JPS63222043A - Low-temperature sintering ceramic - Google Patents

Low-temperature sintering ceramic

Info

Publication number
JPS63222043A
JPS63222043A JP5329787A JP5329787A JPS63222043A JP S63222043 A JPS63222043 A JP S63222043A JP 5329787 A JP5329787 A JP 5329787A JP 5329787 A JP5329787 A JP 5329787A JP S63222043 A JPS63222043 A JP S63222043A
Authority
JP
Japan
Prior art keywords
low
aluminum nitride
glass
crystal particles
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5329787A
Other languages
Japanese (ja)
Inventor
Shoichi Tosaka
正一 登坂
Kenji Fukaya
深谷 健二
Kenichi Hoshi
健一 星
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Yuden Co Ltd
Original Assignee
Taiyo Yuden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Yuden Co Ltd filed Critical Taiyo Yuden Co Ltd
Priority to JP5329787A priority Critical patent/JPS63222043A/en
Publication of JPS63222043A publication Critical patent/JPS63222043A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C14/00Glass compositions containing a non-glass component, e.g. compositions containing fibres, filaments, whiskers, platelets, or the like, dispersed in a glass matrix
    • C03C14/004Glass compositions containing a non-glass component, e.g. compositions containing fibres, filaments, whiskers, platelets, or the like, dispersed in a glass matrix the non-glass component being in the form of particles or flakes
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2214/00Nature of the non-vitreous component
    • C03C2214/04Particles; Flakes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Compositions (AREA)

Abstract

PURPOSE:To obtain a low-temperature sintering ceramic having low sintering temperature to enable sintering together with an electrode material such as Cu, Ni and Ag, by combining a glass layer and a number of crystal particles including aluminum nitride crystal particles having aluminum oxide layer on the surface. CONSTITUTION:Aluminum nitride powder is mixed with pure water, boiled and separated by suction filtration to obtain aluminum nitride powder having aluminum oxide layer on the surface. The aluminum nitride powder coated with aluminum oxide is mixed with specific amounts of CaO-B2O3-SiO2 glass powder, polyvinyl butyral resin, DBP, acetone and oleic acid and stirred in a ball mill to obtain a homogeneous slurry. The objective low-temperature sintering ceramic composed of AlN crystal particles 1 having Al2O3 layer 2 and a glass layer 3 can be produced by heat-treating and calcining the slurry. The ceramic exhibits thermal conductivity close to that of high-temperature sintering alumina substrate in addition to the above-mentioned characteristics.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、回路基板、多層配線基板、集積回路用パッケ
ージ等に用いられる低温焼結型磁器に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to low-temperature sintered porcelain used for circuit boards, multilayer wiring boards, integrated circuit packages, and the like.

[従来の技術とその問題点] 絶縁基板として、高温焼結のアルミナ磁器基板、ガラス
含有低温焼結アルミナ磁器基板、窒化アルミニウム基板
等が知られている。
[Prior Art and its Problems] As insulating substrates, high-temperature sintered alumina porcelain substrates, low-temperature sintered glass-containing alumina porcelain substrates, aluminum nitride substrates, and the like are known.

高温焼結のアルミナ磁器基板は、高密度、及び比較的高
い熱伝導率を有する反面、焼成温度が1500〜160
0℃と高いので、電極材料を同時焼成する場合にはMo
 、W等の高価な金属を使用しなければならならという
欠点、及び焼成コス1〜が高くなるという欠点を有する
High-temperature sintered alumina porcelain substrates have high density and relatively high thermal conductivity, but the firing temperature is 1500-160℃.
Since the temperature is as high as 0°C, Mo
, W and other expensive metals must be used, and the firing cost is high.

カラス含有低温焼結アルミナ磁器基板は、低温(850
〜1000℃)焼成で得ることができるので、CU等の
卑金属電極材料との同時焼成が可能であり、且つ焼結コ
スI・が安いという長所を有する反面、熱伝導率が例え
ば0.003〜0.01 [cal cm/s ’Cc
J]のように低いという短所を有する。
Glass-containing low-temperature sintered alumina porcelain substrate
Since it can be obtained by firing at 1000℃), it can be fired simultaneously with base metal electrode materials such as CU, and has the advantage of low sintering cost I. 0.01 [cal cm/s 'Cc
J] has the disadvantage of being low.

窒化アルミニウム基板は熱伝導率が極めて高いという長
所を有する反面、焼結温度が高い(1800°C程度)
ので、電極を同時焼成する場所にはW、Mo等を使用し
なければならないという欠点、及び焼成コスト及び製品
コス1−か高くなるという欠点を有する。
Aluminum nitride substrates have the advantage of extremely high thermal conductivity, but on the other hand, the sintering temperature is high (approximately 1800°C).
Therefore, there are disadvantages in that W, Mo, etc. must be used in the place where the electrodes are simultaneously fired, and in that the firing cost and product cost increase by 1-.

そこで、本発明の目的は、cu 、Ni 、Ag、Ag
−Pd等の電極材料を同時焼成することができるような
低い焼結温度を有し、且つ高温焼結アルミナ基板に近い
熱伝導率を有する低温焼結型磁器を提供することにある
Therefore, the purpose of the present invention is to
- It is an object of the present invention to provide a low-temperature sintered porcelain that has a low sintering temperature that allows electrode materials such as Pd to be co-fired, and has a thermal conductivity close to that of a high-temperature sintered alumina substrate.

[問題点を解決するための手段] 上記目的を達成するための本発明は、多数の結晶粒子と
カラス層とから成る低温焼結型磁器において、前記多数
の結晶粒子の少なくとも一部を表面に酸化アルミニウム
層を有する窒化アルミニウム結晶粒子としたことを特徴
とする低温焼結型磁器に係わるものである。
[Means for Solving the Problems] To achieve the above object, the present invention provides a low-temperature sintered porcelain consisting of a large number of crystal grains and a glass layer, in which at least a part of the large number of crystal grains is on the surface. The present invention relates to low-temperature sintered porcelain characterized by aluminum nitride crystal grains having an aluminum oxide layer.

[作 用] 窒化アルミニウム結晶粒子は熱伝導率の向上に寄与する
。窒化アルミニウム結晶粒子そのものにカラス成分を混
合しても焼結不可能又は困難であり、緻密で熱伝導率の
高い焼結体を得ることができないが、本発明に従う表面
に酸化アルミニウム層を有する窒化アルミニウム結晶粒
子の場合には、緻密で熱伝導率の高い焼結体を得ること
ができる。
[Function] Aluminum nitride crystal particles contribute to improving thermal conductivity. Even if a glass component is mixed into the aluminum nitride crystal particles themselves, sintering is impossible or difficult, and a dense and highly thermally conductive sintered body cannot be obtained. In the case of aluminum crystal particles, a dense sintered body with high thermal conductivity can be obtained.

これは、窒化アルミニウム結晶粒子の表面の酸化アルミ
ニウムがガラスに対して濡れ性が良いためである。
This is because aluminum oxide on the surface of aluminum nitride crystal particles has good wettability with glass.

[実施例] 次に、本発明の実施例(比較例も含む)を説明する。ま
ず、第1表の試料番号1における酸化アルミニウム(A
1203)層を有する窒化アルミニウム(AIN)結晶
粒子を得るために、平均粒径1μmのAIN粉末200
gを純水500m1と混合し、100℃で10分煮沸し
た後、吸引ろ過して粉末を分離し、表面に酸化アルミニ
ウム層を有する窒化アルミニウム粉末を得な。
[Example] Next, Examples (including comparative examples) of the present invention will be described. First, aluminum oxide (A
1203) AIN powder 200 with an average particle size of 1 μm to obtain aluminum nitride (AIN) crystal grains with layers
g with 500 ml of pure water, boiled at 100° C. for 10 minutes, and filtered with suction to separate the powder to obtain aluminum nitride powder having an aluminum oxide layer on the surface.

次に、得られた酸化アルミニウム被覆AIN粉末100
重量部に、平均粒径2μmのCaO−B2O3−8i0
2ガラス粉末ioo重量部、ポリビニルブチラール樹脂
14重量部、ジブデルフタレート14重量部、アセトン
60重量部、オレイン酸1重量部を加え、ボールミルで
撹拌して均一スラリーを作った。
Next, the obtained aluminum oxide coated AIN powder 100
The weight part contains CaO-B2O3-8i0 with an average particle size of 2 μm.
2.00 parts by weight of glass powder, 14 parts by weight of polyvinyl butyral resin, 14 parts by weight of dibdelphthalate, 60 parts by weight of acetone, and 1 part by weight of oleic acid were added and stirred with a ball mill to prepare a uniform slurry.

次に、得られたスラリーによって厚さ0,25ml1l
のセラミックグリーンシートをドクターブレード法で作
成し、10CI11×100rrlの寸法に切断した。
Next, the obtained slurry is used to make a thickness of 0.25 ml 1 liter.
A ceramic green sheet was prepared using a doctor blade method and cut into a size of 10CI11×100rrl.

次に、得られたグリーンシートを直径16m111の円
板形に打ち抜き、第1の試料片を作成しな。また得られ
たグリーンシーI・を17枚(厚さ約4II1m>重ね
て圧着した後、36mll1×4rr1mの寸法に切断
し、第2の試料片を作成しな。
Next, the obtained green sheet was punched out into a disk shape with a diameter of 16 m111 to prepare a first sample piece. In addition, 17 sheets of the obtained Green Sea I. (thickness approximately 4 mm) were piled up and crimped, and then cut into a size of 36 ml 1 x 4 rr 1 m to prepare a second sample piece.

次に、上記第1及び第2の試料片を熱処理炉内で大気中
100℃/minで600℃まで昇温し、更に、炉内の
雰囲気をH3vo1%−N297v01%の還元性雰囲
気に置換し、100℃/分の速度で950℃まで昇温し
た後、3時間保持し、同じ雰囲気条件を維持しながら常
温まで冷却して第1及び第2の焼結体試料を得な。各焼
結体は、第1図に示す如く表面にA I 203層2を
有するAIN結晶粒子1とガラス層3とから成る。
Next, the first and second sample pieces were heated in the air in a heat treatment furnace to 600°C at a rate of 100°C/min, and the atmosphere in the furnace was replaced with a reducing atmosphere of 1% H3vol-1% N297v01. , the temperature was raised to 950° C. at a rate of 100° C./min, held for 3 hours, and cooled to room temperature while maintaining the same atmospheric conditions to obtain first and second sintered body samples. Each sintered body consists of AIN crystal particles 1 having an A I 203 layer 2 on the surface and a glass layer 3, as shown in FIG.

次に、上記第1の焼結体試料の両生面にIn −Ga合
金を塗布し、直径10+I1mの電極を設け、比誘電率
ε、誘電体損失tanδの逆数Q、及び抵抗率ρ[Ωc
ra]を測定した。この際、比誘電率εは、室温25°
Cでl MHzの周波数で測定した静電容量により算出
し、Qは上記静電容量と同じ条件で測定しな。また、抵
抗率ρは、直流電圧500Vを60秒間印加した後の絶
縁抵抗値より算出した。
Next, an In-Ga alloy was applied to the bifacial surfaces of the first sintered sample, and an electrode with a diameter of 10+I1 m was provided.
ra] was measured. At this time, the relative dielectric constant ε is 25° at room temperature.
Q is calculated from the capacitance measured at a frequency of 1 MHz at C, and Q is measured under the same conditions as the capacitance above. Further, the resistivity ρ was calculated from the insulation resistance value after applying a DC voltage of 500 V for 60 seconds.

また、上記第1の焼結体試料について、レーザーフラッ
シュ法により熱伝導率[Cal C11l/S ’Ca
&]を測定しな。また、上記第2の焼結体試料について
、温度20〜500℃における線膨張係数α[1/’C
]を測定した。
Furthermore, the thermal conductivity [Cal C11l/S 'Ca
&]. Furthermore, regarding the second sintered body sample, the linear expansion coefficient α[1/'C
] was measured.

第1表のAINの煮沸の欄には、純水中でAIN粉末を
煮沸してこの表面にAl2O3層を形成する際の煮沸時
間が示されている。AINの重量部の欄には、ガラスと
混合するためのAIN粉末の割合が示されている。A 
I 203の欄には、第2図のAt  O結晶粒子4を
得るためのA1203粉末の割合が重量部で示されてい
る。ガラスの欄には、ガラス層3を得るためのガラス粉
末の割合が示されている。焼成温度の欄には還元性雰囲
気における焼成温度が示されている。第2表には、各試
料の熱伝導率、熱膨張係数、ε、Q、ρが示されている
The boiling column of AIN in Table 1 shows the boiling time for forming an Al2O3 layer on the surface of the AIN powder by boiling it in pure water. The column Parts by Weight of AIN indicates the proportion of AIN powder to be mixed with the glass. A
In the column I 203, the proportion of A1203 powder in parts by weight to obtain the At 2 O crystal particles 4 of FIG. 2 is shown. In the glass column, the proportion of glass powder for obtaining the glass layer 3 is shown. The firing temperature column shows the firing temperature in a reducing atmosphere. Table 2 shows the thermal conductivity, thermal expansion coefficient, ε, Q, and ρ of each sample.

試料番号2〜5においては、第1表から明らかな如く、
AIN粉末の煮沸時間のみが30〜180分に変えられ
ている。この他は試料番号1と同一条件で焼結体を作成
し、同一条件で特性を測定した。
In sample numbers 2 to 5, as is clear from Table 1,
Only the boiling time of the AIN powder was changed from 30 to 180 minutes. A sintered body was otherwise produced under the same conditions as Sample No. 1, and its properties were measured under the same conditions.

試料番号6〜11においては、第1表から明らかな如く
、煮沸時間を種々変化させ、且つAIN結晶粒子の平均
粒径を5μmに変えた他は、試料番号1と同じ方法で焼
結体を作成し、同じ方法で特性を測定した。
For sample numbers 6 to 11, as is clear from Table 1, the sintered bodies were made in the same manner as sample number 1, except that the boiling time was varied and the average grain size of the AIN crystal particles was changed to 5 μm. were prepared and their properties were measured using the same method.

試料番号12〜15においては、煮沸時間を30分間と
し、Al203Nで被覆されたAIN結晶粒子の他に平
均粒径1μmのA I 203粉末をガラスと混合して
試料番号1と同一方法で焼結体を作成し、同一方法で特
性を測定しな。この試料番号12〜15の焼結体は、第
2図に示す如くAl2O3層2で被覆されたAIN結晶
粒子1とAl2O3粒子4とガラス層3とから成る。
In sample numbers 12 to 15, the boiling time was 30 minutes, and in addition to the Al203N-coated AIN crystal particles, AI 203 powder with an average particle size of 1 μm was mixed with glass and sintered in the same manner as sample number 1. Create a body and measure its properties in the same way. The sintered bodies of sample numbers 12 to 15 are composed of AIN crystal particles 1 covered with an Al2O3 layer 2, Al2O3 particles 4, and a glass layer 3, as shown in FIG.

試料番号16〜23においては、30分間煮沸しなAI
N結晶粒子を100重量部に固定して、ガラスを0〜3
00重量部の範囲で変化させた他は、試料番号1と同じ
方法で焼結体を作成し、同一方法で特性を測定した。
For sample numbers 16 to 23, AI should not be boiled for 30 minutes.
N crystal particles are fixed at 100 parts by weight, and the glass is 0 to 3 parts by weight.
A sintered body was prepared in the same manner as Sample No. 1, except that the amount was varied within a range of 0.00 parts by weight, and the properties were measured in the same manner.

試料番号24〜27においては、煮沸時間を30分とし
、焼成温度を700〜1200℃の範囲で変化させた他
は試料番号1と同じ方法で焼結体を作成し、同じ方法で
特性を測定した。
For sample numbers 24 to 27, sintered bodies were created in the same manner as sample number 1, except that the boiling time was 30 minutes and the firing temperature was varied in the range of 700 to 1200°C, and the characteristics were measured in the same manner. did.

第1表 第  1  表  (続  き) 第2表 第  2  表  (続  き) 試料番号1の熱伝導率は0 、033 cal c印/
°C−であり、従未のガラスを含む低温焼結型アルミナ
基板のそれよりも大幅に大きい。これは、熱伝導率の大
きいAIN結晶粒子]が焼結体に含まれているためであ
る。ところで、単にAIN結晶粒子を焼結体に含ませて
も目的とする焼結体を得ることができない。即ち、試料
番号28に示す如く、煮沸時間が零であるためにAl2
O3層2を有していないAIN粉末とガラス粉末とを混
合したものにおいては、950°Cで焼結させることが
できない。
Table 1 Table 1 (Continued) Table 2 Table 2 (Continued) The thermal conductivity of sample number 1 is 0, 033 cal c mark/
°C-, which is significantly larger than that of conventional glass-containing low-temperature sintered alumina substrates. This is because the sintered body contains AIN crystal particles with high thermal conductivity. By the way, the desired sintered body cannot be obtained simply by including AIN crystal particles in the sintered body. That is, as shown in sample number 28, since the boiling time is zero, Al2
A mixture of AIN powder and glass powder that does not have the O3 layer 2 cannot be sintered at 950°C.

試料番号1〜5に示す如く平均粒径1μmのAIN粉末
を10〜180分煮沸、また試料番号6〜11に示す如
く平均粒径5μmのAIN粉末を5〜240分煮沸する
と、厚さ0.01〜0.1μmのAI 203屑2がA
IN結晶粒子1の表面に形成され、これがガラスとの濡
れ性向上に寄与し、低温焼結か可能になる。
When AIN powder with an average particle size of 1 μm is boiled for 10 to 180 minutes as shown in sample numbers 1 to 5, and AIN powder with an average particle size of 5 μm as shown in sample numbers 6 to 11 is boiled for 5 to 240 minutes, a thickness of 0. 01~0.1μm AI 203 scrap 2 is A
Formed on the surface of the IN crystal particles 1, this contributes to improved wettability with glass and enables low-temperature sintering.

試料番号16〜18のカラス成分が0〜40重量部の場
合は、950℃で焼結させることができない。従って、
ガラスの量は、60重量部以上であることが望ましい。
When the glass component of sample numbers 16 to 18 is 0 to 40 parts by weight, it cannot be sintered at 950°C. Therefore,
The amount of glass is desirably 60 parts by weight or more.

試料番号24に示すように焼成温度が700℃では焼結
しない。従って、焼成温度は800℃以上であることが
望ましい。
As shown in sample number 24, sintering does not occur when the firing temperature is 700°C. Therefore, it is desirable that the firing temperature is 800°C or higher.

試料番号12〜15から明らかな如く、AIN結晶粒子
1とAI 203結晶粒子4とが混在する場合も、AI
N結晶粒子の効果を得ることかできる。
As is clear from sample numbers 12 to 15, even when AIN crystal grain 1 and AI 203 crystal grain 4 coexist, AI
It is possible to obtain the effect of N crystal particles.

試料番号1〜15.19〜23.25〜27においては
、熱伝導率、熱膨張係数、ε、Q、ρのいずれも回路基
板として満足な値を有する。
In sample numbers 1 to 15.19 to 23.25 to 27, thermal conductivity, coefficient of thermal expansion, ε, Q, and ρ all have values that are satisfactory as circuit boards.

[変形例] 本発明は上述の実施例に限定されるものでなく、例えば
次の変形が可能なものである。
[Modifications] The present invention is not limited to the above-described embodiments, and, for example, the following modifications are possible.

(1)実施例では電極材料を同時焼成しなかったが、多
層配線基板、集積回路用パッケージ等を形成するために
、グリーンシートに電極材料のペーストを印刷し、同時
に焼成してもよい。
(1) Although the electrode material was not fired at the same time in the example, in order to form a multilayer wiring board, an integrated circuit package, etc., a paste of the electrode material may be printed on a green sheet and fired at the same time.

(2)カラスとして、 Ca0−B  ○ −3i○ −A1203系ガラス、 Ba0−B  O−9iO−AI203系ガラス、 B  OS i 02系カラス、 A12o3−B2O2−8iO2系ガ−7ス等にも使用
することができる。
(2) As a glass, also used for Ca0-B ○ -3i○ -A1203 series glass, Ba0-B O-9iO-AI203 series glass, BOS i 02 series glass, A12o3-B2O2-8iO2 series glass, etc. can do.

(3)混合物を作る場合のビヒクル(ツクイングー、分
散剤、溶剤等)の種類を種々変えることができる。
(3) When making a mixture, the type of vehicle (such as a liquid, a dispersant, a solvent, etc.) can be varied.

(4) A I N結晶粒子1の表面にAl2O3屑2
を作るなめに、AIN結晶粒子の表面をAI  (CH
○) 等のアルコキシド溶液で処理し5表面に酸化アル
ミニウムを析出させてもよ0゜また、AIN粉末を空気
中で加熱して表面に酸化アルミニウム層を形成してもよ
い。
(4) Al2O3 debris 2 on the surface of the A I N crystal particle 1
In order to create
Alternately, the AIN powder may be heated in air to form an aluminum oxide layer on the surface.

[発明の効果] 上述から明らかな如く、本発明によれば、低温焼結型で
あるにも拘らず、熱伝導率の高0絶縁体磁器を提供する
ことができる。
[Effects of the Invention] As is clear from the above, according to the present invention, it is possible to provide insulator porcelain with a high thermal conductivity of 0, even though it is of a low temperature sintering type.

第1図Figure 1

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例に係わる磁器の一部を原理的に
示す断面図、 第2図は本発明の別の実施例に係わる磁器の一部を原理
的に示す断面図である。 1・・・AIN結晶粒子、2・・・Al203m、3・
・・ガラス層。
FIG. 1 is a sectional view showing the principle of a part of the porcelain according to an embodiment of the present invention, and FIG. 2 is a sectional view showing the principle of a part of the porcelain according to another embodiment of the invention. 1...AIN crystal particles, 2...Al203m, 3...
...Glass layer.

Claims (1)

【特許請求の範囲】  多数の結晶粒子とガラス層とから成る低温焼結型磁器
において、 前記多数の結晶粒子の少なくとも一部を表面に酸化アル
ミニウム層を有する窒化アルミニウム結晶粒子としたこ
とを特徴とする低温焼結型磁器。
[Claims] A low-temperature sintered porcelain comprising a large number of crystal grains and a glass layer, characterized in that at least some of the large number of crystal grains are aluminum nitride crystal grains having an aluminum oxide layer on the surface. Low temperature sintered porcelain.
JP5329787A 1987-03-09 1987-03-09 Low-temperature sintering ceramic Pending JPS63222043A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5329787A JPS63222043A (en) 1987-03-09 1987-03-09 Low-temperature sintering ceramic

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5329787A JPS63222043A (en) 1987-03-09 1987-03-09 Low-temperature sintering ceramic

Publications (1)

Publication Number Publication Date
JPS63222043A true JPS63222043A (en) 1988-09-14

Family

ID=12938791

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5329787A Pending JPS63222043A (en) 1987-03-09 1987-03-09 Low-temperature sintering ceramic

Country Status (1)

Country Link
JP (1) JPS63222043A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5214005A (en) * 1991-02-04 1993-05-25 Sumitomo Electric Industries, Ltd. Glass-aluminum nitride composite material
WO2009103664A2 (en) * 2008-02-19 2009-08-27 Deutsches Zentrum für Luft- und Raumfahrt e.V. Hot-isostatic pressed thermogenerator
EP2620418A1 (en) * 2012-01-26 2013-07-31 NGK Insulators, Ltd. Glass-ceramic composite material
TWI466822B (en) * 2010-02-18 2015-01-01 Hitachi Chemical Co Ltd Composite particle and method for producing the same, and resin composition

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5214005A (en) * 1991-02-04 1993-05-25 Sumitomo Electric Industries, Ltd. Glass-aluminum nitride composite material
WO2009103664A2 (en) * 2008-02-19 2009-08-27 Deutsches Zentrum für Luft- und Raumfahrt e.V. Hot-isostatic pressed thermogenerator
WO2009103664A3 (en) * 2008-02-19 2010-06-10 Deutsches Zentrum für Luft- und Raumfahrt e.V. Hot-isostatic pressed thermogenerator
TWI466822B (en) * 2010-02-18 2015-01-01 Hitachi Chemical Co Ltd Composite particle and method for producing the same, and resin composition
US9249293B2 (en) 2010-02-18 2016-02-02 Hitachi Chemical Company, Ltd. Composite particle, method for producing the same, and resin composition
EP2620418A1 (en) * 2012-01-26 2013-07-31 NGK Insulators, Ltd. Glass-ceramic composite material
US8912106B2 (en) 2012-01-26 2014-12-16 Ngk Insulators, Ltd. Glass-ceramic composite material

Similar Documents

Publication Publication Date Title
JP5076907B2 (en) Method for producing forsterite powder, forsterite powder, forsterite sintered body, insulator ceramic composition, and multilayer ceramic electronic component
CN101663253B (en) Ultra low temperature fired X7R and BX dielectric ceramic composition and method of making
KR100245448B1 (en) Ceramic capacitor and method for fabricating the same
JPH0552604B2 (en)
JPH0415604B2 (en)
EP1509931B1 (en) Dielectric composition on the basis of barium titanate
KR930002632B1 (en) Ceramic capacitor and method of manufacture
JPS63222043A (en) Low-temperature sintering ceramic
JPH0552602B2 (en)
JPS62157607A (en) Dielectric porcelain compound
JP2521856B2 (en) Porcelain capacitor and method of manufacturing the same
JP4281549B2 (en) Dielectric ceramic composition and multilayer ceramic component using the same
JPH0551127B2 (en)
KR930011190B1 (en) Solid dielectric capacitor and of manufacturing method thereof
JP2779293B2 (en) Porcelain capacitor and method of manufacturing the same
JPS6224385B2 (en)
JPS60119010A (en) Dielectric porcelain composition
JP2521857B2 (en) Porcelain capacitor and method of manufacturing the same
JPH0552603B2 (en)
JP2938671B2 (en) Porcelain capacitor and method of manufacturing the same
JP4114503B2 (en) Dielectric ceramic composition and multilayer ceramic component using the same
JP2521855B2 (en) Porcelain capacitor and method of manufacturing the same
JP3029502B2 (en) Porcelain capacitor and method of manufacturing the same
JPH0676255B2 (en) Low temperature sintered porcelain composition for multilayer substrate
JPS60227311A (en) Insulating porcelain composition