JPS6347806B2 - - Google Patents

Info

Publication number
JPS6347806B2
JPS6347806B2 JP55173637A JP17363780A JPS6347806B2 JP S6347806 B2 JPS6347806 B2 JP S6347806B2 JP 55173637 A JP55173637 A JP 55173637A JP 17363780 A JP17363780 A JP 17363780A JP S6347806 B2 JPS6347806 B2 JP S6347806B2
Authority
JP
Japan
Prior art keywords
fibers
polyester
fiber
mol
adhesive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55173637A
Other languages
Japanese (ja)
Other versions
JPS57101018A (en
Inventor
Takaaki Tsuji
Masao Kawamoto
Yukio Sugita
Masaji Asano
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Original Assignee
Kuraray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co Ltd filed Critical Kuraray Co Ltd
Priority to JP55173637A priority Critical patent/JPS57101018A/en
Publication of JPS57101018A publication Critical patent/JPS57101018A/en
Publication of JPS6347806B2 publication Critical patent/JPS6347806B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明はポリエステル系熱接着性繊維に関する
ものであり、その目的とするところは低温度でも
優れた熱接着性を有すると共に、繊維および該繊
維を用いた繊維集合体を製造する際、工程トラブ
ルがなく順調に製造を行なうことができるポリヘ
キサメチレンテレフタレート系あるいはポリヘキ
サメチレン・ブチレンテレフタレート系共重合ポ
リエステルよりなる繊維を提供せんとするもので
ある。 (従来の技術) 繊維間熱融着により不織布等を製造するための
熱接着性繊維は知られている。例えば、ポリエチ
レンを接着成分とするポリプロピレンとの複合繊
維、あるいはエチレン・ビニルアルコール共重合
体を接着成分とするポリエチレンテレフタレート
との複合繊維等がある。 近年、繊維分野、特に不織布分野でポリエチレ
ンテレフタレート(以下、PETと略記)を代表
とするポリエステル繊維の役割が大きくなり、生
産効率、省エネルギー等の観点より熱接着で繊維
集合体あるいは繊維製品、特に不織布を製造する
要求が大となり、ポリエステル用の接着繊維が強
く望まれている。 上記の公知接着繊維は接着ポリマー同志の熱接
着性はもちろん良好であるが、不織布用等として
他の主体繊維と混用して使用する場合は接着可能
な主体繊維の種類が非常に限定され、ポリエステ
ルに接着可能なものは得られていない。例えば、
ポリエチレンは自己接着は行なうが、化学構造の
異なる一般の市販繊維にはほとんど接着しない。
また、共重合ナイロンは、ナイロン繊維には接着
するが同じ縮合系ポリマーよりなるポリエステル
繊維には接着しない。さらに、エチレン・ビニル
アルコール共重合体は、溶解度パラメーターの比
較的近いレーヨン、ビニロンあるいはナイロンに
は接着性を示すが、やはりポリエステルには接着
しない。 また、接着性ポリマーとしてポリエチレン、共
重合ナイロン等を用いる場合、ポリエステルとは
相溶性が悪いため、接着性ポリマーが工程中で剥
離現象を起し、白粉の発生等のトラブルが多発
し、良好な製品の収率が低下する問題が避けられ
なかつた。 以上のことより、ポリエステル繊維を接着させ
るには、化学構造および溶解度パラメーターの類
似性よりポリエステル系ポリマーを接着成分とし
て用いるのが、不織布の接着強度上も工程通過性
上も良く、常識的にも考え得るところである。 実際、ポリエステルを接着相手とする溶剤溶解
型あるいはホツト・メルト型の接着剤としては多
くのガラス転移点の低い軟化性の非晶性共重合ポ
リエステルが提案されている。しかし、ガラス転
移点の低い軟化性の非晶性共重合ポリエステルを
接着繊維として用いる場合には繊維あるいは不織
布製造工程で特有の装置、特有の熱履歴を経由す
るため、つまりポリマーの軟化点以上の温度での
処理工程の所で、非晶性共重合ポリエステルは軟
化融着してしまい、繊維化が不可能な結果とな
り、通常の接着剤用共重合ポリエステルは全く使
用することができない。 更に具体的な例を述べれば、共重合ポリエステ
ルを重合槽より取り出してペレツト状に切断する
際、通常のガラス転移点の低い非晶性共重合ポリ
エステルではポリマーが柔か過ぎて切断が困難と
なり、また紡糸前の乾燥工程でペレツトが膠着し
てしまう。 また、溶融ポリマーを紡糸口金より押し出して
繊維状とし、繊維束をケンスに収めるかボビンに
巻き取る際、単繊維間あるいは繊維束間での膠着
が激しく、ペレツト化および乾燥工程を何とか通
過した場合、あるいは重合器より直接繊維状に押
し出してペレツト化および乾燥工程を省略した場
合でも、紡糸繊維を得ることは困難となる。さら
に、続いて延伸、捲縮および切断等を行なうと、
さらに単繊維間の膠着、融着が起きて良好な繊維
を得ることができない。また、たとえ不完全なが
ら繊維化を行なつたとしても、例えば不織布化す
る場合ネツプの発生等の問題でカード通過性が不
良であつたり、接着処理時に粘着トラブルが続発
し不織布とすることができない。この紡糸および
それ以降での繊維化ならびに不織布製造工程で要
求される工程性は非常に厳しいものであり、ペレ
ツト化および乾燥工程をトラブルなく通過したと
しても繊維化あるいは不織布化できるものはほと
んどない。 特許上では共重合ポリエステルを接着成分とす
る繊維は開示されている。しかし、特許記載の共
重合ポリエステルより繊維を製造すると上記のご
ときトラブルがあり、実際にはほとんど繊維化不
可能であつたり、あるいは短時間、少量生産での
製造は可能であつても、長時間安定して製造を継
続することは困難である。商業生産、操業生産で
は長時間、安定生産が絶対の条件であり、特許記
載の接着繊維ではいまだ不十分と言わざるを得な
い。 一方、繊維形成性ポリエステルでその共重合成
分量を小とし、改質度を落したポリマー、つまり
結晶化度が高いレベルを維持し、かつ結晶化速度
の速いポリマーは、繊維あるいは不織布製造の工
程性は良好となるが、現在商業的に大量生産され
ているPETあるいはポリブチレンテレフタレー
ト(PBT)などとのポリエステルとの接着性が
小となるのが一般であり、接着繊維として用いる
ことはできない。PET系あるいはPBT系の共重
合ポリエステルで共重合量を小とすれば各々
PETあるいはPBTへの接着性はある程度良好と
なる場合がある。しかし、その場合には共重合ポ
リエステルの融点が高いため低温での接着処理が
できず接着に高温を要し従来の装置が使用不可能
であつたり、あるいは高温処理装置を使用したと
してもエネルギーの損失が多く、また成形物が変
形したり風合が悪化するので好ましくない。 (発明が解決しようとする問題点) 本発明者らはポリエステルとの接着性が優れ、
特に低温接着が可能であり、かつ繊維および不織
布製造等の工程性が商業生産可能なレベルまで良
好な繊維について種々研究した結果、繊維用とし
ては、いわゆる接着剤用とは全く異なつた共重合
ポリエステルが好適であり、特許請求の範囲に記
載した特定の限られた範囲の共重合組成および物
性を有するポリヘキサメチレンテレフタレート系
あるいはポリヘキサメチレン・ブチレンテレフタ
レート系共重合ポリエステルよりなる繊維によ
り、はじめて上記のトラブルを完全に解決し、低
温接着処理可能な良品質の接着繊維を得ることを
見出した。 (問題点を解決するための手段) 本発明の組成に類似した共重合ポリエステルが
いわゆる接着剤として用いられることは知られて
いる。しかし、本発明の組成の共重合ポリエステ
ルで、かつ特定の物性を有するポリマーより繊維
あるいは不織布を工程トラブルなく順調に製造し
得ることは全く知られていない。またポリエステ
ル接着繊維において繊維あるいは不織布化可能な
物性は、本発明において初めて明らかにされたも
のである。すなわち、ポリエステル接着繊維のた
めの接着ポリマーは、共重合ポリエステルであつ
て特定の結晶化度と特定の結晶化速度を付与させ
ることが最大の重要な点であり、なおかつ融点が
低いポリマー組成であることが必須条件であるこ
とをつきとめるにいたつた。 接着繊維として好適な共重合組成および物性は
いわゆる接着剤とは全く異なる。すなわち、接着
剤には一般により低結晶性で、特に非晶性のもの
が多く使用されている。さらに接着剤としは、フ
イルム状で接着させた場合剥離強度の大きいもの
が用いられるが、本発明者らは接着剤とは全く異
なつた観点より接着繊維を研究し、接着剤とは全
く異なる組成、物性の共重合ポリエステルが良好
であることを見出したものである。即ち、低温で
ポリエステル繊維へ接着する性能を保持しつつ、
繊維化のための工程通過性を維持するためには、
ポリマーの結晶性と結晶化速度を所定以上にいか
に保持させるかが最大のポイントであり、そのた
めのポリマー組成は何であるかを初めて見い出し
たものである。 以下本発明を具体的に説明すると、本発明のポ
リヘキサメチレンテレフタレート系あるいはポリ
ヘキサメチレン・ブチレンテレフタレート系共重
合ポリエステル中の1,6−ヘキサンジオール
(HD)共重合量としては、生成共重合ポリエス
テル中の全酸成分(オキシ酸を含む場合にはその
2分の1を酸成分、2分の1をジオール成分とみ
なす)に対して20モル%以上(以下、共重合量は
上記定義の全酸成分に対するモル%で示す)、望
ましくは25モル%以上、さらに好ましくは30モル
%以上が用いられる。本発明は、HDを共重合ポ
リエステルの成分として用いることにより低温処
理でも良好な接着性を示し、かつ繊維化、不織布
化の工程性が良好であることを見出したものであ
り、20モル%以下では本発明の目的を達成するこ
とができない。繊維化での絶対条件としては、結
晶化速度を維持することが不可欠であり、このた
めには、結晶化速度の速い1,6−ヘキサンジオ
ール成分が必須であることがわかつた。 また、本発明の共重合ポリエステル中の1,4
−ブタンジオール(BD)共重合量は、80モル%
以下、望ましくは75モル%以下、さらに好ましく
は70モル%以下が用いられる。80モル%以上では
低温接着性と工程性の両立がむつかしくなるので
好ましくない。BD成分も結晶化速度をあまり低
下させず、繊維化のためには有効な成分である
が、BD成分リツチとなるとポリマーの融点が高
くなり、本来の目的である低温接着性を有するバ
インダー繊維が得られなくなる。 本発明の共重合成分Aとは、アジピン酸または
セバチン酸である。この2者の場合は、結晶化挙
動、つまりある程度の結晶性を維持し、結晶化速
度をあまり低下させないこと、および硬さ等が適
当で、接着性、工程性共に良好とすることができ
る。不飽和ジカルボン酸は重合が不安定になり、
また繊維がもろくなるので好ましくない。分岐ジ
カルボン酸では結晶性低下が大きく好ましくな
い。 本発明の共重合成分Bとは、イソフタル酸が用
いられる。 本発明の共重合成分Cとは、エチレングリコー
ル、ジエチレングリコール、トリエチレングリコ
ールまたはシクロヘキサンジメタノールである。
これらは融点あるいは硬さは低下させるが、結晶
性低下はなるべく小なものとして選ばれる。 本発明のA成分とC成分の合計は3〜35モル
%、望ましくは5〜32モル%、さらに好ましくは
7〜29モル%が用いられる。3モル%以下では接
着性が不十分であり、またある程度接着しても繊
維および不織布の風合が良好でない。一方35モル
%以上では結晶化挙動の悪化、つまり、結晶化速
度の低下および結晶化度の低下が大きくなり繊維
形成性が不良となるポリマーの柔軟化を生起し工
程性が低下するので好ましくない。 また、本発明のC成分の共重合量は20モル%以
下、望ましくは16モル%以下、さらに好ましくは
12モル%以下が用いられる。20モル%以上では上
述のような結晶化挙動等が悪化して工程性が不良
となるので好ましくない。 本発明のB成分とC成分の合計は30モル%以
下、望ましくは26モル%以下、さらに好ましくは
22モル%以下が用いられる。30モル%以上では結
晶化挙動等が悪化して工程性が不良となるので好
ましくない。 さらに、本発明のA成分、B成分およびC成分
の合計は3〜40モル%、望ましくは5〜36モル
%、さらに好ましくは7〜32モル%が用いられ
る。3モル%以下では接着性が不十分であつた
り、またある程度接着しても繊維および不織布の
風合が良好でなく、あるいは共重合ポリエステル
の融点が高く、低温接着ができなかつたりして好
ましくない。一方40モル%以上では結晶化挙動の
悪化、ポリマーの柔軟化等を生起し工程性が低下
するので好ましくない。 本発明の繊維に用いられる共重合ポリエステル
は、上記の組成条件をすべて満足することが必要
であるが、さらに商業的生産レベルでの繊維およ
び不織布製造工程安定性および接着繊維としての
品質を確保するためには結晶化度、結晶化速度お
よび接着強度が適切でなければならない。つまり
は、繊維化の工程性を維持するためのポリマーの
結晶化度、結晶化速度、不織布としての十分な強
度、良好な風合を保持したバインダー繊維として
の接着ポリマーは、経済性を考慮すれば酸成分が
テレフタル酸、グリコール成分が1,6−ヘキサ
ンジオール、1,4−ブタンジオールを基本とす
る成分が必須であることがわかつた。 具体的には、本発明の共重合ポリエステルは結
晶融解熱(△Hu)が2.0cal/g以上、望ましく
は2.5cal/g以上、さらに好ましくは3.0cal/g
以上のものが用いられる。2.0cal/g以下では繊
維製造時に膠着が起り易く好ましくない。△Hu
の測定は溶融ポリマーより、微細な繊維状または
薄膜フイルム小片として取り出して冷却し、3日
以上室温で放置した試料を差動走査熱量計
(DSC)にかけ窒素中10℃/分の速度で昇温し、
融解時の吸熱ピークの面積より求めて行なう。 また、本発明の共重合ポリエステルは最短結晶
化時間(Minimum Crystalization Time、
CTmim.)が2.5分以内、望ましくは2分以内、
さらに好ましくは1.5分以内のものが用いられる。
2.5分以上では、繊維製造時に膠着が起り好まし
くない。CTmim.とは溶融状態より設定温度に急
冷した実質的に無配向のフイルム小片を該設定温
度で放置し白化を開始する時間を結晶化開始時間
とし、0〜100℃の温度範囲での結晶化開始時間
が最も短い温度での結晶化開始時間である。
CTmim.を求めるには温度を変えてCTmim.その
ものを測定することは必ずしも必要でなく、0〜
100℃の範囲のある温度での結晶化時間が2.5分以
内であることが十分条件である。共重合ポリエス
テルの種類により、CTmim.を示す温度は0℃近
くの場合もあり、また100℃近くのこともある。
実際の繊維製造工程での結晶化時間は温度履歴等
により異なるが、CTmim.を示す温度に設定する
と結晶化速度が速くなることは当然である。ま
た、紡糸時のごとく繊維に配向がかゝると結晶化
速度が大となる場合があるが、本発明に定義する
CTmim.をもつて工程性と関連した尺度とするこ
とができる。 さらに、本発明のポリエステルはPETフイル
ムを接着した剪断強度(Shear Strength、SS)
が6Kg/cm2以上、望ましくは7Kg/cm2以上、さら
に好ましくは8Kg/cm2以上のものが用いられる。
6Kg/cm2以下では繊維状での接着強度、特に不織
布強度が十分でなく好ましくない。 本発明のSSとは厚さ0.3mmの共重合ポリエステ
ルフイルムと三菱樹脂製二軸延伸PETフイルム
(商標名、ダイヤホイル、厚さ0.1mm)とを温度20
℃、相対湿度65%の室内で共重合ポリエステルの
融点より20℃高い温度に加熱して溶融し、圧力5
Kg/cm2で接着した後、24時間放置し、引張り速度
20cm/分で測定した値である。 本発明の共重合ポリエステル中には少量の添加
剤、たとえば酸化チタンなどの艶消し剤、酸化防
止剤、螢光増白剤、安定剤あるいは紫外線吸収剤
などを含んでいてもよい。 本発明の共重合ポリエステル繊維および該繊維
よりつくられる繊維集合体、不織布は、それに最
も適した固有の機械、装置を用いて製造するのが
好ましいが、従来使用されてきた機械、装置をあ
まり変えずに製造することができる。また、従来
の機械、装置が使用可能であるように繊維を特定
化した点に本発明の大きな意義がある。 本発明の繊維は単独で紡糸した単独繊維(ホモ
フイラメント)としても用いられるが、他の溶融
紡糸可能なポリマーと共に紡糸して複合繊維とし
て用いるのが、不織布の形態安定性並びに該不織
布強度が優れているので、複合繊維として用い
る。 他の複合紡糸成分としては融点150℃以上の熱
可塑性ポリマーが用いられる。その例としては
PET、PBT、ナイロン−6、ナイロン−6,6、
ポリプロピレン等がある。また接着繊維として用
いる場合には複合繊維断面の全周長に対する共重
合ポリエステル成分の占める割合、すなわち繊維
断面周率は40%以上が好ましい。 本発明の繊維は接着繊維以外の改質繊維として
も用いられるが、該繊維の軟化点以上で融着処理
を行なう接着繊維として用いるのに非常に好適で
ある。本発明の繊維は共重合ポリエステルと他ポ
リマーとの複合繊維のみよりなる融着処理繊維集
合体として用いられるが、該繊維を10重量%以上
含む他繊維との混合融着処理繊維集合体としても
用いられる。 繊維集合体としては特に不織布に好適であり、
強度の大きい不織布を得ることができる。なかで
も、混合繊維としてPETあるいはPETのごとき
TAを成分として含むポリエステルの場合には接
着繊維間のみならずTA系ポリエステルとの間の
接着も良好であり、強度の大きい不織布とするこ
とができる。従来、TA系ポリエステルに接着す
る繊維がなく良好なポリエステル系不織布の製造
を可能とした点で本発明の意義は大である。 次に、本発明を実施例により説明する。 実施例をまとめて第1表に示した。 実施例中共重合組成量を示すモルは生成ポリエ
ステルの全酸成分に対するモル%を示す。 また〔η〕とは、ポリエステルをフエノールと
テトラクロロエタンの等重量混合溶剤中、30℃で
測定した極限粘度(dl/g)である。 またポリエステルの融点(m.p.)は、微量融点
測定装置により熱板上の試料の偏光が消失する点
または流動点を求めたものである。 また不織布強度は、接着繊維20重量部とPET
繊維(3d×51mm)80重量部とを混綿し、カーデ
イング、ウエブ形成後、プレン方式により10Kg/
cm2で1分間接着繊維を溶融させて熱接着を行なつ
て得た不織布の裂断長(Km)で示した。 実施例 1 260℃で重縮合反応を行ない、TA75モル、
HD100モル、セバチン酸25モルよりなる共重合
ポリエステルを製造し、重合器底部よりストラン
ド状に水中に押し出し、ストランドカツターを用
いて切断し、ペレツト化した。押し出し、切断調
子は良好であり良好な形状のペレツトを得た。 得られた共重合ポリエステルは〔η〕1.24m.
p.118〜122℃、△Hu5.8cal/g、室温での結晶化
時間は13秒、SSは15.8Kg/cm2であつた。 このペレツトを真空乾燥器中70℃で乾燥したと
ころ膠着は全く認められなかつた。 この共重合ポリエステルを鞘とし〔η〕0.67の
PETを芯として芯/鞘=40/60重量比で芯鞘複
合紡糸を行なつた。紡糸ヘツド温度287℃で押出
し、1000m/分で巻き取つた。巻取つた繊維は単
繊維間および繊維束間での膠着は全くなく長時間
安定に紡糸を行なうことができた。 この紡糸原糸を水浴中78℃で3.5倍に延伸し、
続いて水浴中87℃で15%収縮させ、さらにスタツ
フイング・ボツクス型捲縮機で捲縮を行なつた
後、切断し、繊度3.1dr、強度3.7g/d、伸度52
%の繊維を特にトラブルなく得ることができた。 この複合繊維20重量部とPET繊維80重量部と
を混綿し、裂断長3.3Kmの高強力不織布を得た。
なお、不織布化工程中特にトラブルは認められな
かつた。 実施例 2 260℃で重縮合反応を行ないTA80モル、HD50
モル、BD50モル、アジピン酸15モル、イソフタ
ル酸5モルよりなる共重合ポリエステルを製造
し、重合器底部よりストランド状に水中に押し出
し、ストランド・カツターを用いて切断しペレツ
ト化した。押し出し、切断調子は良好であり、良
好な形状のペレツトを得た。得られた共重合ポリ
エステルは〔η〕1.18、m.p.123〜127℃、△
Hu3.6cal/g、室温での結晶化時間は45秒、SS
は14.2Kg/cm2であつた。 このペレツトを真空乾燥器中70℃で乾燥したと
ころ膠着は全く認められなかつた。 この共重合ポリエステルを鞘とし〔η〕0.67の
PETを芯として実施例1と同様にして芯鞘複合
紡糸し、ついで延伸、収縮、捲縮、切断を行な
い、繊度3.1dr、強度3.5g/d、伸度50%の繊維
を特にトラブルなく得ることができた。 この複合繊維とPET繊維より裂断長3.2Kmの高
強力不織布を順調に得ることができた。 実施例 3 第1表に示す共重合組成、物性の共重合ポリエ
ステルを鞘としナイロン−6を芯として芯/鞘=
40/60重量比で芯鞘複合紡糸を行なつた。紡糸ヘ
ツド温度270℃で押出し、1000m/分で紡糸を行
ない、ついで延伸、収縮、捲縮、切断を行ない、
繊度3.5dr、強度4.7g/d、伸度53%の繊維を得
た。工程性は良性で特にトラブルはなく、繊維間
の膠着も認められなかつた。 この複合繊維とPET繊維より裂断長4.2Kmの高
強力不織布を順調に得ることができた。 実施例 4〜6 第1表に示す共重合組成、物性の共重合ポリエ
ステルを鞘とし、PETを芯として、実施例1と
同様にして芯鞘複合紡糸を行ない、ついで実施例
1と同様にして繊維化、不織布化を行ない、いず
れも強度良好な不織布を得た。 繊維化および不織布化の工程性はいずれも良好
であり、特にトラブルは認められなかつた。 実施例 7 260℃で重縮合反応を行ない、TA90モル、
IPA10モル、HD90モル、エチレングリコール10
モルよりなる共重合ポリエステルを製造し、重合
器底部よりストランド状に水中に押し出し、スト
ランドカツターを用いて切断し、ペレツト化し
た。水中でストランドを冷却後、一旦空気中を数
秒間走行させ、完全に結晶化させた後、ストラン
ドカツターで切断した。切断調子は大変良好で、
トラブルを発生させることなく良好な形状のペレ
ツトを得た。 得られた共重合ポリエステルは〔η〕1.20、m.
p.120〜128℃、△Hu5.0cal/g、室温での結晶化
時間は10秒、SSは15.0Kg/cm2であつた。 このペレツトを真空乾燥器中70℃で乾燥したと
ころ膠着は全く認められなかつた。 ついでこの共重合ポリエステルを鞘とし〔η〕
0.67のPETを芯として芯/鞘=50/50重量比で、
芯鞘複合紡糸を行なつた。紡糸ヘツド温度287℃
で押出し、800m/分で捲き取つた。巻取つた繊
維は単繊維間および繊維束間での膠着はほとんど
なく長時間安定に紡糸を行なうことができた。 この紡糸原糸を水浴中65℃で3.8倍に延伸し、
続いて水浴中90℃で10%収縮させ、さらにスタツ
フイング・ボツクス型捲縮機で捲縮を行なつた後
切断し、繊度2.8dr、強度3.3g/d、伸度51%の
繊維を特にトラブルなく得ることができた。 この複合繊維100%使いで目付30g/m2の不織
布を作成した。不織布化工程中は特にトラブルは
認められず、良好な不織布が得られた。ウエツプ
の熱風温度を140℃で2分処理させた後の不織布
は裂断長4.5Kgと非常に高強力で、なおかつ風合
の柔らかい不織布を得た。 実施例 8 260℃で重縮合反応を行ない、TA90モル、ア
ジピン酸10モル、HD90モル、エチレングリコー
ル10モルよりなる共重合ポリエステルを実施例7
と同様にして製造し良好なペレツトを得た。 得られた共重合ポリエステルは〔η〕1.22、m.
p.116〜126℃、△Hu5.5cal/g、室温での結晶化
時間は8秒、SSは12.0Kg/cm2であつた。 このペレツトを実施例2と同様の方法で複合繊
維を作成し、該複合繊維100%使いで目付30g/
cm2の不織布を同様の温度条件により得た。裂断長
4.0Kmの高強力不織布を得た。風合も柔らかく良
好なものが得られた。なお、工程中特にトラブル
は認められなかつた。 比較例 1 TA60モル、HD100モル、セバチン酸40モルよ
りなる共重合ポリエステルを重縮合反応によつて
得た。重合器底部よりストランド状に水中に押し
出し、ストランドカツターを用いて切断し、第1
表記載の物性を有するペレツトを得た。カツター
の前に冷却槽を設け冷却槽を通過させた後、切断
してもストランドのカツターへの挿入がかなり困
難であり、未切断ストランドが蓄積するためしば
しばカツターの運転を停止した。 このペレツトを真空乾燥器中50℃で長時間乾燥
を行なつた。 この共重合ポリエステルを鞘とし、〔η〕0.67
のPETを芯として、芯/鞘=40/60重量比で芯
鞘複合紡糸を行なつた。紡糸ヘツド温度を270℃
より287℃まで変えて1000m/分で紡糸を行なつ
たが、単繊維間および繊維束間での膠着が著しく
良好な繊維を得ることができなかつた。 比較例 2 TA90モル、HD60モル、セバチン酸10モル、
エチレングリコール40モルよりなる共重合ポリエ
ステルを重縮合反応によつて得た。重合器底部よ
りストランド状に水中に押し出し、冷却槽通過後
ストランド・カツターを用いて切断し、第1表記
載の物性を有するペレツトを得た。ストランド切
断調子が不良でしばしば運転を停止するためペレ
ツトの収率が低下した。 この共重合ポリエステルを鞘とし、PETを芯
として、比較例2と同様にして芯鞘複合紡糸を行
なつた。紡糸ヘツド温度を270℃より287℃まで変
えて1000m/分で紡糸を行なつたが、繊維間の膠
着が著しく良好な繊維を得ることができなかつ
た。 比較例 3〜9 第1表に示す共重合組成、物性の共重合ポリエ
ステルを鞘とし、PETを芯として、比較例1と
同様にして芯鞘複合紡糸を行なつたが、いずれも
繊維間に膠着が多数発生し良好な繊維を得ること
ができなかつた。 比較例 10 第1表記載の共重合ポリエステルを用い実施例
2と同様にして芯鞘複合紡糸、繊維化、不織布化
を行なつた。繊維間膠着はなく工程性は良好であ
つたが、不織布の裂断長は1.2Kmであつた。 比較例 11 第1表記載の〔η〕0.41、SS4.8Kg/cm2の共重
合ポリエステルを用い実施例2と同様にして芯鞘
複合紡糸を行なつた。繊維間膠着は認められなか
つたが、時々糸切れが発生した。ついで実施例1
と同様にして繊維化、不織布化を行ない、裂断長
0.6Kmの不織布を得た。 比較例 12 第1表記載の共重合ポリエステルを重合温度
260℃で製造した。高〔η〕化するのに長時間を
要しポリマーの着色も大であつた。ついで比較例
2と同様にして芯鞘複合紡糸、繊維化、不織布化
を行なつた。繊維間膠着はなく工程性は良好であ
つたが、不織布の裂断長は1.7Kmであつた。 比較例 13 第1表記載の共重合ポリエステルを重合温度
260℃で製造した。高〔η〕化するのに長時間を
要しポリマーの着色も大であつた。ついで比較例
2と同様にして芯鞘複合紡糸を行なつたが、繊維
間膠着が多数発生し良好な繊維を得ることができ
なかつた。 比較例 14 ポリエチレン・ポリプロピレン複合繊維(チツ
ソ(株)製、3dr×51mm)を用い実施例1と同様にし
て不織布化を行ない、裂断長0.4Kmの不織布を得
た。 なおポリエチレン・フイルムとPETフイルム
でのSSは0.3Kg/cm2であつた。 比較例 15 ポリプロピレン繊維(大和紡(株)製、2dr×51mm)
を用い実施例1と同様にして不織布化を行ない、
裂断長0.5Kmの不織布を得た。 なおポリプロピレン・フイルムとPETフイル
ムでのSSは0.2Kg/cm2であつた。
(Industrial Application Field) The present invention relates to a polyester heat-adhesive fiber, and its purpose is to have excellent heat-adhesive properties even at low temperatures, and to provide fibers and fiber aggregates using the fibers. It is an object of the present invention to provide fibers made of polyhexamethylene terephthalate-based or polyhexamethylene-butylene terephthalate-based copolyester, which can be manufactured smoothly without any process troubles. (Prior Art) Heat-adhesive fibers for producing nonwoven fabrics and the like by interfiber heat fusion are known. For example, there are composite fibers with polypropylene and polyethylene as an adhesive component, or composite fibers with polyethylene terephthalate and polyethylene terephthalate with an ethylene-vinyl alcohol copolymer as an adhesive component. In recent years, the role of polyester fibers such as polyethylene terephthalate (hereinafter abbreviated as PET) has grown in the textile field, especially in the nonwoven fabric field. With the increasing demand for manufacturing polyester, adhesive fibers for polyester are strongly desired. The above-mentioned known adhesive fibers have good thermal adhesion properties between adhesive polymers, but when used in combination with other main fibers for nonwoven fabrics, etc., the types of main fibers that can be bonded are very limited, and polyester I have not found anything that can be adhered to. for example,
Although polyethylene is self-adhesive, it hardly adheres to common commercially available fibers that have different chemical structures.
Furthermore, copolymerized nylon adheres to nylon fibers, but does not adhere to polyester fibers made of the same condensation polymer. Additionally, ethylene-vinyl alcohol copolymers exhibit adhesion to rayon, vinylon, or nylon, which have relatively similar solubility parameters, but they also do not adhere to polyester. In addition, when polyethylene, copolymerized nylon, etc. are used as adhesive polymers, they have poor compatibility with polyester, so the adhesive polymer may peel off during the process, resulting in frequent problems such as the generation of white powder. The problem of reduced product yield was unavoidable. From the above, in order to bond polyester fibers, it is common sense to use a polyester polymer as an adhesive component due to the similarity in chemical structure and solubility parameters, as it is good for the adhesive strength of nonwoven fabrics and processability. It's possible to think about it. In fact, many soft, amorphous copolymer polyesters with low glass transition points have been proposed as solvent-soluble or hot-melt adhesives that use polyester as an adhesion partner. However, when softening amorphous copolymer polyester with a low glass transition point is used as an adhesive fiber, it passes through specific equipment and a specific thermal history in the fiber or nonwoven manufacturing process. During the temperature treatment process, the amorphous copolyester softens and fuses, making it impossible to form into fibers, making it impossible to use ordinary copolyesters for adhesives at all. To give a more specific example, when a copolymerized polyester is taken out of a polymerization tank and cut into pellets, the polymer is too soft and difficult to cut using an ordinary amorphous copolyester with a low glass transition point. Also, the pellets stick together during the drying process before spinning. Also, when the molten polymer is extruded from a spinneret to form fibers and the fiber bundles are placed in a can or wound on a bobbin, there is severe adhesion between single fibers or fiber bundles, and if the polymer somehow manages to pass the pelletizing and drying steps. Alternatively, even if the fibers are directly extruded from a polymerization vessel and the pelletizing and drying steps are omitted, it is difficult to obtain spun fibers. Furthermore, when stretching, crimping, cutting, etc.
Furthermore, adhesion and fusion between single fibers occur, making it impossible to obtain good fibers. In addition, even if fiberization is performed incompletely, for example, when turning into a non-woven fabric, problems such as the occurrence of neps may result in poor card passage, or problems with adhesion occur during adhesive processing, making it impossible to make a non-woven fabric. . The processing properties required for this spinning and the subsequent fiberization and nonwoven fabric manufacturing processes are extremely strict, and even if the spinning process passes through the pelletizing and drying processes without any trouble, there are very few products that can be fabricated into fibers or nonwoven fabrics. The patent discloses fibers containing copolymerized polyester as an adhesive component. However, when producing fibers from the patented copolyester polyester, there are problems such as those mentioned above, and in reality, it is almost impossible to make fibers, or even if it is possible to produce fibers in a short time or in small quantities, it takes a long time to produce fibers. It is difficult to continue stable production. In commercial production and operational production, stable production over long periods of time is an absolute requirement, and it must be said that the adhesive fiber described in the patent is still insufficient. On the other hand, fiber-forming polyesters with a small amount of copolymerization and a lower degree of modification, that is, polymers that maintain a high level of crystallinity and have a fast crystallization rate, are used in the fiber or nonwoven fabric manufacturing process. However, the adhesion of polyester to PET or polybutylene terephthalate (PBT), which are currently mass-produced commercially, is generally low, and it cannot be used as an adhesive fiber. If the amount of copolymerization is small with PET-based or PBT-based copolyester, each
Adhesion to PET or PBT may be good to some extent. However, in such cases, the high melting point of the copolymerized polyester makes it impossible to bond at low temperatures, requiring high temperatures for bonding, making conventional equipment unusable, or even if high-temperature processing equipment is used, it requires energy. This is not preferable because it causes a lot of loss and the molded product is deformed and its texture deteriorates. (Problems to be Solved by the Invention) The present inventors have discovered that the present invention has excellent adhesion to polyester;
In particular, as a result of various research into fibers that can be bonded at low temperatures and whose processing efficiency for manufacturing fibers and non-woven fabrics is at a level that can be commercially produced, we have found that copolymer polyesters that can be used for textiles are completely different from those for so-called adhesives. is suitable, and the above-mentioned method can be achieved for the first time by using a fiber made of a polyhexamethylene terephthalate-based or polyhexamethylene-butylene terephthalate-based copolyester having a copolymer composition and physical properties within a specific limited range as described in the claims. It has been found that the problem can be completely solved and high-quality adhesive fibers that can be processed for low-temperature adhesive treatment can be obtained. (Means for Solving the Problems) It is known that copolyesters similar to the composition of the present invention can be used as so-called adhesives. However, it is completely unknown that fibers or nonwoven fabrics can be smoothly produced from copolyester having the composition of the present invention and polymers having specific physical properties without any process troubles. Furthermore, the physical properties of polyester adhesive fibers that enable them to be made into fibers or non-woven fabrics were revealed for the first time in the present invention. That is, the adhesive polymer for polyester adhesive fibers is a copolymerized polyester, and the most important point is to impart a specific degree of crystallinity and a specific crystallization rate, and the polymer composition has a low melting point. We have come to the conclusion that this is a necessary condition. The copolymer composition and physical properties suitable for adhesive fibers are completely different from those of so-called adhesives. That is, adhesives that generally have lower crystallinity, and are particularly amorphous, are often used. Furthermore, adhesives that have a high peel strength when bonded in film form are used, but the present inventors have studied adhesive fibers from a completely different perspective than adhesives, and have developed adhesive fibers that have completely different compositions than adhesives. It was discovered that copolymerized polyester has good physical properties. In other words, while maintaining the ability to adhere to polyester fibers at low temperatures,
In order to maintain processability for fiberization,
The most important point is how to maintain the crystallinity and crystallization rate of the polymer above a predetermined level, and this is the first time that we have discovered what the polymer composition is for this purpose. To specifically explain the present invention, the amount of 1,6-hexanediol (HD) copolymerized in the polyhexamethylene terephthalate-based or polyhexamethylene-butylene terephthalate-based copolyester of the present invention is as follows: 20 mol% or more (hereinafter, the amount of copolymerization refers to the total amount defined above) based on the total acid component (if oxyacid is included, one-half is considered to be the acid component and one-half is considered to be the diol component). (expressed in mol % based on the acid component), preferably 25 mol % or more, more preferably 30 mol % or more. The present invention is based on the discovery that by using HD as a component of a copolymerized polyester, it exhibits good adhesion even in low-temperature processing, and the processability of forming into fibers and nonwoven fabrics is good. In this case, the object of the present invention cannot be achieved. It has been found that maintaining the crystallization rate is an absolute requirement for fiberization, and for this purpose, a 1,6-hexanediol component with a fast crystallization rate is essential. In addition, 1,4 in the copolymerized polyester of the present invention
-Butanediol (BD) copolymerization amount is 80 mol%
Hereinafter, the amount used is preferably 75 mol% or less, more preferably 70 mol% or less. If it exceeds 80 mol%, it becomes difficult to achieve both low-temperature adhesion and processability, which is not preferable. The BD component also does not significantly reduce the crystallization rate and is an effective component for forming fibers, but when the BD component is rich, the melting point of the polymer increases, making it difficult for binder fibers with low-temperature adhesion, which is the original purpose, to be used. You won't be able to get it. The copolymer component A of the present invention is adipic acid or sebacic acid. In these two cases, the crystallization behavior, that is, the crystallinity to some extent is maintained, the crystallization rate is not reduced too much, the hardness is appropriate, and both adhesion and processability can be achieved. Unsaturated dicarboxylic acids cause unstable polymerization,
Moreover, it is not preferable because the fiber becomes brittle. Branched dicarboxylic acids are undesirable because they greatly reduce crystallinity. Isophthalic acid is used as the copolymer component B of the present invention. The copolymerization component C of the present invention is ethylene glycol, diethylene glycol, triethylene glycol or cyclohexanedimethanol.
Although these reduce the melting point or hardness, they are selected so that the decrease in crystallinity is as small as possible. The total amount of component A and component C used in the present invention is 3 to 35 mol%, preferably 5 to 32 mol%, and more preferably 7 to 29 mol%. If it is less than 3 mol%, the adhesion will be insufficient, and even if some degree of adhesion is achieved, the texture of the fibers and nonwoven fabric will not be good. On the other hand, if it exceeds 35 mol%, it is undesirable because the crystallization behavior deteriorates, that is, the crystallization rate decreases and the crystallinity decreases significantly, resulting in poor fiber forming properties, softening of the polymer, and decreasing processability. . Further, the copolymerization amount of component C of the present invention is 20 mol% or less, preferably 16 mol% or less, more preferably
Up to 12 mol% is used. If it exceeds 20 mol%, the above-mentioned crystallization behavior will deteriorate, resulting in poor processability, which is not preferable. The total of component B and component C of the present invention is 30 mol% or less, preferably 26 mol% or less, more preferably
Up to 22 mol% is used. If it exceeds 30 mol%, crystallization behavior etc. deteriorate and processability becomes poor, which is not preferable. Furthermore, the total amount of component A, component B, and component C of the present invention is 3 to 40 mol%, preferably 5 to 36 mol%, and more preferably 7 to 32 mol%. If it is less than 3 mol%, adhesion may be insufficient, and even if some adhesion occurs, the texture of the fibers and nonwoven fabrics may not be good, or the melting point of the copolyester may be high, making low-temperature adhesion impossible. . On the other hand, if it exceeds 40 mol%, it is not preferable because it causes deterioration of crystallization behavior, softening of the polymer, etc., and reduces processability. The copolymerized polyester used in the fiber of the present invention must satisfy all of the above compositional conditions, and must also ensure stability in the fiber and nonwoven fabric manufacturing process at a commercial production level and quality as an adhesive fiber. For this purpose, the degree of crystallinity, crystallization rate and adhesive strength must be appropriate. In other words, an adhesive polymer as a binder fiber that maintains the crystallinity and crystallization speed of the polymer to maintain the processability of fiberization, sufficient strength as a nonwoven fabric, and good texture must be considered economically. It has been found that the folic acid component is essentially terephthalic acid, and the glycol component is essentially a component based on 1,6-hexanediol or 1,4-butanediol. Specifically, the copolymerized polyester of the present invention has a heat of crystal fusion (△Hu) of 2.0 cal/g or more, preferably 2.5 cal/g or more, and more preferably 3.0 cal/g.
The above are used. If it is less than 2.0 cal/g, it is not preferable because it tends to cause sticking during fiber production. △Hu
The measurement is carried out by extracting fine fibers or thin film pieces from the molten polymer, cooling them, leaving them at room temperature for three days or more, and then applying the sample to a differential scanning calorimeter (DSC) in nitrogen at a rate of 10°C/min. death,
It is determined from the area of the endothermic peak during melting. In addition, the copolymerized polyester of the present invention has a minimum crystallization time (Minimum Crystalization Time).
CTmim.) within 2.5 minutes, preferably within 2 minutes,
More preferably, a time within 1.5 minutes is used.
If the time is longer than 2.5 minutes, sticking may occur during fiber production, which is not preferable. CTmim. is a process of crystallization in the temperature range of 0 to 100℃, where a small piece of substantially non-oriented film is rapidly cooled from a molten state to a set temperature, and the time when it starts to whiten when left at that temperature is defined as the crystallization start time. This is the crystallization start time at the temperature where the start time is the shortest.
To find CTmim., it is not necessarily necessary to change the temperature and measure CTmim.
A sufficient condition is that the crystallization time at a certain temperature in the range of 100°C is within 2.5 minutes. Depending on the type of copolymerized polyester, the temperature at which CTmim. is indicated may be close to 0°C, or may be close to 100°C.
The crystallization time in the actual fiber manufacturing process varies depending on the temperature history, etc., but it is natural that the crystallization speed will be faster if the temperature is set to indicate CTmim. In addition, when the fibers are highly oriented as during spinning, the crystallization rate may increase, but as defined in the present invention,
CTmim. can be used as a measure related to process performance. Furthermore, the polyester of the present invention has a shear strength (SS) of the PET film bonded to it.
The weight of the material used is 6 Kg/cm 2 or more, preferably 7 Kg/cm 2 or more, more preferably 8 Kg/cm 2 or more.
If it is less than 6 kg/cm 2 , the adhesive strength in fibrous form, especially the strength of nonwoven fabric, will be insufficient, which is not preferable. The SS of the present invention is a copolymerized polyester film with a thickness of 0.3 mm and a biaxially stretched PET film manufactured by Mitsubishi Plastics (trade name, Diamond Foil, thickness 0.1 mm) at a temperature of 20 mm.
℃, relative humidity of 65% in a room, heated to a temperature 20℃ higher than the melting point of the copolymerized polyester, and then heated to a pressure of 5℃.
After gluing at Kg/cm 2 , leave it for 24 hours, and then
This is a value measured at 20cm/min. The copolymerized polyester of the present invention may contain small amounts of additives, such as matting agents such as titanium oxide, antioxidants, fluorescent brighteners, stabilizers, or ultraviolet absorbers. The copolymerized polyester fibers of the present invention and the fiber aggregates and nonwoven fabrics made from the fibers are preferably manufactured using unique machines and equipment most suitable for the production, but the machines and equipment that have been used in the past are not changed much. It can be manufactured without Further, the present invention has great significance in that the fibers are specified so that conventional machines and devices can be used. The fiber of the present invention can be used as a single fiber (homofilament) spun alone, but it is preferable to spin it together with other melt-spun polymers and use it as a composite fiber because the shape stability of the nonwoven fabric and the strength of the nonwoven fabric are excellent. Therefore, it is used as a composite fiber. As other composite spinning components, thermoplastic polymers having a melting point of 150° C. or higher are used. For example,
PET, PBT, nylon-6, nylon-6,6,
There are polypropylene, etc. When used as an adhesive fiber, the ratio of the copolymerized polyester component to the total circumference of the cross section of the composite fiber, that is, the cross-sectional circumference of the fiber, is preferably 40% or more. Although the fibers of the present invention can be used as modified fibers other than adhesive fibers, they are very suitable for use as adhesive fibers that are subjected to fusing treatment at temperatures above the softening point of the fibers. The fibers of the present invention can be used as a fusion-treated fiber aggregate consisting only of composite fibers of copolyester polyester and other polymers, but can also be used as a fusion-treated fiber aggregate consisting of 10% by weight or more of other fibers. used. As a fiber aggregate, it is particularly suitable for nonwoven fabrics,
A nonwoven fabric with high strength can be obtained. Among them, PET or PET-like fibers are used as mixed fibers.
In the case of polyester containing TA as a component, the adhesion not only between adhesive fibers but also with the TA-based polyester is good, and a nonwoven fabric with high strength can be obtained. The significance of the present invention is great in that it has made it possible to produce a good polyester nonwoven fabric without conventional fibers adhering to TA polyester. Next, the present invention will be explained by examples. Examples are summarized in Table 1. In the examples, the mole indicating the copolymer composition amount indicates the mol% based on the total acid component of the polyester produced. [η] is the intrinsic viscosity (dl/g) of polyester measured at 30°C in a mixed solvent of equal weights of phenol and tetrachloroethane. The melting point (mp) of polyester is determined by measuring the point at which the polarized light of the sample on the hot plate disappears or the pouring point using a micro-melting point measuring device. In addition, the strength of the nonwoven fabric is determined by 20 parts by weight of adhesive fiber and PET.
After blending with 80 parts by weight of fiber (3D x 51mm), carding and web formation, 10Kg/
It is expressed as the breaking length (Km) of the nonwoven fabric obtained by thermally bonding the adhesive fibers by melting the adhesive fibers at cm 2 for 1 minute. Example 1 Polycondensation reaction was carried out at 260℃, 75 mol of TA,
A copolymerized polyester consisting of 100 moles of HD and 25 moles of sebacic acid was produced, extruded into water in the form of strands from the bottom of the polymerization vessel, cut using a strand cutter, and pelletized. The extrusion and cutting conditions were good, and pellets with a good shape were obtained. The obtained copolymerized polyester has a diameter of [η] 1.24m.
p.118-122°C, △Hu5.8cal/g, crystallization time at room temperature was 13 seconds, and SS was 15.8Kg/ cm2 . When this pellet was dried at 70°C in a vacuum dryer, no agglutination was observed. This copolyester is used as a sheath with [η]0.67.
Core-sheath composite spinning was performed using PET as a core at a core/sheath weight ratio of 40/60. It was extruded at a spinning head temperature of 287°C and wound at 1000 m/min. The wound fibers could be stably spun for a long period of time without any sticking between single fibers or fiber bundles. This spun yarn was stretched 3.5 times in a water bath at 78°C,
Subsequently, it was shrunk by 15% at 87℃ in a water bath, further crimped using a stuffing box type crimper, and then cut to give a fineness of 3.1 dr, strength of 3.7 g/d, and elongation of 52.
% of fiber could be obtained without any particular trouble. 20 parts by weight of this composite fiber and 80 parts by weight of PET fiber were mixed to obtain a high-strength nonwoven fabric with a breaking length of 3.3 km.
Note that no particular trouble was observed during the nonwoven process. Example 2 Polycondensation reaction was carried out at 260℃, TA80mol, HD50
A copolymerized polyester consisting of 50 moles of BD, 15 moles of adipic acid, and 5 moles of isophthalic acid was produced, extruded into water in the form of strands from the bottom of the polymerization vessel, and cut into pellets using a strand cutter. The extrusion and cutting conditions were good, and pellets with a good shape were obtained. The obtained copolymerized polyester had [η] 1.18, mp123-127℃, △
Hu3.6cal/g, crystallization time at room temperature is 45 seconds, SS
was 14.2Kg/ cm2 . When this pellet was dried at 70°C in a vacuum dryer, no agglutination was observed. This copolyester is used as a sheath with [η]0.67.
Core-sheath composite spinning is performed using PET as the core in the same manner as in Example 1, and then stretching, shrinking, crimping, and cutting are performed to obtain fibers with a fineness of 3.1 dr, strength of 3.5 g/d, and elongation of 50% without any particular trouble. I was able to do that. A high-strength nonwoven fabric with a breaking length of 3.2 km was successfully obtained from this composite fiber and PET fiber. Example 3 A copolymerized polyester having the copolymer composition and physical properties shown in Table 1 is used as a sheath, and nylon-6 is used as a core, and core/sheath =
Core-sheath composite spinning was performed at a weight ratio of 40/60. It was extruded at a spinning head temperature of 270°C, spun at 1000 m/min, and then stretched, shrunk, crimped, and cut.
A fiber with a fineness of 3.5 dr, a strength of 4.7 g/d, and an elongation of 53% was obtained. Processability was benign and there were no particular troubles, and no adhesion between fibers was observed. A high-strength nonwoven fabric with a breaking length of 4.2 km was successfully obtained from this composite fiber and PET fiber. Examples 4 to 6 Core-sheath composite spinning was performed in the same manner as in Example 1 using a copolymerized polyester having the copolymer composition and physical properties shown in Table 1 as a sheath and PET as a core, and then in the same manner as in Example 1. The fabric was made into fibers and non-woven fabrics, and non-woven fabrics with good strength were obtained in both cases. The process properties of fiberization and nonwoven fabrication were both good, and no particular trouble was observed. Example 7 Polycondensation reaction was carried out at 260℃, 90 mol of TA,
IPA 10 mol, HD 90 mol, ethylene glycol 10
A copolymerized polyester consisting of moles was produced, extruded into water in the form of strands from the bottom of the polymerization vessel, cut using a strand cutter, and pelletized. After cooling the strand in water, it was once run in the air for several seconds to completely crystallize, and then cut with a strand cutter. The cutting condition is very good.
Pellets with good shape were obtained without causing any trouble. The obtained copolymerized polyester had [η] 1.20, m.
p.120-128°C, △Hu5.0cal/g, crystallization time at room temperature was 10 seconds, and SS was 15.0Kg/ cm2 . When this pellet was dried at 70°C in a vacuum dryer, no agglutination was observed. Next, use this copolymerized polyester as a sheath [η]
With 0.67 PET as the core, core/sheath = 50/50 weight ratio,
Core-sheath composite spinning was performed. Spinning head temperature 287℃
It was extruded at a speed of 800 m/min and rolled up at a speed of 800 m/min. The wound fibers could be stably spun for a long period of time with almost no sticking between single fibers or fiber bundles. This spun yarn was stretched 3.8 times in a water bath at 65°C,
Next, the fibers were shrunk by 10% at 90°C in a water bath, further crimped using a stuffing box type crimper, and then cut. I was able to get it without any trouble. A nonwoven fabric with a basis weight of 30 g/m 2 was created using 100% of this composite fiber. No particular trouble was observed during the non-woven process, and a good non-woven fabric was obtained. After treating the wet cloth with hot air at a temperature of 140°C for 2 minutes, the nonwoven fabric had a tear length of 4.5 kg, which was extremely strong and had a soft texture. Example 8 A polycondensation reaction was carried out at 260°C to produce a copolymerized polyester consisting of 90 moles of TA, 10 moles of adipic acid, 90 moles of HD, and 10 moles of ethylene glycol.
Good pellets were obtained in the same manner as above. The obtained copolymerized polyester had [η] 1.22, m.
p.116-126°C, △Hu5.5cal/g, crystallization time at room temperature was 8 seconds, and SS was 12.0Kg/ cm2 . Composite fibers were made from these pellets in the same manner as in Example 2, and using 100% of the composite fibers, the fabric weight was 30g/
A cm 2 nonwoven fabric was obtained under similar temperature conditions. rupture length
A high strength non-woven fabric with a length of 4.0 km was obtained. The texture was also soft and good. Note that no particular trouble was observed during the process. Comparative Example 1 A copolymerized polyester consisting of 60 moles of TA, 100 moles of HD, and 40 moles of sebacic acid was obtained by polycondensation reaction. Extrude it into water from the bottom of the polymerization vessel in the form of a strand, cut it using a strand cutter, and
Pellets having the physical properties listed in the table were obtained. A cooling bath was provided in front of the cutter, and even if the strand was cut after passing through the cooling bath, it was quite difficult to insert the strand into the cutter, and the operation of the cutter was often stopped due to the accumulation of uncut strands. The pellets were dried for a long time at 50°C in a vacuum dryer. This copolymerized polyester is used as a sheath, [η]0.67
Using PET as a core, core-sheath composite spinning was performed at a core/sheath weight ratio of 40/60. Spinning head temperature 270℃
Although the spinning speed was changed to 287° C. and spun at 1000 m/min, it was not possible to obtain fibers with extremely good adhesion between single fibers and between fiber bundles. Comparative example 2 TA90 mol, HD60 mol, sebacic acid 10 mol,
A copolyester consisting of 40 moles of ethylene glycol was obtained by polycondensation reaction. It was extruded into water in the form of a strand from the bottom of the polymerization vessel, and after passing through a cooling tank, was cut using a strand cutter to obtain pellets having the physical properties listed in Table 1. The yield of pellets decreased because the operation was often stopped due to poor strand cutting conditions. Core-sheath composite spinning was performed in the same manner as in Comparative Example 2 using this copolymerized polyester as a sheath and PET as a core. Although the spinning head temperature was changed from 270°C to 287°C and spinning was carried out at 1000 m/min, it was not possible to obtain fibers with excellent adhesion between the fibers. Comparative Examples 3 to 9 Core-sheath composite spinning was carried out in the same manner as in Comparative Example 1 using a copolymerized polyester having the copolymer composition and physical properties shown in Table 1 as a sheath and PET as a core, but in all cases, there was no difference between the fibers. A lot of sticking occurred and it was not possible to obtain good fibers. Comparative Example 10 Using the copolymerized polyester shown in Table 1, core-sheath composite spinning, fiberization, and nonwoven fabrication were carried out in the same manner as in Example 2. Although the processability was good with no interfiber adhesion, the tearing length of the nonwoven fabric was 1.2 km. Comparative Example 11 Core-sheath composite spinning was carried out in the same manner as in Example 2 using the copolymerized polyester shown in Table 1 with [η] 0.41 and SS 4.8 Kg/cm 2 . Although no interfiber agglutination was observed, thread breakage occasionally occurred. Next, Example 1
Fiberization and non-woven fabric are carried out in the same manner as above, and the tearing length is
0.6Km of non-woven fabric was obtained. Comparative Example 12 The copolymerized polyester listed in Table 1 was polymerized at
Manufactured at 260℃. It took a long time to increase [η] and the polymer was heavily colored. Then, in the same manner as in Comparative Example 2, core-sheath composite spinning, fiberization, and nonwoven fabrication were performed. Although the processability was good with no adhesion between fibers, the tearing length of the nonwoven fabric was 1.7 km. Comparative Example 13 Polymerization temperature of copolyester listed in Table 1
Manufactured at 260℃. It took a long time to increase [η] and the polymer was heavily colored. Next, core-sheath composite spinning was carried out in the same manner as in Comparative Example 2, but a large number of fibers stuck together and it was not possible to obtain good fibers. Comparative Example 14 Polyethylene/polypropylene composite fibers (manufactured by Chitsuso Co., Ltd., 3 dr x 51 mm) were made into a non-woven fabric in the same manner as in Example 1 to obtain a non-woven fabric with a tearing length of 0.4 km. The SS of polyethylene film and PET film was 0.3Kg/cm 2 . Comparative example 15 Polypropylene fiber (manufactured by Daiwabo Co., Ltd., 2dr x 51mm)
The material was made into a non-woven fabric in the same manner as in Example 1 using
A nonwoven fabric with a tearing length of 0.5 km was obtained. The SS of polypropylene film and PET film was 0.2Kg/cm 2 .

【表】【table】

【表】【table】

Claims (1)

【特許請求の範囲】 1 テレフタル酸、1,6−ヘキサンジオール、
1,4−ブタンジオールおよび共重合成分A、
B、Cを下記式を同時に満足させ、結晶融解熱が
2.0cal/g以上、最短結晶化時間が2.5分以内、か
つポリエチレンテレフタレート・フイルムを接着
した剪断強度が6Kg/cm2以上に構成したポリヘキ
サメチレンテレフタレート系あるいはポリヘキサ
メチレン・ブチレンテレフタレート系共重合ポリ
エステルと、融点150℃以上の熱可塑性ポリマー
とよりなり、該共重合ポリエステルの繊維断面周
率が40%以上である熱接着性繊維。 HD=20〜100 (1) BD=0〜80 (2) A+C=3〜35 (3) C=0〜20 (4) B+C=0〜30 (5) A+B+C=3〜40 (6) ただし、式(1)、(2)、(3)、(4)、(5)、(6)は全酸成分
に対する共重合モル%を示す。 ここに、 HD=1,6−ヘキサンジオール BD=1,4−ブタンジオール A=アジピン酸またはセバチン酸 B=イソフタル酸またはフタル酸 C=エチレングリコール、ジエチレングリコー
ル、トリエチレングリコール、またはシクロヘ
キサンジメタノール
[Claims] 1. Terephthalic acid, 1,6-hexanediol,
1,4-butanediol and copolymer component A,
When B and C satisfy the following formula at the same time, the heat of crystal fusion is
Polyhexamethylene terephthalate-based or polyhexamethylene-butylene terephthalate-based copolymer polyester having a composition of 2.0 cal/g or more, minimum crystallization time of 2.5 minutes or less, and a shear strength of 6 kg/cm 2 or more when bonded with polyethylene terephthalate film. and a thermoplastic polymer having a melting point of 150° C. or higher, the copolymerized polyester having a fiber cross-sectional circumference of 40% or higher. HD=20~100 (1) BD=0~80 (2) A+C=3~35 (3) C=0~20 (4) B+C=0~30 (5) A+B+C=3~40 (6) However, Formulas (1), (2), (3), (4), (5), and (6) represent the copolymerization mole % based on the total acid components. where: HD = 1,6-hexanediol BD = 1,4-butanediol A = adipic or sebacic acid B = isophthalic acid or phthalic acid C = ethylene glycol, diethylene glycol, triethylene glycol, or cyclohexanedimethanol
JP55173637A 1980-12-08 1980-12-08 Polyester heat bonding fiber Granted JPS57101018A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP55173637A JPS57101018A (en) 1980-12-08 1980-12-08 Polyester heat bonding fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP55173637A JPS57101018A (en) 1980-12-08 1980-12-08 Polyester heat bonding fiber

Publications (2)

Publication Number Publication Date
JPS57101018A JPS57101018A (en) 1982-06-23
JPS6347806B2 true JPS6347806B2 (en) 1988-09-26

Family

ID=15964292

Family Applications (1)

Application Number Title Priority Date Filing Date
JP55173637A Granted JPS57101018A (en) 1980-12-08 1980-12-08 Polyester heat bonding fiber

Country Status (1)

Country Link
JP (1) JPS57101018A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0813315A (en) * 1994-06-29 1996-01-16 Unitika Ltd Wool tufted carpet
JP2009041143A (en) * 2007-08-09 2009-02-26 Nippon Ester Co Ltd Staple fiber for nonwoven fabric, and staple fiber nonwoven fabric
JP2009108461A (en) * 2007-08-09 2009-05-21 Nippon Ester Co Ltd Staple fiber nonwoven fabric

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57133217A (en) * 1981-02-03 1982-08-17 Kuraray Co Ltd Fiber consisting of copolyester
JPS63112723A (en) * 1986-10-28 1988-05-17 Nippon Ester Co Ltd Polyester based binder fiber
JPS63270812A (en) * 1987-04-28 1988-11-08 Nippon Ester Co Ltd Hot-melt composite binder fiber
US5049648A (en) * 1987-12-31 1991-09-17 E. I. Du Pont De Nemours And Company Thermoplastic copolyester elastomer binder
US6495656B1 (en) 1990-11-30 2002-12-17 Eastman Chemical Company Copolyesters and fibrous materials formed therefrom
DE60012014T2 (en) 1999-08-06 2004-11-11 Eastman Chemical Co., Kingsport POLYESTER WITH CONTROLLED MELTING POINT AND FIBERS THEREOF
JP6112931B2 (en) * 2013-03-26 2017-04-12 日本エステル株式会社 Polyester composite short fiber

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0813315A (en) * 1994-06-29 1996-01-16 Unitika Ltd Wool tufted carpet
JP2009041143A (en) * 2007-08-09 2009-02-26 Nippon Ester Co Ltd Staple fiber for nonwoven fabric, and staple fiber nonwoven fabric
JP2009108461A (en) * 2007-08-09 2009-05-21 Nippon Ester Co Ltd Staple fiber nonwoven fabric

Also Published As

Publication number Publication date
JPS57101018A (en) 1982-06-23

Similar Documents

Publication Publication Date Title
JPS6347806B2 (en)
JP6090308B2 (en) Copolyester and polyester fiber comprising the same
JPS6327445B2 (en)
JP2009019094A (en) Wet nonwoven fabric
JPH0347325B2 (en)
JPH09268490A (en) Polyester-based heat-resistant wet type nonwoven fabric and its production
JPH0130926B2 (en)
JP4884286B2 (en) Thermal adhesive polyester filament
JP2506419B2 (en) Durable hydrophilic heat-fusible composite fiber
JPS6032722B2 (en) hot melt adhesive fiber
JP3057449B2 (en) Mall yarn
JPH0226920A (en) Heat-fusible conjugate fiber with durable hydrophilicity
JP3397914B2 (en) Copolyester and its production method
JP5344963B2 (en) Short fiber nonwoven fabric
JP5117259B2 (en) Polyester composite staple fiber and staple fiber nonwoven fabric
JPH0154445B2 (en)
JP4163828B2 (en) Thermal adhesive composite fiber
JP5220393B2 (en) Polyester composite long fiber
JP2795742B2 (en) Low melting crystalline polyester, method for producing the same, and polyester-based heat-bondable fiber
JPS60163920A (en) Copolyester for binder fiber
JP2882651B2 (en) Polyester based yarn
JP2870712B2 (en) Heat-fusible conjugate fiber with excellent durability and hydrophilicity
JP2011012154A (en) Polyester resin and binder fiber
JP7448194B2 (en) Polyester core-sheath composite fiber
JP4889604B2 (en) Polyester staple fiber