JPS6347980A - Manufacture of thin film transistor - Google Patents

Manufacture of thin film transistor

Info

Publication number
JPS6347980A
JPS6347980A JP19169186A JP19169186A JPS6347980A JP S6347980 A JPS6347980 A JP S6347980A JP 19169186 A JP19169186 A JP 19169186A JP 19169186 A JP19169186 A JP 19169186A JP S6347980 A JPS6347980 A JP S6347980A
Authority
JP
Japan
Prior art keywords
thin film
semiconductor layer
film transistor
insulating film
activated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP19169186A
Other languages
Japanese (ja)
Other versions
JP2735177B2 (en
Inventor
Koichi Hiranaka
弘一 平中
Tetsuzo Yoshimura
徹三 吉村
Tadahisa Yamaguchi
山口 忠久
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP61191691A priority Critical patent/JP2735177B2/en
Publication of JPS6347980A publication Critical patent/JPS6347980A/en
Application granted granted Critical
Publication of JP2735177B2 publication Critical patent/JP2735177B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78696Thin film transistors, i.e. transistors with a channel being at least partly a thin film characterised by the structure of the channel, e.g. multichannel, transverse or longitudinal shape, length or width, doping structure, or the overlap or alignment between the channel and the gate, the source or the drain, or the contacting structure of the channel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78651Silicon transistors
    • H01L29/7866Non-monocrystalline silicon transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78651Silicon transistors
    • H01L29/7866Non-monocrystalline silicon transistors
    • H01L29/78672Polycrystalline or microcrystalline silicon transistor
    • H01L29/78675Polycrystalline or microcrystalline silicon transistor with normal-type structure, e.g. with top gate

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Recrystallisation Techniques (AREA)

Abstract

PURPOSE:To be able to form a thin film transistor in a large area in a high speed operation and to further manufacture the transistor having less OFF current by melting a part of a polycrystalline silicon or amorphous silicon semiconductor layer by irradiating a light or locally heating it to activate it, and composing two layers of activated and nonactivated regions. CONSTITUTION:A polycrystalline or amorphous silicon semiconductor layer 15 is formed on an insulating substrate 10 on which source and drain electrodes S, D are formed, and the layer 15 is partly melted by irradiating a light or locally heating to be activated to form a 2-layer structure of an active region 15b and a nonactive region 15a. For example, after source and drain electrodes S, D are formed through an insulating film 11 on the substrate 10, a polycrystalline or amorphous silicon is deposited as the layer 15, a pattern is formed by a photolithography, a gate insulating film is partly melted to be activated by irradiating a laser or an electron beam 14 or a locally heating method of an infrared ray heater, and crystal grains are grown to form the region 15b. Thereafter, a gate insulating film 16, a gate electrode 17 and metal electrodes 18, 19 are formed.

Description

【発明の詳細な説明】 〔概 要〕 薄膜トランジスタの製造方法であって、基板上に形成さ
れた多結晶シリコン又は非晶質シリコンの半導体層のゲ
ート絶縁膜側の一部を光照射あるいは局所加熱により融
解し活性化させ、活性化領域と非活性化領域の2層構成
とすることにより、高速で動作でき且つオフ電流の低い
薄膜トランジスタを低温で製造することを可能とする。
[Detailed Description of the Invention] [Summary] A method for manufacturing a thin film transistor, the method comprising: irradiating light or locally heating a portion of a semiconductor layer of polycrystalline silicon or amorphous silicon formed on a substrate on the gate insulating film side. By melting and activating it to form a two-layer structure of an activated region and a non-activated region, it is possible to manufacture a thin film transistor that can operate at high speed and has a low off-state current at a low temperature.

〔産業上の利用分野〕[Industrial application field]

本発明は薄膜トランジスタの製造方法に関するもので、
さらに詳しく言えば高速かつオフ電流の低い薄膜トラン
ジスタを低温で作製できるgJ朦トランジスタの製造方
法に関するものである。
The present invention relates to a method for manufacturing a thin film transistor,
More specifically, the present invention relates to a method for manufacturing a gJ thin film transistor, which enables high-speed thin film transistors with low off-state current to be manufactured at low temperatures.

従来の薄膜トランジスタとしては非晶質−シリコン薄膜
トランジスタが知られている。この非晶質薄膜トランジ
スタは大面積に低温で形成可能なことから液晶表示用ア
クティブ・マトリックス・スイッチに用いられるが電界
効果移動度が高々l cd/sVと小さいため大面積デ
バイスの駆動回路に要求される動作周波数(>IMHz
)が得られない。このため大面積に形成可能で且つ高速
動作のできる薄膜トランジスタが要望されている。この
ため多結晶シリコンの半導体層をレーザを用いて活性化
させた薄膜トランジスタが開発されている。
Amorphous-silicon thin film transistors are known as conventional thin film transistors. This amorphous thin film transistor is used in active matrix switches for liquid crystal displays because it can be formed over a large area at low temperatures, but because its field effect mobility is small at most l cd/sV, it is not required for drive circuits for large area devices. operating frequency (>IMHz
) is not obtained. Therefore, there is a demand for a thin film transistor that can be formed in a large area and can operate at high speed. For this reason, thin film transistors have been developed in which a polycrystalline silicon semiconductor layer is activated using a laser.

〔従来の技術〕[Conventional technology]

第3図は上記の多結晶シリコン半導体層をレーザを用い
て活性化させる薄膜トランジスタの製造方法を示す図で
ある。この方法は先ずa図の如く基板1の上に絶縁膜2
及び多結晶シリコン又は非晶質シリコンの半導体層3を
形成し、この半導体層3にレーザ光4を照射して活性化
させる。次にb図の如くソース電極5及びドレイン電極
6を形成し、その上にゲート絶縁膜7を形成し、最後に
0図の如くゲート電極8及びソースドレイン電極からの
引出し電極5a 、6aを形成するのである。
FIG. 3 is a diagram showing a method for manufacturing a thin film transistor in which the above polycrystalline silicon semiconductor layer is activated using a laser. In this method, first, as shown in figure a, an insulating film 2 is placed on a substrate 1.
Then, a semiconductor layer 3 of polycrystalline silicon or amorphous silicon is formed, and this semiconductor layer 3 is irradiated with laser light 4 to activate it. Next, as shown in figure b, a source electrode 5 and a drain electrode 6 are formed, a gate insulating film 7 is formed thereon, and finally a gate electrode 8 and lead-out electrodes 5a and 6a from the source and drain electrodes are formed as shown in figure 0. That's what I do.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記従来の製造方法では薄膜トランジスタを大面積に低
温で形成可能であるが第3図すに示す工程で結晶粒界が
全領域に広がり粒界で電流経路が形成され、オフ電流の
増大を招くという欠点がある。
With the conventional manufacturing method described above, thin film transistors can be formed over a large area at low temperatures, but in the process shown in Figure 3, grain boundaries spread over the entire area and current paths are formed at the grain boundaries, leading to an increase in off-state current. There are drawbacks.

本発明はこのような点に鑑みて創作されたもので、大面
積に形成可能で且つ高速動作ができ、さらにオフ電流の
少ない薄膜トランジスタを作製可能な製造方法を提供す
ることを目的としている。
The present invention was created in view of the above points, and an object of the present invention is to provide a manufacturing method capable of manufacturing a thin film transistor that can be formed in a large area, can operate at high speed, and has low off-state current.

〔問題点を解決するための手段〕[Means for solving problems]

このため本発明においては、ソース電極S及びドレイン
電極りが形成された絶縁基板10上に多結晶シリコン又
は非晶質シリコンの半導体層15を形成する工程と、前
記半導体層15の一部を光照射あるいは局所加熱により
融解し活性化させ、活性領域15bと非活性領域15a
の2層構成とする工程とを含むことを特徴としている。
Therefore, in the present invention, there is a step of forming a semiconductor layer 15 of polycrystalline silicon or amorphous silicon on the insulating substrate 10 on which the source electrode S and the drain electrode S are formed, and a part of the semiconductor layer 15 is exposed to light. The active region 15b and the non-active region 15a are melted and activated by irradiation or local heating.
The method is characterized in that it includes a step of forming a two-layer structure.

〔作 用〕[For production]

光照射あるいは局所加熱により多結晶シリコン又は非晶
質シリコンの一部を活性化させて活性化領域と非活性化
領域の2層構造とすることにより低温での作製が可能と
なり、且つ非活性領域の高抵抗によりオフ電流の抑制が
可能となる。
By activating a part of polycrystalline silicon or amorphous silicon by light irradiation or local heating to form a two-layer structure of an activated region and a non-activated region, it is possible to fabricate at a low temperature. The high resistance makes it possible to suppress off-state current.

〔実施例〕〔Example〕

第1図は本発明の実施例の薄膜トランジスタの製造方法
を説明するための図であり、3−%−gはその工程説明
図である。
FIG. 1 is a diagram for explaining a method of manufacturing a thin film transistor according to an embodiment of the present invention, and 3-%-g is an explanatory diagram of the process.

本実施例の方法は、先ずa図に示すようにガラス等の絶
縁基+JilO上にプラズマCVD法、光CVD法また
はスパッタ法により絶縁膜11を形成する。絶縁膜11
には酸化シリコン膜、あるいは窒化シリコン膜または酸
窒化シリコン膜を用い膜厚は500〜1000人が望ま
しい。次にb図の如く下部電極膜12を形成し、その上
にプラズマCVD法またはスパッタ法により不純物をド
ーピングした多結晶シリコンまたは非晶質シリコン13
を〜300人堆積する。不純物としてはP、B等が用い
られる。また下部電極膜としてはCr、Ti。
In the method of this embodiment, first, as shown in Figure a, an insulating film 11 is formed on an insulating substrate such as glass+JilO by plasma CVD, photoCVD, or sputtering. Insulating film 11
A silicon oxide film, a silicon nitride film, or a silicon oxynitride film is preferably used for the film, and the film thickness is preferably 500 to 1000. Next, as shown in figure b, a lower electrode film 12 is formed, and polycrystalline silicon or amorphous silicon 13 doped with impurities by plasma CVD or sputtering is formed thereon.
Deposit ~300 people. P, B, etc. are used as impurities. Further, the lower electrode film is made of Cr or Ti.

Ni−Cr  、 Aβ、ITO等が用いられる。その
後C図のように通常のホトリソグラフィを用い下部電極
膜12とシリコン膜13からソース電極Sとドレイン電
極りを形成し、然る後にソース電極S及びドレイン電極
りの多結晶シリコンまたは非晶質シリコン13をレーザ
又は電子線14の照射により融解活性化させる。次にd
図の如く半導体層15として多結晶シリコンまたは非晶
シリコンを1000〜3000人の厚さにプラズマCV
D法またはスパッタ法または光CVD法により堆積し、
次いでe図の如く通常のホトリソグラフィを用いてパタ
ーン形成後レーザ又は電子線14の照射または赤外線ヒ
ータの局所加熱法によりゲート絶縁膜側の一部、即ちソ
ース・ドレイン電極S、Dの反対側の一部(厚さ500
人〜1500人)を融解活性化させ、結晶粒を成長させ
、活性領域15bを形成する。ソース・ドレイン電極側
には活性化しない領域15aが残り、核部は高抵抗のま
まである。なお活性化領域形成の制御は、レーザを用い
る場合は励起光源と波長と半導体層の吸収係数の関係に
より所望の領域のみ活性化でき、電子ビームの場合はエ
ネルギーと走査時間により活性化領域を制御できる。
Ni-Cr, Aβ, ITO, etc. are used. Thereafter, as shown in Figure C, a source electrode S and a drain electrode are formed from the lower electrode film 12 and the silicon film 13 using ordinary photolithography, and then polycrystalline silicon or amorphous silicon is formed for the source electrode S and the drain electrode. The silicon 13 is melted and activated by laser or electron beam 14 irradiation. then d
As shown in the figure, polycrystalline silicon or amorphous silicon is formed by plasma CVD to a thickness of 1000 to 3000 layers as the semiconductor layer 15.
Deposited by D method, sputtering method or photo CVD method,
Next, as shown in figure e, after forming a pattern using normal photolithography, a part of the gate insulating film side, that is, the opposite side of the source/drain electrodes S and D, is formed by irradiation with a laser or electron beam 14 or by local heating with an infrared heater. Part (thickness 500
(~1500 people) is melted and activated to grow crystal grains and form the active region 15b. An unactivated region 15a remains on the source/drain electrode side, and the core remains at high resistance. Note that when using a laser, only the desired region can be activated by the relationship between the excitation light source, wavelength, and absorption coefficient of the semiconductor layer, and when using an electron beam, the activation region can be controlled by energy and scanning time. can.

次にf図の如くゲート絶縁膜16をプラズマCVD法、
または光CVD法、あるいはスパッタ法により厚さ30
00人〜5000人堆積する。ゲート絶縁膜16として
は酸化シリコン膜、窒化シリコン膜、あるいは酸窒化シ
リコン膜のいずれか、またはこれらの膜からなる多層膜
を用いる。次いでゲート電極17をスパッタ法または電
子ビーム蒸着法により厚さ1000〜2000人に堆積
しパターン形成する。最後にg図の如くソース電極S及
びドレイン電極り上のゲート絶縁膜16にスルーホール
を形成し、金属電極18 、19をスパッタ法あるいは
電子ビーム蒸着法により成膜後パターン形成する。
Next, as shown in figure f, the gate insulating film 16 is formed by plasma CVD.
Or, the thickness is 30 mm by photo-CVD method or sputtering method.
00 to 5000 people will accumulate. As the gate insulating film 16, a silicon oxide film, a silicon nitride film, a silicon oxynitride film, or a multilayer film made of these films is used. Next, a gate electrode 17 is deposited to a thickness of 1,000 to 2,000 wafers by sputtering or electron beam evaporation to form a pattern. Finally, as shown in figure g, through holes are formed in the gate insulating film 16 above the source electrode S and drain electrode, and metal electrodes 18 and 19 are formed and patterned by sputtering or electron beam evaporation.

ゲート電極17およびソース・ドレインの金属電極18
 、19にはAJ 、 Ni−Cr 、 Cr  、 
Ti  、 Mo  。
Gate electrode 17 and source/drain metal electrodes 18
, 19 has AJ, Ni-Cr, Cr,
Ti, Mo.

Ta、ITO等が用いられる。Ta, ITO, etc. are used.

本実施例はこのようにして低温で薄膜トランジスタを製
造することができる。また本実施例方法により作製され
た薄膜トランジスタは高速動作ができ、且つ多結晶シリ
コン又は非結晶シリコンの半導体、[15のソース・ド
レイン電極S、D側に高抵抗の非活性層15aが残って
いるためオフ電流が小さい。
In this embodiment, thin film transistors can be manufactured at low temperatures in this manner. Further, the thin film transistor manufactured by the method of this embodiment can operate at high speed, and is made of a polycrystalline silicon or amorphous silicon semiconductor, and has a high resistance inactive layer 15a remaining on the source/drain electrodes S and D side of [15]. Therefore, the off-state current is small.

第2図は本発明の他の実施例を説明するための図であり
、a−fはその工程説明図である。同図において第1図
と同一部分は同一符号を付して示した。
FIG. 2 is a diagram for explaining another embodiment of the present invention, and a to f are diagrams for explaining the process. In this figure, the same parts as in FIG. 1 are designated by the same reference numerals.

本実施例が前実施例と異なるところは、第1図のe工程
で行なった半導体1J15のゲート絶縁膜側の融解を第
2図eの如くゲート絶縁膜堆積後に行なうことである。
This embodiment differs from the previous embodiment in that the melting of the gate insulating film side of the semiconductor 1J15 performed in step e of FIG. 1 is performed after the gate insulating film is deposited as shown in FIG. 2e.

本実施例によれば半導体層15とゲート絶縁膜16を連
続して堆積することができるので、該界面に生ずる準位
を101′cIn−2まで減小できる。従ってしきい値
電圧のばらつきのない製品が得られる。また半導体層I
5に接する側のゲート絶縁膜16中に存在する水素が半
導体層融解の際に生ずる結晶粒界のダングリングボンド
を水素化し、従って電界効果移動度のより大なる薄膜ト
ランジスタを得ることができる。
According to this embodiment, since the semiconductor layer 15 and the gate insulating film 16 can be deposited successively, the level generated at the interface can be reduced to 101'cIn-2. Therefore, a product without variations in threshold voltage can be obtained. Also, the semiconductor layer I
Hydrogen present in the gate insulating film 16 on the side contacting the semiconductor layer hydrogenates the dangling bonds at the crystal grain boundaries that are generated when the semiconductor layer is melted, thus making it possible to obtain a thin film transistor with higher field effect mobility.

なお以上の実施例は薄膜トランジスタを用いて説明した
が、三次元回路用Sol技術にも適用できる。また半導
体層に混入する不純物及び濃度によりnチャンネル、p
チャンネルのいずれでも形成可能である。
Although the above embodiments have been explained using thin film transistors, they can also be applied to Sol technology for three-dimensional circuits. Also, depending on the impurity and concentration mixed into the semiconductor layer, n-channel, p-channel
Any channel can be formed.

〔発明の効果〕〔Effect of the invention〕

以上述べてきたように本発明によれば、半導体層の一部
をレーザ、電子線等の照射又は赤外線ヒータによる局所
加熱により活性化させることによりオフ電流の少ない薄
膜トランジスタを低温で作製でき、実用的には極めて有
用である。
As described above, according to the present invention, thin film transistors with low off-state current can be fabricated at low temperatures by activating a part of the semiconductor layer by irradiation with a laser, electron beam, etc. or local heating with an infrared heater, which is practical. It is extremely useful.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の詳細な説明するための図、第2図は本
発明の他の実施例を説明するだめの図、 第3図は従来の薄膜トランジスタの装造方法を説明する
ための図である。 第1図、第2図において、 10は基板、 11は絶縁膜、 12は下部電極膜、 13は不純物をドープしたシリコン膜、14はレーザ又
は電子線、 15は多結晶シリコン又は非晶質シリコンの半導体層、 15aは半導体層の非活性領域、 15bは半導体層の活性領域、 16はゲート絶縁膜、 17はゲート電極、 18 、19は金属電極、 Sはソース電極、 Dはドレイン電極である。
FIG. 1 is a diagram for explaining the present invention in detail, FIG. 2 is a diagram for explaining another embodiment of the present invention, and FIG. 3 is a diagram for explaining a conventional method of manufacturing a thin film transistor. It is. 1 and 2, 10 is a substrate, 11 is an insulating film, 12 is a lower electrode film, 13 is a silicon film doped with impurities, 14 is a laser or an electron beam, and 15 is polycrystalline silicon or amorphous silicon 15a is a non-active region of the semiconductor layer, 15b is an active region of the semiconductor layer, 16 is a gate insulating film, 17 is a gate electrode, 18 and 19 are metal electrodes, S is a source electrode, and D is a drain electrode. .

Claims (1)

【特許請求の範囲】 1、ソース電極(S)及びドレイン電極(D)が形成さ
れた絶縁基板(10)上に多結晶シリコン又は非晶質シ
リコンの半導体層(15)を形成する工程と、 上記半導体層(15)の一部を光照射あるいは局所加熱
により融解し活性化させ、活性領域(15b)と非活性
領域(15a)の2層構成とする工程とを含む薄膜トラ
ンジスタの製造方法。 2、上記融解手段が電子線、レーザ、赤外線ヒータであ
ることを特徴とする特許請求の範囲第1項記載の薄膜ト
ランジスタの製造方法。 3、上記融解の際、半導体層(15)がパターン形成さ
れた後、融解を行なうことを特徴とする特許請求の範囲
第1項記載の薄膜トランジスタの製造方法。 4、上記融解の際、ゲート絶縁膜(16)の堆積後に融
解を行なうことを特徴とする特許請求の範囲第1項記載
の薄膜トランジスタの製造方法。
[Claims] 1. Forming a semiconductor layer (15) of polycrystalline silicon or amorphous silicon on an insulating substrate (10) on which a source electrode (S) and a drain electrode (D) are formed; A method for manufacturing a thin film transistor, comprising the step of melting and activating a part of the semiconductor layer (15) by light irradiation or local heating to form a two-layer structure of an active region (15b) and an inactive region (15a). 2. The method for manufacturing a thin film transistor according to claim 1, wherein the melting means is an electron beam, a laser, or an infrared heater. 3. The method for manufacturing a thin film transistor according to claim 1, wherein the melting is performed after the semiconductor layer (15) has been patterned. 4. The method for manufacturing a thin film transistor according to claim 1, wherein the melting is performed after the gate insulating film (16) is deposited.
JP61191691A 1986-08-18 1986-08-18 Thin film transistor and method of manufacturing the same Expired - Fee Related JP2735177B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61191691A JP2735177B2 (en) 1986-08-18 1986-08-18 Thin film transistor and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61191691A JP2735177B2 (en) 1986-08-18 1986-08-18 Thin film transistor and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPS6347980A true JPS6347980A (en) 1988-02-29
JP2735177B2 JP2735177B2 (en) 1998-04-02

Family

ID=16278856

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61191691A Expired - Fee Related JP2735177B2 (en) 1986-08-18 1986-08-18 Thin film transistor and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP2735177B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0312637A (en) * 1989-06-12 1991-01-21 Matsushita Electron Corp Manufacture of image display device
JPH0335535A (en) * 1989-06-30 1991-02-15 Nippon Telegr & Teleph Corp <Ntt> Manufacture of thin film field effect transistor
US5208187A (en) * 1990-07-06 1993-05-04 Tsubochi Kazuo Metal film forming method
JPH06342909A (en) * 1990-08-29 1994-12-13 Internatl Business Mach Corp <Ibm> Thin-film transistor and its manufacture
JPH09501509A (en) * 1993-07-29 1997-02-10 ハネウエル・インコーポレーテッド Silicon pixel electrode
US7094656B2 (en) * 2003-10-07 2006-08-22 Industrial Technology Research Institute Method of forming poly-silicon thin film transistors
WO2011141948A1 (en) * 2010-05-10 2011-11-17 パナソニック株式会社 Thin film transistor device and method for manufacturing thin film transistor device
US11362215B2 (en) * 2018-03-30 2022-06-14 Intel Corporation Top-gate doped thin film transistor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58206121A (en) * 1982-05-27 1983-12-01 Toshiba Corp Manufacture of thin-film semiconductor device
JPS60109282A (en) * 1983-11-17 1985-06-14 Seiko Epson Corp Semiconductor device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58206121A (en) * 1982-05-27 1983-12-01 Toshiba Corp Manufacture of thin-film semiconductor device
JPS60109282A (en) * 1983-11-17 1985-06-14 Seiko Epson Corp Semiconductor device

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0312637A (en) * 1989-06-12 1991-01-21 Matsushita Electron Corp Manufacture of image display device
JPH0335535A (en) * 1989-06-30 1991-02-15 Nippon Telegr & Teleph Corp <Ntt> Manufacture of thin film field effect transistor
US5208187A (en) * 1990-07-06 1993-05-04 Tsubochi Kazuo Metal film forming method
JPH06342909A (en) * 1990-08-29 1994-12-13 Internatl Business Mach Corp <Ibm> Thin-film transistor and its manufacture
JPH09501509A (en) * 1993-07-29 1997-02-10 ハネウエル・インコーポレーテッド Silicon pixel electrode
US7094656B2 (en) * 2003-10-07 2006-08-22 Industrial Technology Research Institute Method of forming poly-silicon thin film transistors
US7361566B2 (en) 2003-10-07 2008-04-22 Industrial Technology Research Institute Method of forming poly-silicon thin film transistors
WO2011141948A1 (en) * 2010-05-10 2011-11-17 パナソニック株式会社 Thin film transistor device and method for manufacturing thin film transistor device
US11362215B2 (en) * 2018-03-30 2022-06-14 Intel Corporation Top-gate doped thin film transistor
US11862730B2 (en) 2018-03-30 2024-01-02 Intel Corporation Top-gate doped thin film transistor

Also Published As

Publication number Publication date
JP2735177B2 (en) 1998-04-02

Similar Documents

Publication Publication Date Title
JP3968484B2 (en) Thin film transistor manufacturing method
JPS62232966A (en) Thin film transistor
JPH0645354A (en) Thin film transistor and its manufacture
JPH07321323A (en) Thin film transistor and its manufacturing method
JPH05190568A (en) Manufacture of insulated-gate thin-film transistor
JP3599972B2 (en) Method for manufacturing thin film transistor
JPH07118443B2 (en) Manufacturing method of semiconductor device
JPS62181419A (en) Recrystallization method of polycrystalline silicon
JPH03244136A (en) Manufacture of thin-film transistor
JPS639978A (en) Manufacture of thin-film transistor
JPH11111998A (en) Manufacture of thin-film transistor
JPS6347980A (en) Manufacture of thin film transistor
JPH11265000A (en) Liquid crystal display device and its manufacture
JP2709376B2 (en) Method for manufacturing non-single-crystal semiconductor
JPS6269680A (en) Manufacture of thin film transistor
JP2734359B2 (en) Thin film transistor and method of manufacturing the same
JP4637333B2 (en) Method for manufacturing semiconductor device
JP2000068515A (en) Manufacture of thin-film semiconductor device
JPH01225363A (en) Thin-film transistor and its manufacture
JPH0411226A (en) Manufacture of display device
JP2734357B2 (en) Method of manufacturing thin film transistor and method of manufacturing polycrystalline silicon film
JPH09172186A (en) Manufacture of thin film transistor
JP2000036602A (en) Thin-film transistor, manufacture of it, and display device
JPH07131026A (en) Thin film semiconductor device and fabrication thereof
JPH11103070A (en) Thin film transistor

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees