JPS6346792B2 - - Google Patents

Info

Publication number
JPS6346792B2
JPS6346792B2 JP58141024A JP14102483A JPS6346792B2 JP S6346792 B2 JPS6346792 B2 JP S6346792B2 JP 58141024 A JP58141024 A JP 58141024A JP 14102483 A JP14102483 A JP 14102483A JP S6346792 B2 JPS6346792 B2 JP S6346792B2
Authority
JP
Japan
Prior art keywords
heat storage
storage material
magnesium chloride
chloride hexahydrate
supercooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58141024A
Other languages
Japanese (ja)
Other versions
JPS6032882A (en
Inventor
Michio Yanatori
Seigo Myamoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP14102483A priority Critical patent/JPS6032882A/en
Priority to DE8484105365T priority patent/DE3479740D1/en
Priority to EP84105365A priority patent/EP0126396B1/en
Priority to US06/611,948 priority patent/US4604223A/en
Publication of JPS6032882A publication Critical patent/JPS6032882A/en
Publication of JPS6346792B2 publication Critical patent/JPS6346792B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

〔発明の利用分野〕 本発明は塩化マグネシウム6水塩を主体とする
蓄積材に関する。 〔発明の背景〕 塩化マグネシウム6水塩(MgCl2・6H2O;融
点117℃)は、安価で潜熱が大きいので、空調用
あるいは排熱回収用蓄熱材として有望な物質であ
る。しかし放熱時過冷現象を著しく起し、凝固点
より約25℃温度低下しても潜熱を放出しない。第
1図は、塩化マグネシウム6水塩の凝固特性を示
したもので、横軸に時間t、たて軸に温度Tをと
つて示してある。この実験では、塩化マグネシウ
ム6水塩100gをガラス容器の中に入れ、150℃の
電気炉に入れて完全に融解した後、気温約25℃の
大気中で放冷するという操作を行ない、温度の測
定は熱電対の温接点をガラス容器中の塩化マグネ
シウム6水塩中に入れ、その熱起電力を打点式記
録計に入れて測定した。塩化マグネシウム6水塩
の温度は時間ともに下がり、90℃で過冷却が直
り、その後その凝固点Ts=117℃に戻り潜熱を放
出し始める。凝固点Tsと過冷却回復温度Tr=90
℃との差は27℃もあり、この温度差の存在のため
に、潜熱蓄熱槽を用いた熱機関、冷凍装置、加熱
装置の熱設計にしばしば困難をもたらしていた。
たとえば蓄熱材(塩化マグネシウム6水塩)を入
れた蓄熱カプセル(銅、ステンレス等金属)を多
数収納したカプセル式蓄熱槽において、その外部
を流れる熱媒体(油やフロン等)の温度が100℃
では、蓄熱材は凝固潜熱を放出しないので、少な
くとも90℃以下に下げねばならない。温度をこの
ように極度に下げると、潜熱蓄熱槽を用いた熱機
関や冷凍装置あるいは加熱装置の効率低下を生じ
不都合である。 〔発明の目的〕 本発明は上述した塩化マグネシウム6水塩の過
冷却現象を抑制した蓄熱材を提供することを目的
とする。 〔発明の概要〕 上記目的を達成するため本発明は、塩化マグネ
シウム6水塩に、発核剤としてケイ酸マグネシウ
ム(Mg2SiO4)、ケイ酸マグネシウム5水塩
(Mg2Si3O8・5H2O)、メタケイ酸ナトリウム5水
塩(Na2SiO3・5H2O)、メタケイ酸ナトリウム9
水塩(Na2SiO3・9H2O)、ケイ酸ナトリウム
(Na4SiO4)からなる群の中から一種以上の物質
を添加したものである。 〔発明の実施例〕 以下本発明の実施例について説明する。 〔実施例 1〕 塩化マグネシウム100gに、ケイ酸マグネシウ
ム0.01g添加した混合物を、ガラス容器の中に入
れ、この容器を150℃の電気炉に入れて完全に融
解し、その後これを気温25℃の大気中で放冷し
た。115℃で過冷却が直り、凝固点Ts=117℃に
戻り潜熱放出を開始した。この実験において過冷
却度ΔTs、つまり凝固点Tsと過冷却回復温度Tr
との差は2℃と小さくなることがわかつた。この
結果を第2図に示す。同一試料につき、同様の実
験を20回行なつた所、過冷却度ΔTsはやはり2
℃程度であつた。差動熱量計で本蓄熱材の潜熱を
測定した結果、41kcal/Kgであつた。またケイ酸
マグネシウムをケイ酸マグネシウム5水塩に変え
て同様の実験を行つた所、過冷却度はやはり2℃
におさえるこてができた。 〔実施例 2〕 塩化マグネシウム6水塩100gに、メタケイ酸
ナトリウム5水塩1g添加した混合物を、ガラス
容器の中に入れ、実施例1と同様の実験を行なつ
た。その結果過冷却度ΔTsは5℃であることが
わかつた。。メタケイ酸ナトリウム5水塩をメタ
ケイ酸ナトリウム9水塩に変えて同様の実験を行
つた所、過冷却度はやはり5℃におさえることが
できた。 〔実施例 3〕 塩化マグネシウム6水塩100gに、ケイ酸ナト
リウム0.05g添加した混合物を、ガラス容器の中
に入れ、実施例1と同様の実験を行なつた。その
結果過冷却度ΔTsは5℃であることがわかつた。
差動熱量計で本蓄熱材の潜熱を測定した結果、
41kcal/Kgであつた。 以上の結果をまとめ、第1表に示す。この表よ
り、いづれも発核剤を何も添加しない場合(No.
4)に比較し、過冷却度ΔTsは著しく小さくな
ることがわかる。
[Field of Application of the Invention] The present invention relates to a storage material mainly composed of magnesium chloride hexahydrate. [Background of the Invention] Magnesium chloride hexahydrate (MgCl 2 .6H 2 O; melting point 117°C) is inexpensive and has a large latent heat, so it is a promising substance as a heat storage material for air conditioning or waste heat recovery. However, it causes a significant supercooling phenomenon during heat dissipation, and does not release latent heat even if the temperature drops by about 25 degrees Celsius below the freezing point. FIG. 1 shows the solidification characteristics of magnesium chloride hexahydrate, with time t plotted on the horizontal axis and temperature T plotted on the vertical axis. In this experiment, 100g of magnesium chloride hexahydrate was placed in a glass container, placed in an electric furnace at 150℃, completely melted, and then left to cool in the air at a temperature of approximately 25℃. For measurement, the hot junction of the thermocouple was placed in magnesium chloride hexahydrate in a glass container, and the thermoelectromotive force was measured by placing it in a dot type recorder. The temperature of magnesium chloride hexahydrate decreases over time, and supercooling stops at 90°C, after which it returns to its freezing point, Ts = 117°C, and begins to release latent heat. Freezing point Ts and supercooling recovery temperature Tr = 90
The difference in temperature is as much as 27°C, and the existence of this temperature difference has often caused difficulties in the thermal design of heat engines, refrigeration equipment, and heating equipment that use latent heat storage tanks.
For example, in a capsule heat storage tank that houses a large number of heat storage capsules (metals such as copper and stainless steel) containing a heat storage material (magnesium chloride hexahydrate), the temperature of the heat medium (oil, fluorocarbon, etc.) flowing outside the tank is 100°C.
Then, since the heat storage material does not release latent heat of solidification, the temperature must be lowered to at least 90°C or lower. If the temperature is extremely lowered in this way, it is inconvenient that the efficiency of a heat engine, refrigeration device, or heating device using a latent heat storage tank decreases. [Object of the Invention] An object of the present invention is to provide a heat storage material that suppresses the supercooling phenomenon of magnesium chloride hexahydrate described above. [Summary of the Invention] In order to achieve the above object, the present invention includes magnesium silicate (Mg 2 SiO 4 ) and magnesium silicate pentahydrate (Mg 2 Si 3 O 8 ) as a nucleating agent in magnesium chloride hexahydrate. 5H 2 O), sodium metasilicate pentahydrate (Na 2 SiO 3・5H 2 O), sodium metasilicate 9
It contains one or more substances from the group consisting of aqueous salt (Na 2 SiO 3 .9H 2 O) and sodium silicate (Na 4 SiO 4 ). [Embodiments of the Invention] Examples of the present invention will be described below. [Example 1] A mixture of 100 g of magnesium chloride and 0.01 g of magnesium silicate was placed in a glass container, and the container was placed in an electric furnace at 150°C to completely melt it. It was left to cool in the air. Supercooling stopped at 115℃, the freezing point returned to Ts = 117℃, and latent heat release started. In this experiment, the degree of supercooling ΔTs, that is, the freezing point Ts and the supercooling recovery temperature Tr
The difference was found to be as small as 2°C. The results are shown in FIG. After conducting the same experiment 20 times with the same sample, the degree of supercooling ΔTs was still 2.
It was about ℃. The latent heat of this heat storage material was measured using a differential calorimeter and was found to be 41kcal/Kg. Furthermore, when we conducted a similar experiment by changing magnesium silicate to magnesium silicate pentahydrate, the degree of supercooling was still 2°C.
I was able to find a trowel to hold it down. [Example 2] A mixture of 1 g of sodium metasilicate pentahydrate added to 100 g of magnesium chloride hexahydrate was placed in a glass container, and the same experiment as in Example 1 was conducted. As a result, it was found that the degree of supercooling ΔTs was 5°C. . When a similar experiment was conducted by replacing sodium metasilicate pentahydrate with sodium metasilicate nonahydrate, the degree of supercooling could still be kept at 5°C. [Example 3] A mixture of 100 g of magnesium chloride hexahydrate and 0.05 g of sodium silicate was placed in a glass container, and the same experiment as in Example 1 was conducted. As a result, it was found that the degree of supercooling ΔTs was 5°C.
As a result of measuring the latent heat of this heat storage material with a differential calorimeter,
It was 41kcal/Kg. The above results are summarized and shown in Table 1. From this table, if no nucleating agent is added (No.
It can be seen that the degree of supercooling ΔTs is significantly smaller than in 4).

【表】 さらに、発核剤の複合添加実験を行つた所、単
独添加の場合に比較し、さらに効果が高まること
がわかつた。その結果を第2表に示す。
[Table] Furthermore, when we conducted an experiment with the combined addition of nucleating agents, we found that the effect was even higher than when they were added alone. The results are shown in Table 2.

【表】 またさらに、発核剤を複合添加した蓄熱材に、
空気泡を含むガラスせんいを混合すると過冷却度
は約50%減少することがわかつた。その一例を第
2表No.4に示す。ガラスせんいは二相分離の防止
にも役立つ。空気泡入りガラスせんいは、長くつ
ながつたガラスせんい束をハサミ等で裁断する。 発核剤の添加量としては、極く微量でも良く、
実施例1に示すごとく、0・01重量部でも十分効
果が生じる。発核剤の添加量の上限は特に制限は
無いが、余り多く添加すると蓄熱容量が減少する
ので10重量部以下にするのが良い。 〔発明の効果〕 以上説明したように、本発明によれば、蓄熱材
である塩化マグネシウム6水塩の過冷却度が著し
く小さくなる。
[Table] Furthermore, the heat storage material to which a nucleating agent is added in combination,
It was found that when glass fibers containing air bubbles were mixed, the degree of supercooling was reduced by about 50%. An example is shown in Table 2 No. 4. Glass fibers also help prevent two-phase separation. Glass fibers with air bubbles are made by cutting a long bundle of glass fibers with scissors. The amount of nucleating agent added may be extremely small;
As shown in Example 1, sufficient effects are produced even at 0.01 part by weight. There is no particular upper limit to the amount of nucleating agent added, but if too much is added, the heat storage capacity will decrease, so it is preferably 10 parts by weight or less. [Effects of the Invention] As explained above, according to the present invention, the degree of supercooling of magnesium chloride hexahydrate, which is a heat storage material, is significantly reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の蓄熱材の凝固特性を示す図、第
2図は実施例1に示す本発明の蓄熱材の凝固特性
を示す図である。
FIG. 1 is a diagram showing the solidification characteristics of a conventional heat storage material, and FIG. 2 is a diagram showing the solidification characteristics of the heat storage material of the present invention shown in Example 1.

Claims (1)

【特許請求の範囲】 1 塩化マグネシウム6水塩に、発核剤としてケ
イ酸マグネシウム、ケイ酸マグネシウム5水塩、
メタケイ酸ナトリウム5水塩、メタケイ酸ナトリ
ウム9水塩、ケイ酸ナトリウムからなる群の中か
ら一種以上の物質を添加してなる蓄熱材。 2 塩化マグネシウム6水塩に、発核剤を0.01重
量部から10重量部添加してなる特許請求の範囲第
1項記載の蓄熱材。 3 空気泡を含むガラスせんいを混合してなる特
許請求の範囲第1項または第2項記載の蓄熱材。
[Claims] 1. Magnesium chloride hexahydrate, magnesium silicate, magnesium silicate pentahydrate as a nucleating agent,
A heat storage material containing one or more substances selected from the group consisting of sodium metasilicate pentahydrate, sodium metasilicate nonahydrate, and sodium silicate. 2. The heat storage material according to claim 1, which is made by adding 0.01 parts by weight to 10 parts by weight of a nucleating agent to magnesium chloride hexahydrate. 3. The heat storage material according to claim 1 or 2, which is formed by mixing glass fibers containing air bubbles.
JP14102483A 1983-05-20 1983-08-03 Heat storage material Granted JPS6032882A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP14102483A JPS6032882A (en) 1983-08-03 1983-08-03 Heat storage material
DE8484105365T DE3479740D1 (en) 1983-05-20 1984-05-11 Heat storage material
EP84105365A EP0126396B1 (en) 1983-05-20 1984-05-11 Heat storage material
US06/611,948 US4604223A (en) 1983-05-20 1984-05-18 Heat storage material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14102483A JPS6032882A (en) 1983-08-03 1983-08-03 Heat storage material

Publications (2)

Publication Number Publication Date
JPS6032882A JPS6032882A (en) 1985-02-20
JPS6346792B2 true JPS6346792B2 (en) 1988-09-19

Family

ID=15282432

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14102483A Granted JPS6032882A (en) 1983-05-20 1983-08-03 Heat storage material

Country Status (1)

Country Link
JP (1) JPS6032882A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2687052B1 (en) * 1992-02-07 1994-10-21 Perma THERMAL ENERGY STORAGE PRODUCT FOR BIGOUDI.
JP6923378B2 (en) * 2017-07-11 2021-08-18 パナソニック株式会社 Heat storage material composition

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4930953A (en) * 1972-07-20 1974-03-19
JPS5090585A (en) * 1973-12-13 1975-07-19

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4930953A (en) * 1972-07-20 1974-03-19
JPS5090585A (en) * 1973-12-13 1975-07-19

Also Published As

Publication number Publication date
JPS6032882A (en) 1985-02-20

Similar Documents

Publication Publication Date Title
US4561493A (en) Heat-storing apparatus
JPS6346792B2 (en)
JP6500152B1 (en) Latent heat storage material composition
JPH0353350B2 (en)
US4465611A (en) Heat storage material
JPS5996184A (en) Heat storage material
JPH0450955B2 (en)
JPH0151517B2 (en)
JP4100590B2 (en) Latent heat storage material composition and heat storage method
JPH0215598B2 (en)
JPS6121579B2 (en)
JPS588712B2 (en) Heat storage agent composition
JPH07103365B2 (en) Pretreatment method for heat storage material
JPS617379A (en) Production of thermal energy storage element
JPS5849894A (en) Heat accumulating device utilizing latent heat
JPS6351479B2 (en)
JPS617378A (en) Thermal energy storage material
JPS61197668A (en) Thermal energy storage material
JPH101663A (en) Regenerative material composition
JPS6151079A (en) Thermal energy storage material
JPS5821942B2 (en) Heat storage agent composition
JPS581714B2 (en) Heat storage agent composition
JPS5866799A (en) Heat-accumulating material
JPH0434583B2 (en)
JP2014172973A (en) Heat storage material