 O is 10 mol % or less (not including 0) () 2 to 10 mol of one or two of BaO and CaO % The composition ranges listed above are limited to the following. That is, (Ba 1-X M X ) (Ti iy M
y ) If the O 3 content is less than 20 mol %, the firing temperature will exceed 1000°C, while if it exceeds 40 mol %, the dielectric constant will increase. Furthermore, x and y of M x and M y were defined as 0≦x≦0.3, 0≦y≦0.3, and 0≦x+y≦0.3, respectively. Therefore (Ba 1-X M X ) (Ti 1-y M
y ) O3 , when x=0, y=0
In addition to BaTiO 3 , (Ba, Ca) TiO 3 , (Ba, Ca)
(Ti,Zr) O3 , (Ba,Sr) TiO3 , (Ba,Sr)
(Ti, Sn)O 3 , (Ba, Sr, Ca, Mg) (Ti, Sn)
Contains components such as O3 . Here, the upper limit values of x, y, and x+y are set to 0.3 or less because as the amounts of x, y, and x+y increase,
Firing temperature tends to rise, especially x, yx+
This is because if y exceeds 0.3, the firing temperature will exceed 1000°C. The reason why SiO 2 is set at 35 to 65 mol % is that if it is less than 35 mol % or exceeds 65 mol %, the firing temperature becomes high. The reason why B 2 O is set at 4 to 25 mol % is that if it is less than 4 mol %, the sintering temperature becomes high, and if it exceeds 25 mol %, welding of sintered porcelain tends to occur. The reason why Al 2 O 3 is set at 2 to 10 mol % is because if it is less than 2 mol % or exceeds 10 mol %, the firing temperature becomes high. The reason why at least one of Li 2 O, Na 2 O, and K 2 O is 10 mol% or less (excluding 0) is 10
This is because if the amount exceeds mol %, welding of porcelain pieces to each other tends to occur. The reason why one or both of BaO and CaO is set at 2 to 10 mol % is because if the content is less than 2 mol % or exceeds 10 mol %, the sintering temperature becomes high. In addition, (Ba 1-x M x ) (Ti 1-y M y ) O 3 is ABO 3
Although this invention is expressed as a perovskite type composition consisting of A and B, changing the ratio (molar ratio) of A and B within a range that does not impair the characteristics is also included in the present invention. (Examples) Hereinafter, the present invention will be described in detail based on Examples. Example 1 As raw materials, BaCO 3 , CaCO 3 , SrCO 3 ,
MgCO 3 , TiO 2 , ZrO 2 , and SnO 2 were prepared and weighed to give the composition ratios shown in Table 1. After mixing the weighed raw materials, they were calcined at 1150°C. Next, these calcined powders and SiO 2 , B 4 C, Al 2 O 3 , Li 2 CO 3 , K 2 CO 3 ,
Raw materials Na 2 CO 3 Ba 2 CO 3 , BaCO 3 , and CaCO 3 were weighed so as to obtain porcelain having the composition ratios shown in Table 1. The weighed raw materials were mixed and crushed, a binder was added, and the mixture was formed into a disk shape. Molded body in air 850~950
Porcelain was created by firing at ℃. Specific resistance, dielectric constant, dielectric loss, and bending strength were measured for each piece of porcelain. The measurement conditions for each characteristic are as follows. Specific resistance: DC1.5V Dielectric constant: 1MHz Dielectric loss: 1MHz Breaking strength: According to JIS standards Table 2 shows the measurement results of various properties of each ceramic.
【表】【table】
【表】【table】
【表】
第1表、第2表において※印を付したものはこ
の発明範囲外のものであり、それ以外はこの発明
範囲内のものである。
実施例 2
原料として、BaCO3、CaCO3、SrCO3、
MgCO3、TiO2、ZrO2、SnO2、SiO2、B4C、
Al2O3、Li2CO3、Na2CO3、K2CO3、BaCO3、
CaCO3を準備し、実施例1の第1表に示す組成
比率の磁器が得られるように秤量した。秤量原料
を混合した後、850〜950℃で仮焼した。仮焼物を
粉砕した後、有機バインダーを加え、ドクターブ
レード法にてシート成形した。得られたセラミツ
クグリーンシートを所定の大きさにカツトし、こ
れを空気中850〜950℃で焼成して磁器板を得た。
得られた磁器板について、実施例1と同様に諸
特性を同一測定条件で測定したところ、実施例1
の第2表に示した特性とほぼ同じような結果を示
した。
また、上記した工程で得られたセラミツクグリ
ーンシートを用い、このシートの表面にホウケイ
酸鉛系ガラスフリツトを含む銀ペーストを印刷
し、これを3枚積み重ねて熱圧着し、空気中850
〜950℃で焼成した。
得られた多層磁器基板について、磁器と銀との
反応を分析したところ、この発明によるものは、
両者の間での反応は見られず、銀は良好な導電性
を示した。
実施例 3
実施例2で作成した各セラミツクグリーンシー
トを用い、400℃でバインダーを焼成させ、窒素
中840〜950℃で1時間焼成して磁器を得た。
この発明にかかる各磁器について比抵抗を測定
したところ、試料によつては比抵抗が1013〜1014
Ω・cmと多少低下したものがあつたが、実用上何
ら問題のないことが確認できた。
したがつて、多層磁器基板の内部導体として、
たとえばCuなどを使用する場合、同時焼成の雰
囲気として中性または還元性雰囲気に設定しなけ
ればならないが、これらの雰囲気で焼成しても実
用上十分な絶縁性を有する磁器であることが判明
した。
なお、上記した実施例ではSiO2、Al2O3、CaO
の各成分原料を用いたが、これら各成分がこの発
明の組成範囲内で存在するように、カリオン
(Al2O3・2SiO2・2H2O)、ワラストナイト
(CaSiO3)など化合物を原料として用いてもよ
い。
(発明の効果)
以上の説明から明らかなようにこの発明によれ
ば、1000℃以下の低温での焼成で焼結磁器が得ら
れ、製造工程での粉砕などの作業も行いやすいも
のである。また、特性的には比抵抗が高く、誘電
率が低く、さらに誘電体損失も小さい。また多層
磁器基板としたとき、同時焼成時における内部導
体との反応がみられない。また、磁器の空孔が少
ないため、内部導体間のマイグレーシヨンが発生
しないという利点を有する。また、中性、還元性
雰囲気で焼成しても比抵抗の低下がみられず、内
部導体としてCu、Niなどの卑金属を使用するこ
とができる。[Table] Items marked with * in Tables 1 and 2 are outside the scope of this invention, and the others are within the scope of this invention. Example 2 As raw materials, BaCO 3 , CaCO 3 , SrCO 3 ,
MgCO3 , TiO2 , ZrO2 , SnO2 , SiO2 , B4C ,
Al 2 O 3 , Li 2 CO 3 , Na 2 CO 3 , K 2 CO 3 , BaCO 3 ,
CaCO 3 was prepared and weighed so as to obtain porcelain having the composition ratio shown in Table 1 of Example 1. After mixing the weighed raw materials, they were calcined at 850 to 950°C. After pulverizing the calcined product, an organic binder was added and the product was formed into a sheet using a doctor blade method. The obtained ceramic green sheet was cut into a predetermined size and fired in air at 850 to 950°C to obtain a porcelain plate. Regarding the obtained porcelain plate, various properties were measured under the same measurement conditions as in Example 1.
The results showed almost the same characteristics as those shown in Table 2. Furthermore, using the ceramic green sheet obtained in the above process, a silver paste containing lead borosilicate glass frit was printed on the surface of the sheet, three sheets were stacked and thermocompression bonded, and the sheets were heated at 850°C in air.
Calcined at ~950°C. When the reaction between the porcelain and silver was analyzed for the obtained multilayer porcelain substrate, it was found that the one according to the present invention
No reaction was observed between the two, and silver showed good conductivity. Example 3 Using each of the ceramic green sheets prepared in Example 2, the binder was fired at 400°C, and then fired in nitrogen at 840-950°C for 1 hour to obtain porcelain. When the specific resistance of each porcelain according to the present invention was measured, the specific resistance was 10 13 to 10 14 depending on the sample.
Although there were some cases where the resistance decreased to Ω・cm, it was confirmed that there was no problem in practical use. Therefore, as an internal conductor of a multilayer ceramic substrate,
For example, when using Cu, etc., the atmosphere for simultaneous firing must be set to a neutral or reducing atmosphere, but it has been found that porcelain has sufficient insulating properties for practical use even when fired in these atmospheres. . Note that in the above examples, SiO 2 , Al 2 O 3 , CaO
However, compounds such as carion (Al 2 O 3・2SiO 2・2H 2 O) and wollastonite (CaSiO 3 ) were added so that each of these components existed within the composition range of this invention. It may also be used as a raw material. (Effects of the Invention) As is clear from the above description, according to the present invention, sintered porcelain can be obtained by firing at a low temperature of 1000°C or less, and operations such as crushing in the manufacturing process can be easily performed. Additionally, it has high specific resistance, low dielectric constant, and low dielectric loss. Furthermore, when used as a multilayer ceramic substrate, no reaction with the internal conductor was observed during simultaneous firing. Furthermore, since the porcelain has few pores, it has the advantage that migration between internal conductors does not occur. Further, even when fired in a neutral or reducing atmosphere, no decrease in specific resistance is observed, and base metals such as Cu and Ni can be used as the internal conductor.
Claims (1)
、
()からなる低温焼成用磁器組成物。 () (Ba1-XMX)(Tii-yMy)O3が20〜40モ
ル% ただし、Mは、Sr、Ca、Mgのうち少なく
とも1種、MはZr、Snのうち1種または2
種。 0≦x≦0.3、0≦y≦0.3、0≦x+y≦0.3 ()SiO2が35〜65モル% ()B2O3が4〜25モル% ()Al2O3が2〜20モル% () Li2O、Na2O、K2Oのうち少なくとも1種
が10モル%以下(0を含まず) ()BaO、CaOのうち1種または2種が2〜10モ
ル%。[Claims] 1st-order composition (), (), (), (), ()
,
A porcelain composition for low temperature firing consisting of (). ( ) (Ba 1 - X M 2
seed. 0≦x≦0.3, 0≦y≦0.3, 0≦x+y≦0.3 ()35 to 65 mol% of SiO 2 ()4 to 25 mol% of B 2 O 3 () 2 to 20 mol of Al 2 O 3 % () At least one of Li 2 O, Na 2 O, and K 2 O is 10 mol % or less (not including 0) () 2 to 10 mol % of one or two of BaO and CaO.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59112620A JPS60255666A (en) | 1984-05-31 | 1984-05-31 | Low temperature burning ceramic composition |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59112620A JPS60255666A (en) | 1984-05-31 | 1984-05-31 | Low temperature burning ceramic composition |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS60255666A JPS60255666A (en) | 1985-12-17 |
JPH0480869B2 true JPH0480869B2 (en) | 1992-12-21 |
Family
ID=14591287
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP59112620A Granted JPS60255666A (en) | 1984-05-31 | 1984-05-31 | Low temperature burning ceramic composition |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS60255666A (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104149038B (en) * | 2014-07-31 | 2017-02-01 | 桂林创源金刚石有限公司 | Diamond wheel employing ceramic binding agent |
-
1984
- 1984-05-31 JP JP59112620A patent/JPS60255666A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS60255666A (en) | 1985-12-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100506731B1 (en) | Low temperature sinterable dielectric composition, multilayer ceramic capacitor, ceramic electronic device | |
JPWO2004065325A1 (en) | Dielectric ceramic composition, dielectric ceramic, and multilayer ceramic component using the same | |
JPH0559523B2 (en) | ||
KR900008776B1 (en) | Ceramic capacitor method of manufacture | |
JPH0480867B2 (en) | ||
JP2006261350A (en) | Resistor paste and resistor | |
JPH0480869B2 (en) | ||
JPH0480868B2 (en) | ||
JPH0480866B2 (en) | ||
JP4281549B2 (en) | Dielectric ceramic composition and multilayer ceramic component using the same | |
JPH032816B2 (en) | ||
JP2004026543A (en) | Dielectric porcelain composition and laminated ceramic component using the same | |
JPS61219741A (en) | Oxide dielectric material | |
JPS6117086B2 (en) | ||
JPH0676255B2 (en) | Low temperature sintered porcelain composition for multilayer substrate | |
JP2600778B2 (en) | Low temperature sintering porcelain composition for multilayer substrate | |
JPH024549B2 (en) | ||
JPH04359810A (en) | Dielectric ceramic composition and dielectric filter using dielectric ceramic composition and its manufacture | |
JPH01204305A (en) | Dielectric ceramic composition | |
JPH0225863B2 (en) | ||
JPH0676253B2 (en) | Low temperature sintered porcelain composition for multilayer substrate | |
JPH04359806A (en) | Dielectric ceramic composition and dielectric filter using dielectric ceramic composition and its manufacture | |
JP2003221274A (en) | Dielectric porcelain composition and integrated ceramic parts using it | |
JPH0674168B2 (en) | Porcelain composition for electric circuit board | |
JPH0578166A (en) | Non-reducible dielectric porcelain composition |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EXPY | Cancellation because of completion of term |