JPS617378A - Thermal energy storage material - Google Patents

Thermal energy storage material

Info

Publication number
JPS617378A
JPS617378A JP12791784A JP12791784A JPS617378A JP S617378 A JPS617378 A JP S617378A JP 12791784 A JP12791784 A JP 12791784A JP 12791784 A JP12791784 A JP 12791784A JP S617378 A JPS617378 A JP S617378A
Authority
JP
Japan
Prior art keywords
sodium acetate
storage material
energy storage
thermal energy
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP12791784A
Other languages
Japanese (ja)
Other versions
JPS6367836B2 (en
Inventor
Takahiro Wada
隆博 和田
Hiroshi Komeno
米野 寛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP12791784A priority Critical patent/JPS617378A/en
Priority to US06/677,248 priority patent/US4595516A/en
Priority to DE8484308406T priority patent/DE3470322D1/en
Priority to EP84308406A priority patent/EP0146304B1/en
Publication of JPS617378A publication Critical patent/JPS617378A/en
Publication of JPS6367836B2 publication Critical patent/JPS6367836B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:A thermal energy storage material, obtained by incorporating a system consisting of sodium acetate and water with lithium fluoride in a specific proportion, capable of preventing the supercooling phenomenon of sodium acetate trihydrate, and having high heat resistance, stable heat absorption and release performance and large thermal energy storage capacity. CONSTITUTION:A thermal energy storage material obtained by adding 0.1- 40pts.wt. lithium fluoride as a crystal nucleus forming material for preventing the supercooling in crystallizing the sodium acetate trihydrate to 100pts.wt. system of sodium acetate and water containing the sodium acetate in an amount within 55-73wt% range.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、酢酸ナトリウム3水塩を主体とする潜熱蓄熱
材に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a latent heat storage material mainly composed of sodium acetate trihydrate.

従来例の構成とその問題点 従来よシ酢酸ナトリウム3水塩 (NaOH5COO’3H20、融点68℃)は蓄熱量
は大きく、たとえば暖房用の蓄熱材として有望視されて
いた。しかしN a OHs COo・3H20は一度
融解すると、非常に過冷却状態になシやすいため、その
融解液は通常−20℃程度1まで冷却されないと過冷却
が破れない。そして、過冷却状態は、凝固点まで冷却さ
れても1.融解潜熱を放出せず、その温度以下に冷却さ
れてしまう現象であるから、融解層、熱を利用した蓄熱
材にとって致命的欠点となる。
Conventional Structure and Problems Conventionally, sodium cyacetate trihydrate (NaOH5COO'3H20, melting point 68° C.) has a large amount of heat storage and has been seen as a promising heat storage material for heating, for example. However, once NaOHsCOo.3H20 is melted, it is very susceptible to supercooling, so the supercooling does not break unless the molten liquid is cooled to about -20°C. The supercooled state is 1. even when cooled to the freezing point. This is a phenomenon in which the latent heat of fusion is not released and the material is cooled below that temperature, which is a fatal drawback for heat storage materials that utilize molten layers and heat.

この問題点を解決するために、 NaCH3000・3
H20の結晶化を促進する各種添加物が提案されている
(特開昭57−147580)。しかし、これら現在提
案されている結晶核形成材は、その耐熱性はいずれも8
5℃以下であシ、90℃程度で加熱すると短期間にその
蓄熱材としての機能を失なってしまう(BJ、Q、 C
hem、 Soc、 Jpn、 、 57 、 561
−563(1984))。つまシ、現在の酢酸ナトリウ
ム3水塩系の蓄熱材では、85℃以上の熱源を用いた急
速蓄熱が出来ず、これが実用上大きな問題となっていた
In order to solve this problem, NaCH3000.3
Various additives have been proposed to promote the crystallization of H20 (Japanese Patent Laid-Open No. 147580/1983). However, all of these currently proposed crystal nucleation materials have a heat resistance of 8.
If heated below 5℃, but at around 90℃, it will lose its function as a heat storage material in a short period of time (BJ, Q, C
hem, Soc, Jpn, , 57, 561
-563 (1984)). However, current heat storage materials based on sodium acetate trihydrate cannot rapidly store heat using a heat source of 85°C or higher, which has been a major problem in practice.

発明の目的 本発明は、NaCH3COO・3H20の過冷却現象を
防止し、しかも耐熱性が高く安価で、吸放熱性能の安定
した単位重量当シ、もしくは単位体積当シの蓄熱量の大
きい蓄熱材を提供しよう゛とするものである。
Purpose of the Invention The present invention provides a heat storage material that prevents the supercooling phenomenon of NaCH3COO/3H20, has high heat resistance, is inexpensive, has stable heat absorption and release performance, and has a large amount of heat storage per unit weight or unit volume. This is what we aim to provide.

発明の構成 本発明の特徴とするところは、N a GHB COO
を66重量%から73重量%の範囲で含有するNaCH
3cooとH2Oよシ成る系100重量部に対して、N
 a CH5000・3H20の結晶化の際の過冷却を
防止するための結晶核形成材として、フッ化リチウム(
r、、tF)を0.1重量部から40重量部の範囲で含
有させたことにある。
Structure of the Invention The characteristics of the present invention are that N a GHB COO
NaCH containing in the range of 66% to 73% by weight
For 100 parts by weight of a system consisting of 3coo and H2O, N
a Lithium fluoride (
r,,tF) in a range of 0.1 parts by weight to 40 parts by weight.

実施例の説明 市販の特級試薬を用いて第1表に示した組成になるよう
に各試料を調整した。それぞれの試料を加熱してNaC
H3COO・3H20を融解し”C十分混合し、さらに
冷却してNaOH,Coo・3H20を凝固させた後、
示差定食熱量計を用いて、各試料の融解潜熱を測定し、
その結果を用いて各試料1g当シの潜熱量を算出した。
Description of Examples Each sample was prepared using a commercially available special grade reagent to have the composition shown in Table 1. Each sample was heated to NaC
After melting H3COO・3H20 and mixing it thoroughly, and further cooling to solidify NaOH, Coo・3H20,
Using a differential set meal calorimeter, measure the latent heat of fusion of each sample,
Using the results, the amount of latent heat per gram of each sample was calculated.

そのようにして求めた単位重量当シの潜熱量を第2表に
示した。
The amount of latent heat per unit weight thus determined is shown in Table 2.

第1表 第2表 また、各試料10ノをプラスチック製容器中に封入した
。この蓄熱材を封入した容器10個を恒温器中で加熱処
理を10時間行い、その後40℃まで冷却して、2時間
以内に容器内部で NaCH3COO・3H20が結晶化するかどうかで蓄
熱材の耐熱性を評価した。耐熱温度としては、10個の
試料すべてにおいて、NaCH3COO・3H20の結
晶化が観測された上限温度とした。そのようにして求め
た各試料の耐熱温度も第2表に示した。つまシ、第2表
で示した耐熱温度を越えてそれぞれの試料の加熱を行う
と、10個の試料のうちの何個  ゛かが凝固せずに過
冷却してしまう。例えば試料3の場合には、94℃で加
熱処理を行ったところ、10個の試料のうち6個が過冷
却してしまった。
Table 1 Table 2 Ten samples of each sample were also sealed in plastic containers. 10 containers filled with this heat storage material are heated in a constant temperature chamber for 10 hours, then cooled to 40℃, and the heat resistance of the heat storage material is determined whether NaCH3COO/3H20 crystallizes inside the containers within 2 hours. The gender was evaluated. The upper temperature limit was set as the upper limit temperature at which crystallization of NaCH3COO.3H20 was observed in all 10 samples. Table 2 also shows the heat resistance temperature of each sample determined in this way. However, if each sample is heated above the heat-resistant temperature shown in Table 2, some of the 10 samples will become supercooled without solidifying. For example, in the case of sample 3, when heat treatment was performed at 94° C., 6 out of 10 samples were supercooled.

ところで、潜熱量が40 cal/e1以上でしかも、
耐熱温度が86℃以上の試料は、蓄熱量が十分に大きく
しかも耐熱温度が十分に高いので、急速蓄熱可能な潜熱
蓄熱材として十分に実用化が可能であると考えられるの
で第2表の評価の所に○印を付した。それ以外はX印と
した。ところでこのO印の試料の組成範囲としては、第
2表から明らかなように、NaCH,5COOを66重
量%から73重量%の範囲で含有するNaCH3000
とH2Oよシ成る系100重量部に対して、LiFを0
.1重量部から5031i量部の範囲で含有させた範囲
である。
By the way, the amount of latent heat is 40 cal/e1 or more, and
Samples with a heat resistance temperature of 86°C or higher have a sufficiently large amount of heat storage and a sufficiently high heat resistance temperature, so it is considered that they can be put to practical use as a latent heat storage material capable of rapid heat storage. I marked it with an ○. Others were marked with an X. By the way, as is clear from Table 2, the composition range of this O-marked sample is NaCH3000 containing NaCH, 5COO in the range of 66% to 73% by weight.
For 100 parts by weight of a system consisting of
.. The content ranges from 1 part by weight to 5031 parts by weight.

試料9と同じ組成の試料19を内径1oomm、長さ1
00ffffの円筒形容器に収納し、熱電対挿入管を付
した栓で密封した。その容器をウォーターバス中に入れ
、90℃と40℃の間で加熱冷却を1000回連続して
行ったところ、安定した蓄熱放熱特性が得られ、全熱劣
化が認められず、本発明の蓄熱材が、急速蓄熱可能な潜
熱蓄熱材として十分な特性を有していることが確認出来
た。
Sample 19 with the same composition as sample 9 has an inner diameter of 1 oomm and a length of 1
It was stored in a 00ffff cylindrical container and sealed with a stopper equipped with a thermocouple insertion tube. When the container was placed in a water bath and heated and cooled 1000 times between 90°C and 40°C, stable heat storage and heat dissipation characteristics were obtained, and no overall heat deterioration was observed. It was confirmed that the material has sufficient characteristics as a latent heat storage material that can rapidly store heat.

発明の効果 以上実施例に示したように、本発明の蓄熱材は、N a
 CHsCOOを56重量%から73重量%の範囲で含
有するNaCH3000(!: H2Oよシ成る系10
034量部に対して、LiFを0.1重量部から40M
量部の範囲で含有しているので、耐熱性が高く、急速蓄
熱が可能であシ、安価で吸放熱性能の安定した単位重量
当シ、もしくは単位体積当シの蓄熱量の太きいものとな
っている。したがって、本発明の蓄熱材は空調用の蓄熱
装置だけでなく、蓄熱式保温器等の蓄熱を利用したあら
ゆる方面に応用可能・なものである。
Effects of the Invention As shown in the examples, the heat storage material of the present invention has Na
System 10 consisting of NaCH3000 (!: H2O) containing CHsCOO in the range of 56% to 73% by weight
0.1 parts by weight to 40M of LiF to 034 parts by weight
Since it contains within the range of 1.5 parts, it has high heat resistance and can rapidly store heat. It has become. Therefore, the heat storage material of the present invention can be applied not only to heat storage devices for air conditioning, but also to all fields that utilize heat storage, such as heat storage type heat insulators.

Claims (1)

【特許請求の範囲】[Claims] 酢酸ナトリウム(NaCH_3COO)を55重量%か
ら73重量%の範囲で含有する酢酸ナトリウムと水(H
_2O)より成る系100重量部に対して、フッ化リチ
ウム(LiF)を0.1重量部から40重量部の範囲で
含有させたことを特徴とする蓄熱材。
Sodium acetate and water (H
A heat storage material characterized by containing lithium fluoride (LiF) in an amount of 0.1 to 40 parts by weight based on 100 parts by weight of a system consisting of _2O).
JP12791784A 1983-12-05 1984-06-21 Thermal energy storage material Granted JPS617378A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP12791784A JPS617378A (en) 1984-06-21 1984-06-21 Thermal energy storage material
US06/677,248 US4595516A (en) 1983-12-05 1984-12-03 Heat storage material
DE8484308406T DE3470322D1 (en) 1983-12-05 1984-12-04 Heat storage material
EP84308406A EP0146304B1 (en) 1983-12-05 1984-12-04 Heat storage material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12791784A JPS617378A (en) 1984-06-21 1984-06-21 Thermal energy storage material

Publications (2)

Publication Number Publication Date
JPS617378A true JPS617378A (en) 1986-01-14
JPS6367836B2 JPS6367836B2 (en) 1988-12-27

Family

ID=14971834

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12791784A Granted JPS617378A (en) 1983-12-05 1984-06-21 Thermal energy storage material

Country Status (1)

Country Link
JP (1) JPS617378A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6328143B1 (en) * 1999-10-25 2001-12-11 Westinghouse Air Brake Technologies Corporation Brake shoe with friction management
DE112008000371T5 (en) 2007-02-08 2009-12-17 Toyota Jidosha Kabushiki Kaisha, Toyota-shi Semiconductor element cooling structure

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0441605Y2 (en) * 1987-03-31 1992-09-30

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5610359A (en) * 1979-07-05 1981-02-02 Kansai Paint Co Ltd Electrostatic powder spray gun

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5610359A (en) * 1979-07-05 1981-02-02 Kansai Paint Co Ltd Electrostatic powder spray gun

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6328143B1 (en) * 1999-10-25 2001-12-11 Westinghouse Air Brake Technologies Corporation Brake shoe with friction management
DE112008000371T5 (en) 2007-02-08 2009-12-17 Toyota Jidosha Kabushiki Kaisha, Toyota-shi Semiconductor element cooling structure
US8919424B2 (en) 2007-02-08 2014-12-30 Toyota Jidosha Kabushiki Kaisha Semiconductor element cooling structure

Also Published As

Publication number Publication date
JPS6367836B2 (en) 1988-12-27

Similar Documents

Publication Publication Date Title
US4292189A (en) Thermal energy storage composition comprising sodium sulfate decahydrate; sodium carbonate decahydrate; and sodium tetraborate decahydrate
EP0030599B1 (en) Hydrated magnesium nitrate/magnesium chloride reversible phase change compositions and their preparation
CN106221675A (en) A kind of phase-change and energy-storage medium
JPS6317313B2 (en)
US4595516A (en) Heat storage material
JPS617378A (en) Thermal energy storage material
JPS617379A (en) Production of thermal energy storage element
JPS645634B2 (en)
JPS6121579B2 (en)
JPH0450955B2 (en)
JPS60163988A (en) Thermal energy storage material
JPS6151079A (en) Thermal energy storage material
JPS588712B2 (en) Heat storage agent composition
JPS61155488A (en) Heat-storing material
JPS60120786A (en) Thermal energy storage material
JPS60130672A (en) Thermal energy storage material
JPS60260677A (en) Thermal energy storage material
JPS60203689A (en) Thermal energy storage material
JPS60130673A (en) Thermal energy storage material
JPS5866799A (en) Heat-accumulating material
JPS58225181A (en) Heat storage material
JPS60130671A (en) Thermal energy storage material
JPS60260676A (en) Thermal energy storage material
JP2800329B2 (en) Latent heat storage material
JPS58124197A (en) Heat-accumulating material