JPH032816B2 - - Google Patents

Info

Publication number
JPH032816B2
JPH032816B2 JP58117801A JP11780183A JPH032816B2 JP H032816 B2 JPH032816 B2 JP H032816B2 JP 58117801 A JP58117801 A JP 58117801A JP 11780183 A JP11780183 A JP 11780183A JP H032816 B2 JPH032816 B2 JP H032816B2
Authority
JP
Japan
Prior art keywords
nickel
molybdenum
alumina
conductor
sio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58117801A
Other languages
Japanese (ja)
Other versions
JPS6011259A (en
Inventor
Katsu Seno
Kimihide Sugo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP58117801A priority Critical patent/JPS6011259A/en
Publication of JPS6011259A publication Critical patent/JPS6011259A/en
Publication of JPH032816B2 publication Critical patent/JPH032816B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

この発明はフオルステライトを主成分とする低
温焼結可能な磁器組成物に関するものである。 たとえばIC基板にはセラミクスが用いられて
きたが、小型化、高密度化、低廉化、さらには回
路伝播の高速度化に伴い、多層化の方向にある。 従来、IC多層基板用のセラミクスとしては、
主としてアルミナ系の材料が用いられてきた。こ
のアルミナ系のIC多層基板は次のようにして製
造されていた。つまり、アルミナ92〜97重量%、
CaO−MgO−SiO2系ガラス残部からなる混合粉
末に有機バインダ、溶剤を加えて泥漿とし、ドク
ターブレード法などのシート成形法によつてセラ
ミツクグリーンシートに成形し、このシート上に
タングステン、モリブデン、あるいはモリブデン
−マンガンなどのペーストで所望の回路導体パタ
ーンを形成し、次いでシートを積み重ねて熱圧着
し、これを加湿水素−窒素混合ガス、あるいはア
ンモニア分解ガスの雰囲気中において1600〜1700
℃で焼成していた。 このようにアルミナからなる多層基板は高純度
のアルミナを用い、高温で焼成する必要があるた
め、内部の回路導体の材料として融点の高いタン
グステン、モリブデンなどを用いなければならな
いという制約がある。したがつて、焼成コストが
高くなること、アルミナの誘電率が10程度あるた
め信号伝播遅延や雑音が発生すること、タングス
テン、モリブデンなどは導体抵抗が高く、抵抗を
下げるには導体幅を広げることで対処しなければ
ならないが、これは高密度化と逆行すること、ま
た導体抵抗が高いということに起因して回路の高
速度化を制限すること、などの問題を有してい
た。 したがつて、この発明は低温焼結が可能で、多
層化、低廉化などが容易に実現できる磁器組成物
を提供することを目的とする。 また、この発明は低誘電率で、内部導体にNi
などの導体抵抗が低い材料が使用でき、したがつ
て雑音の発生が少なく、信号伝播の遅延解消や高
速度化が可能な多層基板を構成することのできる
磁器組成物を提供することを目的とする。 すなわち、この発明の要旨とするところは、酸
化カルシウム、酸化バリウム、および酸化ストロ
ンチウムを含むフオルステライトを主成分とし、 これを一般式2(Mg1-(x+y+z)CaxBaySrz)O・u
SiO2と表わしたとき、x+y+z=0.05〜0.35、
u=1.01〜1.06の範囲にあり、この主成分に対し
てSiO2、Al2O3を主成分とする蛙目粘土などの焼
結促進剤を0.1〜2.0重量%添加含有させてなる磁
器組成物である。 この磁器組成物のx、y、z、uの値、および
添加物の値を上記した範囲に限定した理由、いず
れも範囲から外れると低温焼結、たとえば空気中
では1350℃以下では焼結せず、還元雰囲気中では
1330℃以下では焼結しないからである。このよう
にこの磁器組成物によれば、空気中あるいは還元
雰囲気中のいずれでも低温焼結可能であるが、た
だ空気中で焼成すると磁器の色調が黄色味を帯び
る点で外観上問題がある。 また、多層基板としたとき、内部の回路導体の
材料としてはモリブデン、ニツケル、あるいはパ
ラジウムなどがあるが、ニツケルを回路導体とし
て使用するときはニツケルの酸化防止のため焼成
雰囲気は窒素などの還元雰囲気が選ばれる。モリ
ブデンを用いたときは比抵抗が2×10-3Ω・cmで
あり、これにくらべてニツケルは比抵抗が1×
10-4Ω・cmであることから、回路伝播の高速度化
を考慮した場合、回路導体の材料としてニツケル
が好ましいと云える。このほか使用可能と考えら
れる回路導体用の材料としては銀−パラジウムが
ある。この回路導体は10-5Ω・cmの比抵抗があり
低抵抗のものを得る上で好都合であるが、ただ多
層基板への拡散と反応が見られ、かつ多層基板の
色調が黄色味を帯びるため、アルミナの多層基板
に代わるものとしては採用し難いものである。 この発明にかかる磁器組成物はアルミナにくら
べて素原料費が20〜30%アツプするものの、低温
焼成によるコストダウンにより素原料費のアツプ
分を回収できる。また回路導体の材料としてモリ
ブデン、タングステンの代わりにニツケルを用い
たとき、材料費のコストダウンにより多層基板に
したとき30〜50%のコストダウンとなる。しかも
ニツケルを用いると回路導体の抵抗が約1/5とな
り、導体幅を狭くできることになるため小型化を
実現できる。さらに誘電率がアルミナにくらべて
20〜30%低下するため、信号伝播遅延の回避や、
雑音発生の防止が可能となり、多層基板にとつて
有益な結果をもたらすことになる。 以下、この発明を実施例に従つて詳細に説明す
る。 素原料として、MgO、CaO、BaO、SrO、
SiO2、焼結促進剤である蛙目粘土(Al2O3
SiO2:H2O=2モル:1モル:2モル)を用い
た。素原料としては酸化物のほか焼成によつて酸
化物となる、たとえば炭酸塩を用いてもよい。次
いで素原料を第1表に示す組成比のものが得られ
るように調合し、調合したものを湿式混合し、脱
水乾燥した後900〜1100℃、空気中で仮焼した。
この仮焼物を平均粒径2〜3μmになるように粉
砕して篩を通した粉末100重量部に対し、ポリビ
ニルブチラールを5〜10重量%、トルエンなどの
有機溶剤60〜80重量%、フタル酸エステルなどの
可塑剤を1〜2重量%加えて40時間混合した。得
られたスラリーを脱泡したのち、ドクターブレー
ド法によつて0.5〜1mmの肉厚のグリーンシート
になるようにシート成形した。素材評価のために
このシートを1インチ角に打ち抜き、第1表に示
した焼成条件で焼成した。なお、焼成雰囲気は窒
素/水素の容量比が100/1で、流量を1/hr、
露点を+40℃とした。この焼結板の両面に銀ペー
ストを印刷し、800℃、30分間の条件で銀電極を
焼き付け、誘電率(ε)、誘電損失(tanδ)およ
び絶縁抵抗(IR)の各電気的特性を測定し、そ
の結果を第1表に合わせて示した。第1表中、※
印を付したものはこの発明範囲外のものであり、
それ以外は発明範囲内のものである。
The present invention relates to a porcelain composition containing forsterite as a main component and capable of being sintered at low temperatures. For example, ceramics have been used for IC substrates, but as they become smaller, more dense, less expensive, and even faster in circuit propagation, they are becoming more multilayered. Traditionally, ceramics for IC multilayer substrates include:
Alumina-based materials have mainly been used. This alumina-based IC multilayer board was manufactured as follows. That is, alumina 92-97% by weight,
An organic binder and a solvent are added to the mixed powder consisting of CaO-MgO-SiO 2 glass residue to form a slurry, which is then formed into a ceramic green sheet using a sheet forming method such as the doctor blade method.Tungsten, molybdenum, Alternatively, a desired circuit conductor pattern is formed using a paste such as molybdenum-manganese, and then the sheets are stacked and bonded by thermocompression.
It was fired at ℃. In this way, multilayer substrates made of alumina use high-purity alumina and must be fired at high temperatures, so there is a restriction that tungsten, molybdenum, etc., which have high melting points, must be used as the material for the internal circuit conductors. Therefore, the firing cost increases, alumina has a dielectric constant of about 10, which causes signal propagation delays and noise, and tungsten, molybdenum, etc. have high conductor resistance, and to lower the resistance it is necessary to widen the conductor width. However, this had problems such as going against the trend of higher density and limiting the speed increase of the circuit due to the high conductor resistance. Therefore, an object of the present invention is to provide a ceramic composition that can be sintered at low temperatures, and can easily be multilayered and inexpensive. In addition, this invention has a low dielectric constant, and the internal conductor is made of Ni.
The purpose of the present invention is to provide a ceramic composition that can use materials with low conductor resistance, such as materials, that generate less noise, eliminate delay in signal propagation, and can increase speed. do. That is, the gist of the present invention is that forsterite containing calcium oxide, barium oxide, and strontium oxide is the main component, and is formed by formula 2 (Mg 1-(x+y+z) Ca x Ba y Sr z ) O・u
When expressed as SiO 2 , x+y+z=0.05~0.35,
A porcelain composition in which u is in the range of 1.01 to 1.06, and 0.1 to 2.0% by weight of a sintering accelerator such as frog's eye clay containing SiO 2 and Al 2 O 3 as main components is added to this main component. It is a thing. The reason why the values of x, y, z, and u of this porcelain composition and the values of additives were limited to the above ranges.If any of them are out of the range, low temperature sintering will occur, for example, sintering will not be possible at 1350°C or lower in air. In a reducing atmosphere
This is because it does not sinter at temperatures below 1330°C. Thus, according to this porcelain composition, low-temperature sintering can be performed either in air or in a reducing atmosphere, but there is a problem in terms of appearance in that the color tone of the porcelain becomes yellowish when fired simply in air. In addition, when making a multilayer board, the material for the internal circuit conductor may be molybdenum, nickel, or palladium, but when nickel is used as the circuit conductor, the firing atmosphere is a reducing atmosphere such as nitrogen to prevent oxidation of the nickel. is selected. When molybdenum is used, the resistivity is 2×10 -3 Ω・cm, compared to nickel, which has a resistivity of 1×
Since it is 10 -4 Ω·cm, it can be said that nickel is preferable as the material for the circuit conductor when considering higher speed of circuit propagation. Other materials for circuit conductors that may be used include silver-palladium. This circuit conductor has a specific resistance of 10 -5 Ω・cm, which is convenient for obtaining low resistance, but it does cause diffusion and reaction to the multilayer board, and the color tone of the multilayer board takes a yellowish tinge. Therefore, it is difficult to adopt it as a substitute for alumina multilayer substrates. Although the cost of raw materials for the porcelain composition according to the present invention is 20 to 30% higher than that of alumina, the increased cost of raw materials can be recovered by reducing costs by firing at low temperatures. Furthermore, when nickel is used instead of molybdenum or tungsten as the material for the circuit conductor, the cost of the material is reduced, resulting in a cost reduction of 30 to 50% when a multilayer board is made. Furthermore, by using nickel, the resistance of the circuit conductor is reduced to about 1/5, which means that the width of the conductor can be narrowed, making it possible to achieve miniaturization. Furthermore, the dielectric constant is higher than that of alumina.
20-30% reduction, which helps avoid signal propagation delays,
This makes it possible to prevent noise generation, which is beneficial for multilayer boards. Hereinafter, this invention will be explained in detail according to examples. As raw materials, MgO, CaO, BaO, SrO,
SiO 2 , sintering accelerator Frog's eye clay (Al 2 O 3 :
SiO 2 :H 2 O=2 mol: 1 mol: 2 mol) was used. As raw materials, in addition to oxides, carbonates, which become oxides upon firing, may be used. Next, the raw materials were mixed so as to have the composition ratios shown in Table 1, and the mixed mixture was wet-mixed, dehydrated and dried, and then calcined in air at 900-1100°C.
To 100 parts by weight of the calcined product, which was crushed to an average particle size of 2 to 3 μm and passed through a sieve, 5 to 10 parts by weight of polyvinyl butyral, 60 to 80 parts by weight of an organic solvent such as toluene, and phthalic acid were added. A plasticizer such as ester was added in an amount of 1 to 2% by weight and mixed for 40 hours. After defoaming the obtained slurry, it was formed into a green sheet with a wall thickness of 0.5 to 1 mm by a doctor blade method. For material evaluation, this sheet was punched into 1-inch squares and fired under the firing conditions shown in Table 1. The firing atmosphere had a nitrogen/hydrogen capacity ratio of 100/1, a flow rate of 1/hr,
The dew point was +40°C. Silver paste was printed on both sides of this sintered plate, silver electrodes were baked at 800℃ for 30 minutes, and the electrical properties of dielectric constant (ε), dielectric loss (tanδ), and insulation resistance (IR) were measured. The results are also shown in Table 1. In Table 1, *
Those marked are outside the scope of this invention.
Others are within the scope of the invention.

【表】 第1表から明らかなように、誘電損失、絶縁抵
抗はアルミナと同程度であり、誘電率はアルミナ
より低い7.6〜8.2のものが得られている。また色
調もアルミナと同じ白色であつた。 次に、上記した工程で準備したグリーンシート
の上に、回路導体を構成する材料であるモリブデ
ン、ニツケル、銀−パラジウムの各ペーストを印
刷し、同寸法のグリーンシートを重ねて60℃、
500〜1000Kg/cm2、90秒の条件で熱圧着し、モリ
ブデン、ニツケルのものは窒素/水素中で、銀−
パラジウムのものは空気中で焼結した。なお、モ
リブデン、ニツケルのものは上記した工程と同じ
条件で焼成し、銀−パラジウムのものは1325℃、
2時間の条件で焼成した。 得られた試料について、磁器と回路導体との反
応性、回路導体の比抵抗を測定したところ、モリ
ブデン、ニツケルのものは磁器との反応がなく、
モリブデンのものは比抵抗が2×10-3Ω・cmであ
り、ニツケルのそれは1×10-4Ω・cmであつた。
一方、銀パラジウムからなるものは比抵抗が10-5
Ω・cmの値が得られるものの、磁器への拡散、反
応が確認された。したがつて、この磁器を用いた
多層基板の回路導体は種々の制約を勘案した場合
ニツケルが最も好ましいと判断できる。
[Table] As is clear from Table 1, the dielectric loss and insulation resistance are on the same level as alumina, and the dielectric constant is 7.6 to 8.2, which is lower than that of alumina. The color tone was also white, the same as alumina. Next, pastes of molybdenum, nickel, and silver-palladium, which are the materials constituting the circuit conductor, are printed on the green sheet prepared in the above process, and green sheets of the same size are stacked and heated at 60℃.
500-1000Kg/cm 2 , 90 seconds for thermocompression bonding, molybdenum and nickel are bonded in nitrogen/hydrogen, silver-
The palladium one was sintered in air. The molybdenum and nickel ones were fired under the same conditions as the above process, and the silver-palladium ones were fired at 1325°C.
It was fired for 2 hours. When we measured the reactivity between the porcelain and the circuit conductor and the specific resistance of the circuit conductor for the obtained samples, we found that the samples made of molybdenum and nickel had no reaction with the porcelain.
The resistivity of molybdenum was 2×10 -3 Ω·cm, and that of nickel was 1×10 -4 Ω·cm.
On the other hand, those made of silver palladium have a specific resistance of 10 -5
Although a value of Ω·cm was obtained, diffusion and reaction into the porcelain were confirmed. Therefore, considering various restrictions, it can be determined that nickel is the most preferable circuit conductor for a multilayer board using this ceramic.

Claims (1)

【特許請求の範囲】 1 酸化カルシウム、酸化バリウム、および酸化
ストロンチウムを含むフオルステライトを主成分
とし、 これを一般式2(Mg1-(x+y+z)CaxBaySrz)O・u
SiO2と表わしたとき、x+y+z=0.05〜0.35、
u=1.01〜1.06の範囲にあり、この主成分に対し
てSiO2、Al2O3を主成分とする蛙目粘土などの焼
結促進剤を0.1〜2.0重量%添加含有させてなる磁
器組成物。
[Claims] 1 The main component is forsterite containing calcium oxide, barium oxide, and strontium oxide, which is formed by the general formula 2 (Mg 1-(x+y+z) Ca x Ba y Sr z )O. u
When expressed as SiO 2 , x+y+z=0.05~0.35,
A porcelain composition in which u is in the range of 1.01 to 1.06, and 0.1 to 2.0% by weight of a sintering accelerator such as frog's eye clay containing SiO 2 and Al 2 O 3 as main components is added to this main component. thing.
JP58117801A 1983-06-28 1983-06-28 Ceramic composition Granted JPS6011259A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58117801A JPS6011259A (en) 1983-06-28 1983-06-28 Ceramic composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58117801A JPS6011259A (en) 1983-06-28 1983-06-28 Ceramic composition

Publications (2)

Publication Number Publication Date
JPS6011259A JPS6011259A (en) 1985-01-21
JPH032816B2 true JPH032816B2 (en) 1991-01-17

Family

ID=14720612

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58117801A Granted JPS6011259A (en) 1983-06-28 1983-06-28 Ceramic composition

Country Status (1)

Country Link
JP (1) JPS6011259A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0686327B2 (en) * 1985-04-16 1994-11-02 旭硝子株式会社 Ceramic substrate composition
JPH066364Y2 (en) * 1987-08-28 1994-02-16 三田工業株式会社 Detachable structure of process unit
GB201015326D0 (en) 2010-09-14 2010-10-27 Gripple Ltd Improvements in or realting to clamping members and clamping devices
JP2014209477A (en) * 2013-03-28 2014-11-06 Toto株式会社 Solid oxide fuel battery cell and method for manufacturing the same
CN103253490B (en) * 2013-04-26 2015-11-18 湖北红花高温材料有限公司 A kind of take forsterite as ceramic support roller of raw material and preparation method thereof

Also Published As

Publication number Publication date
JPS6011259A (en) 1985-01-21

Similar Documents

Publication Publication Date Title
JPH03241724A (en) Composite circuit board with a built-in capacitor
JP3687443B2 (en) Low temperature fired ceramic composition and ceramic multilayer substrate
JPH032816B2 (en)
JP4748904B2 (en) Glass ceramic sintered body and wiring board using the same
JP2003063861A (en) Composite laminated ceramic electronic part and method for producing the same
JP2681216B2 (en) Composite circuit board with built-in capacitor
JP2000211969A (en) Porcelain fired at lower temperature and electronic parts equipped therewith
JP2005217170A (en) Composite multilayer ceramic electronic component
JP2753892B2 (en) Composite circuit board with built-in capacitor
JP2003277852A (en) Copper metallized composition and ceramic wiring board
JP2002053369A (en) Ceramic sintered compact and wiring board using the same
JPH033627B2 (en)
JP3420426B2 (en) Copper metallized composition and glass-ceramic wiring board using the same
JPH01166599A (en) Manufacture of laminated ceramic substrate
JPH05178659A (en) Porcelain composition for insulator
JP2652229B2 (en) Multilayer circuit ceramic substrate
JP2600778B2 (en) Low temperature sintering porcelain composition for multilayer substrate
JP3315233B2 (en) Composition for ceramic substrate
JP2842705B2 (en) Composite circuit board with built-in capacitor
JPH0738214A (en) Glass ceramic board and manufacturing method
JP3233020B2 (en) Manufacturing method of multilayer ceramic capacitor
JP2005216998A (en) Ceramic circuit board and manufacturing method therefor
JPH068189B2 (en) Oxide dielectric material
JP2989945B2 (en) Composite circuit board with built-in capacitor
JP2001247365A (en) Dielectric substance ceramic composition, electronic part and electronic apparatus