JPS63270812A - Hot-melt composite binder fiber - Google Patents

Hot-melt composite binder fiber

Info

Publication number
JPS63270812A
JPS63270812A JP62105727A JP10572787A JPS63270812A JP S63270812 A JPS63270812 A JP S63270812A JP 62105727 A JP62105727 A JP 62105727A JP 10572787 A JP10572787 A JP 10572787A JP S63270812 A JPS63270812 A JP S63270812A
Authority
JP
Japan
Prior art keywords
melting point
fiber
acid
copolyester
hot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62105727A
Other languages
Japanese (ja)
Inventor
Toshiya Ohashi
大橋 敏也
Nobuhiro Matsunaga
伸洋 松永
Yoshifumi Kagawa
香川 欣史
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Ester Co Ltd
Original Assignee
Nippon Ester Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Ester Co Ltd filed Critical Nippon Ester Co Ltd
Priority to JP62105727A priority Critical patent/JPS63270812A/en
Publication of JPS63270812A publication Critical patent/JPS63270812A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the titled binder fiber having excellent adhesivity, by combining a high-melting polymer with a low-melting copolyester containing terephthalic acid and adipic acid as main acid components and 1,4-butanediol as diol component. CONSTITUTION:The objective binder fiber capable of giving a bonded textile structure having excellent feeling and heat-resistance can be produced by the composite spinning of (A) a low-melting copolyester having a crystal melting point of 90-210 deg.C and composed of (i) a main acid component consisting of terephthalic acid and adipic acid at a molar ratio of 90/10-40/60 and (ii) 1,4- butanediol as a main diol component and (B) a high-melting polymer having a crystal melting point of >=220 deg.C and consisting of preferably polyethylene terephthalate or a polyester composed mainly of the terephthalate. The component A occupies at least a part of the surface of the obtained composite fiber. The composite fiber is preferably a concentric sheath-core composite fiber.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、優れた接着性を有し、耐熱性及び風合の良好
な接着繊維製品を与えるホットメルト型複合バインダー
繊維に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a hot-melt composite binder fiber that has excellent adhesive properties and provides a bonded fiber product with good heat resistance and feel.

(従来の技術) 近年、ルーフィング資材、自動車用内装材、カーペット
の基布等に用いる不織布、枕やマツトレス等の寝装用品
の詰物、キルテイング用中入れ綿等の繊維構造物におい
て構成繊維(主体繊維という)相互間を接着する目的で
、ホットメルト型バインダー繊維が広く使用されるよう
になってきた。
(Prior art) In recent years, constituent fibers (mainly Hot-melt binder fibers have come to be widely used for the purpose of bonding together fibers (called fibers).

そして、主体繊維としては、比較的安価で、優れた物性
を有するポリエステル繊維が最も多く使用されており、
これを接着するバインダー繊維もポリエステル系のもの
が好ましく9種々のポリエステル系バインダー繊維及び
それを用いて接着したポリエステル繊維構造物が提案さ
れている(例えば、米国特許第4.129.675号ば
か多数)。
The main fiber used is polyester fiber, which is relatively inexpensive and has excellent physical properties.
It is preferable that the binder fibers used to bond these fibers are polyester-based.9 Various polyester-based binder fibers and polyester fiber structures bonded using the same have been proposed (for example, U.S. Pat. No. 4,129,675). ).

ところで、ポリエステル系バインダー繊維は。By the way, what about polyester binder fibers?

一般にコポリエステルを用いるので、明確な結晶融点を
示さない場合が多く1通常、90〜200℃で軟化する
。そして、その軟化点以上、主体繊維の融点未満の温度
で熱処理して主体繊維相互間を接着するものである。
Since copolyesters are generally used, they often do not exhibit a clear crystalline melting point (1) and usually soften at 90 to 200°C. Then, the main fibers are bonded together by heat treatment at a temperature higher than the softening point and lower than the melting point of the main fibers.

ところが、バインダー繊維のガラス転移点以上の高温雰
囲気で使用される産業資材用の繊維製品の場合、明確な
結晶融点を示さないバインダー繊維で接着すると、高温
雰囲気においては、接着強度が低下し、製品の強度低下
、嵩高保持性紙下等が起こるという問題があった。
However, in the case of textile products for industrial materials that are used in high-temperature environments above the glass transition point of the binder fibers, bonding with binder fibers that do not have a clear crystalline melting point will reduce the adhesive strength in the high-temperature atmosphere, causing the product to deteriorate. There were problems such as a decrease in strength and bulk retention under paper.

また、結晶融点を示さないコポリエステルと高融点ポリ
エステルとで複合繊維型のバインダー繊、  維とする
場合、紡糸後、熱延伸すると融着するため、冷延伸しな
ければならず、冷延伸したバインダー繊維では、使用時
に高融点ポリエステルが熱収縮し、接着繊維製品の外観
を損なうという問題があった。
In addition, when making composite fiber-type binder fibers or fibers from a copolyester that does not exhibit a crystalline melting point and a high-melting-point polyester, the cold-drawn binder fibers must be cold-drawn because they fuse when hot-drawn after spinning. In the case of fibers, there is a problem in that high melting point polyesters undergo heat shrinkage during use, impairing the appearance of bonded fiber products.

結晶融点を示すコポリエステルからなるホットメルト型
バインダー繊維も提案されており1例えば、特開昭51
−125424号公報には、ポリブチレンテレフタレー
ト/ポリブチレンイソフタレート系コポリエステルから
なるホットメルト型接着剤が開示されているが、これを
用いて9例えば、不織布を接着すると、接着不織布がペ
ーパーライクな手触りの硬いものになる場合があるとい
う問題があった。
Hot-melt type binder fibers made of copolyesters exhibiting a crystalline melting point have also been proposed.
Publication No. 125424 discloses a hot-melt adhesive made of polybutylene terephthalate/polybutylene isophthalate copolyester. For example, when a nonwoven fabric is bonded using this adhesive, the bonded nonwoven fabric becomes paper-like. There was a problem in that the material may be hard to the touch.

なお、特開昭53−82840号公報には、テレフタル
酸、アジピン酸及び1.4−ブタンジオールからのコポ
リエステルからなるホットメルト型接着剤が開示されて
いるが、複合繊維として用いることについては何も開示
されていない。
Note that JP-A-53-82840 discloses a hot-melt adhesive made of a copolyester of terephthalic acid, adipic acid, and 1,4-butanediol, but there is no information on its use as a composite fiber. Nothing is disclosed.

(発明が解決しようとする問題点) 本発明は、上記のようなバインダー繊維の問題点を解消
し、熱延伸法により製造することができ。
(Problems to be Solved by the Invention) The present invention solves the above-mentioned problems of binder fibers and can be produced by a hot stretching method.

繊維構造物の外観を損なうことなく2有効に接着するこ
とが可能で、高温雰囲気で使用しても接着強度の低下が
少ない風合の柔らかい接着繊維構造物を与えるホットメ
ルト型バインダー繊維を提供しようとするものである。
To provide a hot-melt binder fiber that can be effectively bonded without damaging the appearance of the fiber structure, and that provides a bonded fiber structure with a soft texture and less loss of adhesive strength even when used in a high-temperature atmosphere. That is.

(問題点を解決するための手段) 本発明は、上記の目的を達成するもので、その要旨は1
モル比90/10〜40/60のテレフタル酸とアジピ
ン酸を主たる酸成分とし、1.4−ブタンジオールを主
たるジオール成分とする結晶融点90〜210℃の低融
点コポリエステルと結晶融点220℃以上の高融点ポリ
マーとからなり、前者が繊維表面の少なくとも一部を占
める複合繊維からなるホットメルト型複合バインダー繊
維にある。
(Means for solving the problems) The present invention achieves the above objects, and its gist is as follows:
A low melting point copolyester with a crystal melting point of 90 to 210°C and a crystal melting point of 220°C or higher, which has a molar ratio of 90/10 to 40/60 as the main acid components and 1,4-butanediol as the main diol component. The hot-melt composite binder fiber consists of a high melting point polymer and the former occupies at least a portion of the fiber surface.

本発明における低融点コポリエステルは、明確な結晶融
点を有し、結晶化速度の大きいものであり、テレフタル
酸を主たる酸成分とし1モル比90/10〜40/60
のテレフタル酸(TP^)とアジピン酸(AA)を主た
る酸成分とし、1,4−ブタンジオール(BD)を主た
るジオール成分とする結晶融点90〜210℃のもので
ある。
The low melting point copolyester in the present invention has a clear crystal melting point and a high crystallization rate, and has terephthalic acid as the main acid component and has a 1 molar ratio of 90/10 to 40/60.
The main acid components are terephthalic acid (TP^) and adipic acid (AA), and the main diol component is 1,4-butanediol (BD), and the crystal melting point is 90 to 210°C.

結晶融点が90℃未満では、接着した繊維製品を高温雰
囲気で使用したときに接着強度が低下して好ましくなく
、210℃を超えると接着温度を主体繊維の融点に近い
高温にしなければならないため。
If the crystal melting point is less than 90°C, the adhesive strength will decrease when the bonded fiber product is used in a high-temperature atmosphere, which is undesirable. If it exceeds 210°C, the bonding temperature must be set to a high temperature close to the melting point of the main fiber.

主体繊維の物性や繊維構造物の形状を損ない好ましくな
い。
This is undesirable because it impairs the physical properties of the main fiber and the shape of the fiber structure.

このような結晶融点90〜210℃のコポリエステルは
、 TPAとAAとからなる酸成分とBDからなるジオ
ール成分とを上記モル比の範囲で、所定の結晶融点とな
るように酸成分のモル比を選定して共重合することによ
り得ることができる。 (酸成分のモル比が上記範囲を
外れると、明確な結晶融点を示さなくなったり、融点が
高くなったりする。)なお、低融点コポリエステルは、
その特性が大きく変化しない範囲で、他の成分9例えば
イソフタル酸、トリメリット酸、セバシン酸等のポリカ
ルボン酸、ジエチレングリコール、トリエチレングリコ
ール、ポリエチレングリコール、ポリプロピレングリコ
ール、ペンタエリスリトール、ビスフェノールA、ハイ
ドロキノン等のポリオール等を共重合成分として含有し
ていてもよい。また、@燃剤、安定剤9着色剤等の添加
剤を含有していてもよい。
Such a copolyester with a crystal melting point of 90 to 210°C is prepared by mixing an acid component consisting of TPA and AA and a diol component consisting of BD within the above molar ratio range, and adjusting the molar ratio of the acid component so that a predetermined crystal melting point is achieved. It can be obtained by selecting and copolymerizing. (If the molar ratio of the acid component is out of the above range, the crystalline melting point will not be clear or the melting point will become high.) In addition, the low melting point copolyester
Other ingredients 9, such as polycarboxylic acids such as isophthalic acid, trimellitic acid, and sebacic acid, diethylene glycol, triethylene glycol, polyethylene glycol, polypropylene glycol, pentaerythritol, bisphenol A, and hydroquinone, may be added to the extent that their properties do not change significantly. It may also contain a polyol or the like as a copolymer component. It may also contain additives such as @flame agents, stabilizers, and colorants.

低融点コポリエステルと複合繊維を形成する高融点ポリ
マーとしては、ポリエチレンテレフタレートポリブチレ
ンテレフタレート及びこれらを主体とするポリエステル
及びナイロン66等が使用できるが、特にポリエチレン
テレフタレート及びエチレンテレフタレート単位が90
モル%以上のコポリエステルが1強度特性の点で好まし
く用いられる。
As the high melting point polymer forming the composite fiber with the low melting point copolyester, polyethylene terephthalate, polybutylene terephthalate, polyester mainly composed of these, nylon 66, etc. can be used, but in particular polyethylene terephthalate and ethylene terephthalate units containing 90
A copolyester having a mole % or more is preferably used from the viewpoint of one strength property.

なお、低融点コポリエステルの溶融粘度が低すぎると複
合紡糸する際の操業性が悪くなるので。
Note that if the melt viscosity of the low melting point copolyester is too low, the operability during composite spinning will be poor.

重合度を上げて溶融粘度が220℃、ずり速度100/
secにおいて200ボイズ以上となるようにすること
が望ましい。
By increasing the degree of polymerization, the melt viscosity is 220℃, and the shear rate is 100/
It is desirable to have 200 voices or more in sec.

複合繊維の形態は、低融点コポリエステルが繊維表面の
少なくとも一部を占める複合繊維であればよく、同心又
は偏心鞘芯型、サイドバイサイド型。
The form of the conjugate fiber may be any conjugate fiber in which the low melting point copolyester occupies at least a portion of the fiber surface, and may be a concentric or eccentric sheath-core type, or a side-by-side type.

海島型あるいは紡糸バック内に静止混合素子を挿入して
紡糸した高融点ポリマーが層状もしくは筋状に分散した
複合繊維等とすることができる。同心鞘芯型とすると製
糸性がよく、偏心型とすると潜在捲縮性となるので、用
途に応じて適当な複合形態を選択するのがよい。
It can be made into a composite fiber in which a high melting point polymer is spun in a sea-island type or by inserting a static mixing element into a spinning bag and dispersed in layers or stripes. A concentric sheath-core type provides good spinning properties, while an eccentric type provides latent crimpability, so it is best to select an appropriate composite form depending on the application.

本発明のバインダー繊維は、上記のような低融点コポリ
エステルと高融点ポリマーとを常法により複合紡糸、延
伸し、必要に応じて切断することにより得られる。延伸
は、熱延伸法により行うことが望ましく、供給ローラを
加熱したり9供給ローラと延伸ローラとの間に熱板を設
けたりすることにより行われる。
The binder fiber of the present invention can be obtained by subjecting the above-mentioned low-melting point copolyester and high-melting point polymer to composite spinning and drawing in a conventional manner, and cutting the resultant fibers as necessary. Stretching is preferably carried out by a hot stretching method, and is carried out by heating the supply roller or by providing a hot plate between the supply roller 9 and the stretching roller.

(作 用) 本発明のバインダー繊維は、結晶性コポリエステルを熱
接着成分としているため、一旦溶融して主体繊維を接着
した後、降温するとコポリエステルが速やかに結晶化し
、再度昇温しても、コポリエステルの融点付近の温度ま
では接着強度が低下することなく、耐熱性の優れた接着
性を示すものと認められる。
(Function) Since the binder fiber of the present invention has crystalline copolyester as a thermal adhesive component, once the main fiber is melted and bonded, the copolyester quickly crystallizes when the temperature is lowered, and even if the temperature is raised again, It is recognized that the adhesive strength does not decrease up to a temperature near the melting point of the copolyester and exhibits excellent adhesiveness with excellent heat resistance.

また、低融点コポリエステルが高融点ポリマーと複合さ
れているので5接着後のバインダー繊維が拡がらないた
め、接着繊維構造物の風合が硬くならないものと認めら
れる。
In addition, since the low melting point copolyester is combined with the high melting point polymer, the binder fibers do not spread after bonding, so it is recognized that the feel of the bonded fiber structure does not become hard.

(実施例) 次に、実施例により本発明を具体的に説明する。(Example) Next, the present invention will be specifically explained with reference to Examples.

なお1例中の特性値の測定法は9次のとおりである。In addition, the measurement method of the characteristic value in one example is as follows.

相j1組文 フェノールと四塩化エタンとの等重量混合物を溶媒とし
て、濃度0゜5g/a、温度20℃で測定。
Phase j1 composition Measured at a concentration of 0.5 g/a and a temperature of 20.degree. C. using an equal weight mixture of phenol and tetrachloroethane as a solvent.

猪益紋嘉 パーキンエルマー社製示差走査熱量計DCS−2型を用
い、昇温速度20℃/分で測定。
Measured using a differential scanning calorimeter DCS-2 manufactured by Inomasu Monka PerkinElmer at a heating rate of 20°C/min.

姐−カ 不織布を幅251貫に裁断し、定速伸長型引張試験機で
、試料長100ui、引張速度100m/分で測定。
The nonwoven fabric was cut into a width of 251 pieces and measured using a constant speed extension type tensile tester at a sample length of 100 ui and a tensile speed of 100 m/min.

(加熱下の強力は、試料設置部を所定の雰囲気温度の炉
中で、90秒間放置した後測定。)実施例1〜4 ジメチルテレフタレー) (DMT)とDMTの1.3
倍モルのBDとを、0M71モルに対して3X10−’
モルのテトラブチルチタネートを触媒として、常法によ
りエステル化反応を行い2次いで第1表に示したモル比
となる量のAAとAAの1.3倍モルのBDとを添加し
、エステル化反応を行った後1重縮合反応を行って第1
表に示した相対粘度と結晶融点を有するコポリエステル
を得た。
(The strength under heating is measured after leaving the sample installation part in a furnace at a predetermined ambient temperature for 90 seconds.) Examples 1 to 4 Dimethyl terephthalate) (DMT) and 1.3 of DMT
3X10-' for 71 moles of 0M with twice the mole of BD.
An esterification reaction was carried out using a molar amount of tetrabutyl titanate as a catalyst in a conventional manner. Next, AA in an amount having the molar ratio shown in Table 1 and BD in an amount 1.3 times the molar amount of AA were added, and the esterification reaction was carried out. After that, a single polycondensation reaction is performed to obtain the first
A copolyester having the relative viscosity and crystalline melting point shown in the table was obtained.

このコポリエステルと相対粘度1.38.結晶融点25
6℃のポリエチレンテレフタレートとを1通常の同心鞘
芯型複合繊維用溶融紡糸装置を使用して。
This copolyester has a relative viscosity of 1.38. Crystal melting point 25
1. Polyethylene terephthalate at 6℃ using a conventional concentric sheath-core type composite fiber melt spinning equipment.

紡糸孔数265の紡糸口金より、紡糸温度270℃、吐
出量約420g/分、複合比1:1で、前者が鞘となる
ように溶融紡糸し、冷却後、 1000m/分の速度で
引き取った。
From a spinneret with 265 spinning holes, the material was melt-spun at a spinning temperature of 270°C, a discharge rate of approximately 420 g/min, and a composite ratio of 1:1, so that the former formed a sheath, and after cooling, it was taken off at a speed of 1000 m/min. .

得られた糸条を10万dのトウに集束し、延伸温度10
0℃で延伸し、押し込み式クリンパ−で捲縮を付与した
後、長さ51mに切断して、繊度4dのバインダー繊維
を得た。
The obtained yarn was bundled into a 100,000 d tow and stretched at a drawing temperature of 10
After stretching at 0° C. and crimping with a push-in crimper, the fibers were cut into a length of 51 m to obtain binder fibers with a fineness of 4 d.

このバインダー繊維と繊度2d、長さ5111のポリエ
チレンテレフタレート捲縮繊維とを40 : 60の重
量割合で混綿し、カードに通して40g/mの目付のウ
ェブとし、第1表に示した温度の回転乾燥機で2分間熱
処理して不織布を得た。
This binder fiber and polyethylene terephthalate crimped fiber with a fineness of 2 d and a length of 5111 were mixed at a weight ratio of 40:60, passed through a card to form a web with a basis weight of 40 g/m, and rotated at the temperatures shown in Table 1. A nonwoven fabric was obtained by heat treatment in a dryer for 2 minutes.

得られた不織布は、風合の柔らかなものであり。The obtained nonwoven fabric has a soft texture.

第1表に示すように、良好な強度を有するものであった
As shown in Table 1, it had good strength.

比較例1〜2 第1表に示したモル比のTPA/AAを用い、延伸を4
0℃で行ったこと以外は実施例1と同様な試験を行った
Comparative Examples 1-2 Using TPA/AA with the molar ratio shown in Table 1, stretching was carried out for 4
The same test as in Example 1 was conducted except that it was conducted at 0°C.

得られた不織布は、風合は柔らかいものであったが2耐
熱接着力が劣り、熱処理により、長さ及び幅が15%以
上収縮するものであった。
The obtained nonwoven fabric had a soft feel, but had poor heat-resistant adhesive strength, and its length and width shrunk by 15% or more upon heat treatment.

不織布の強力を第1表に示す。Table 1 shows the strength of the nonwoven fabric.

第1表 参考例 相対粘度1,38で、結晶融点を示さないポリエチレン
テレフタレート/ポリエチレンイソフタレート(モル比
50150)系コポリエステルを用い、延伸を室温で行
い、熱処理温度を150℃としたこと以外は実施例1と
同様な試験を行った。
Table 1 Reference Examples A polyethylene terephthalate/polyethylene isophthalate (molar ratio 50,150) copolyester with a relative viscosity of 1.38 and no crystal melting point was used, and the stretching was carried out at room temperature, except that the heat treatment temperature was 150°C. A test similar to Example 1 was conducted.

得られた不織布は、風合のやや硬いもので1強力は、2
5℃で3560g、 130℃で420gであった。
The obtained nonwoven fabric has a slightly hard texture and a strength of 1.
The weight was 3560 g at 5°C and 420 g at 130°C.

実施例5 実施例3のコポリエステルを用い、複合繊維の形態をサ
イドバイサイド型に変更し、クリンパ−による捲縮付与
を省略した以外は実施例3と同様な試験を行った。
Example 5 The same test as in Example 3 was conducted using the copolyester of Example 3, except that the form of the composite fiber was changed to a side-by-side type, and the crimp application using a crimper was omitted.

バインダー繊維は、延伸熱処理により捲縮を有しており
、不織布の強力は、25℃で2010g、 130℃で
965gであった。
The binder fibers had crimps due to the drawing heat treatment, and the strength of the nonwoven fabric was 2010 g at 25°C and 965 g at 130°C.

(発明の効果) 本発明によれば、優れた接着性を有し、しかも風合及び
耐熱性の良好な接着繊維構造物を与えるホットメルト型
複合バインダー繊維を操業性良く製造することが可能と
なる。
(Effects of the Invention) According to the present invention, it is possible to produce hot-melt composite binder fibers with good operability that have excellent adhesive properties and provide bonded fiber structures with good texture and heat resistance. Become.

Claims (4)

【特許請求の範囲】[Claims] (1) モル比90/10〜40/60のテレフタル酸
とアジピン酸を主たる酸成分とし、1,4−ブタンジオ
ールを主たるジオール成分とする結晶融点90〜210
℃の低融点コポリエステルと結晶融点220℃以上の高
融点ポリマーとからなり、前者が繊維表面の少なくとも
一部を占める複合繊維からなるホットメルト型複合バイ
ンダー繊維。
(1) Crystal melting point 90-210 with terephthalic acid and adipic acid in molar ratio 90/10-40/60 as main acid components and 1,4-butanediol as main diol component
A hot-melt composite binder fiber comprising a low melting point copolyester having a temperature of 220° C. and a high melting point polymer having a crystalline melting point of 220° C. or more, the former occupying at least a portion of the fiber surface.
(2) 高融点ポリマーがポリエチレンテレフタレート
又はこれを主体とするポリエステルである特許請求の範
囲第1項記載のホットメルト型複合バインダー繊維。
(2) The hot melt type composite binder fiber according to claim 1, wherein the high melting point polymer is polyethylene terephthalate or a polyester mainly composed of polyethylene terephthalate.
(3) 複合繊維が同心鞘芯型複合繊維である特許請求
の範囲第1項又は第2項記載のホットメルト型複合バイ
ンダー繊維。
(3) The hot melt type composite binder fiber according to claim 1 or 2, wherein the composite fiber is a concentric sheath-core type composite fiber.
(4) 複合繊維が偏心型複合繊維である特許請求の範
囲第1項又は第2項記載のホットメルト型複合バインダ
ー繊維。
(4) The hot melt type composite binder fiber according to claim 1 or 2, wherein the composite fiber is an eccentric type composite fiber.
JP62105727A 1987-04-28 1987-04-28 Hot-melt composite binder fiber Pending JPS63270812A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62105727A JPS63270812A (en) 1987-04-28 1987-04-28 Hot-melt composite binder fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62105727A JPS63270812A (en) 1987-04-28 1987-04-28 Hot-melt composite binder fiber

Publications (1)

Publication Number Publication Date
JPS63270812A true JPS63270812A (en) 1988-11-08

Family

ID=14415332

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62105727A Pending JPS63270812A (en) 1987-04-28 1987-04-28 Hot-melt composite binder fiber

Country Status (1)

Country Link
JP (1) JPS63270812A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997033841A1 (en) * 1996-02-29 1997-09-18 Owens Corning Bicomponent glass and polymer fibers made by rotary process
WO2001010929A1 (en) * 1999-08-06 2001-02-15 Eastman Chemical Company Polyesters having a controlled melting point and fibers formed therefrom
KR20010017634A (en) * 1999-08-12 2001-03-05 조민호 Manufacture of polyester binder fiber
US6495656B1 (en) 1990-11-30 2002-12-17 Eastman Chemical Company Copolyesters and fibrous materials formed therefrom
US8519053B2 (en) 2006-10-02 2013-08-27 Armstrong World Industries, Inc. PVC/polyester binder for flooring
US9279063B2 (en) 2006-10-02 2016-03-08 Awi Licensing Company Polyester binder for flooring products
CN106319686A (en) * 2016-08-31 2017-01-11 浙江盛元化纤有限公司 Manufacturing method of polyester fiber for industry
CN106757444A (en) * 2017-01-10 2017-05-31 扬州富威尔复合材料有限公司 A kind of low melting point polyester fiber and preparation method thereof
US11525220B2 (en) * 2017-04-19 2022-12-13 Unitika Ltd. Process for producing fibrous board

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57101018A (en) * 1980-12-08 1982-06-23 Kuraray Co Ltd Polyester heat bonding fiber

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57101018A (en) * 1980-12-08 1982-06-23 Kuraray Co Ltd Polyester heat bonding fiber

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6495656B1 (en) 1990-11-30 2002-12-17 Eastman Chemical Company Copolyesters and fibrous materials formed therefrom
WO1997033841A1 (en) * 1996-02-29 1997-09-18 Owens Corning Bicomponent glass and polymer fibers made by rotary process
US6582818B2 (en) 1999-08-06 2003-06-24 Eastman Chemical Company Polyesters having a controlled melting point and fibers formed therefrom
US6497950B1 (en) 1999-08-06 2002-12-24 Eastman Chemical Company Polyesters having a controlled melting point and fibers formed therefrom
WO2001010929A1 (en) * 1999-08-06 2001-02-15 Eastman Chemical Company Polyesters having a controlled melting point and fibers formed therefrom
KR20010017634A (en) * 1999-08-12 2001-03-05 조민호 Manufacture of polyester binder fiber
US6562938B2 (en) 2000-05-12 2003-05-13 Eastman Chemical Company Copolyesters and fibrous materials formed therefrom
US8519053B2 (en) 2006-10-02 2013-08-27 Armstrong World Industries, Inc. PVC/polyester binder for flooring
US9279063B2 (en) 2006-10-02 2016-03-08 Awi Licensing Company Polyester binder for flooring products
US9567427B2 (en) 2006-10-02 2017-02-14 Afi Licensing Llc PVC/polyester binder for products
US9637631B2 (en) 2006-10-02 2017-05-02 Afi Licensing Llc Polyester binder for flooring products
CN106319686A (en) * 2016-08-31 2017-01-11 浙江盛元化纤有限公司 Manufacturing method of polyester fiber for industry
CN106757444A (en) * 2017-01-10 2017-05-31 扬州富威尔复合材料有限公司 A kind of low melting point polyester fiber and preparation method thereof
CN106757444B (en) * 2017-01-10 2019-05-31 扬州富威尔复合材料有限公司 A kind of low melting point polyester fiber and preparation method thereof
US11525220B2 (en) * 2017-04-19 2022-12-13 Unitika Ltd. Process for producing fibrous board

Similar Documents

Publication Publication Date Title
JPS63270812A (en) Hot-melt composite binder fiber
JPS63112723A (en) Polyester based binder fiber
JPS63203818A (en) Hot-melt type binder fiber
JPH08127644A (en) Copolyester for binder fiber
JPS63175119A (en) Hot-melt type binder yarn
JPS63270813A (en) Hot-melt composite binder fiber
JPH10298828A (en) Heat-sealable composite binder fiber and nonwoven fabric and solid cotton
JP2006342281A (en) Polyester resin for binder fiber
JPH10298271A (en) Low-melting copolyester and its production
JP5344963B2 (en) Short fiber nonwoven fabric
JP4918111B2 (en) Method for producing nonwoven fabric containing heat-adhesive conjugate fiber
JPH04194026A (en) Polyester-based conjugate binder fiber
JP2000226735A (en) Heat bonding conjugate fiber and nonwoven fabric using the same and production of the same nonwoven fabric
JP4628808B2 (en) Low shrinkable thermal adhesive fiber
JPS63175120A (en) Hot-melt type binder yarn
JP2002060471A (en) Polyester resin composition and hot-melt binder fiber using the same
JP2002220775A (en) Polyester nonwoven fabric
JPH1112349A (en) Copolyester and binder yarn
JP3313878B2 (en) Polyester binder fiber
JP4988484B2 (en) Short fiber nonwoven fabric
JP2008045241A (en) Heat-adhesive conjugate fiber and fiber assembly
JP4457839B2 (en) Heat-fusible fiber
JP2608121B2 (en) Low softening point polyester short fiber package
JP2006118066A (en) Thermoadhesive conjugate fiber
JP2006118067A (en) Method for producing thermoadhesive conjugate fiber