JPS60130671A - Thermal energy storage material - Google Patents

Thermal energy storage material

Info

Publication number
JPS60130671A
JPS60130671A JP23922883A JP23922883A JPS60130671A JP S60130671 A JPS60130671 A JP S60130671A JP 23922883 A JP23922883 A JP 23922883A JP 23922883 A JP23922883 A JP 23922883A JP S60130671 A JPS60130671 A JP S60130671A
Authority
JP
Japan
Prior art keywords
potassium
heat storage
storage material
energy storage
thermal energy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23922883A
Other languages
Japanese (ja)
Inventor
Takahiro Wada
隆博 和田
Fumiko Yokoya
横谷 文子
Yoshihiro Matsuo
嘉浩 松尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP23922883A priority Critical patent/JPS60130671A/en
Publication of JPS60130671A publication Critical patent/JPS60130671A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide a thermal energy storage material which does not cause a supercooling phenomenon, has stable heat absorption and heat dissipation performances and a large thermal energy storage capacity per unit weight and is inexpensive, by blending a specified nucleating agent with a sodium acetate/ water thermal energy storage material compsn. CONSTITUTION:At least one compd. selected from sodium dithionate, potassium pyrosulfate, potassium sulfite, lithium sulfate, potassium tellurite and potassium perchlorate is used as a nucleating agent. Not more than 40pts.wt. said nucleating agent is blended with 100pts.wt. system consisting of 40-80wt% sodium acetate and 60-20wt% water.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、酢酸す) IJウム3水塩を主体とする潜熱
蓄熱材に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a latent heat storage material based on acetic acid (IJ) trihydrate.

従来例の構成とその問題点 一般的に、蓄熱材には、物質の顕熱を利用したものと潜
熱を利用したものが知られている。潜熱を利用した蓄熱
材は、顕熱を利用した蓄熱材に比較して、単位重量当り
、または単位体積当りの蓄熱量が大きく、必要量の熱を
蓄熱しておくのに少量でよく、そのため蓄熱装置の小型
化が可能どなる。また、潜熱を利用した蓄熱材は、顕熱
を利用した蓄熱材のように、放熱とともに温度が低下し
てしまわずに、転移点において一定温度の熱を放熱する
という特徴を有する。特に、無機水化物の融解潜熱を利
用した蓄熱材は、単位体積当りの蓄熱量が大きいことが
知られている。
Conventional Structures and Problems There are generally known heat storage materials that utilize the sensible heat of substances and those that utilize latent heat. Heat storage materials that use latent heat have a larger amount of heat storage per unit weight or unit volume than heat storage materials that use sensible heat, and only a small amount is required to store the required amount of heat. It becomes possible to downsize heat storage devices. In addition, a heat storage material that uses latent heat has the characteristic that unlike a heat storage material that uses sensible heat, the temperature does not drop with heat radiation, and instead radiates heat at a constant temperature at a transition point. In particular, heat storage materials that utilize the latent heat of fusion of inorganic hydrates are known to have a large amount of heat storage per unit volume.

ところで、従来より酢酸ナトリウム3水塩(NaOH5
COO・3 H2O、融点的58℃)I−i無機水化物
の中でも蓄熱量が大きく、たとえば暖房用の蓄熱材とし
て有力視されていた。しかし NaCH3000・3H20は一度融解すると、非常に
過冷却状態になりやすいため、その融解液は通常−2o
°C程度まで冷却されないと過冷却が破れない。そして
、過冷却状態は、凝固点まで冷却されても、融解潜熱を
放出せず、その温度以下に冷却されてしまう現象である
から、融解潜熱を利用した蓄熱量にとって致命的欠点と
なる。
By the way, conventionally sodium acetate trihydrate (NaOH5
COO.3 H2O (melting point: 58°C) I-i It has a large amount of heat storage among inorganic hydrates, and was considered to be a promising heat storage material for heating, for example. However, once NaCH3000/3H20 is melted, it tends to become supercooled, so the melt is usually -2o
Supercooling cannot be broken unless it is cooled to around °C. The supercooled state is a phenomenon in which even if the material is cooled to the freezing point, the latent heat of fusion is not released and the material is cooled below that temperature, which is a fatal drawback to the amount of heat stored using the latent heat of fusion.

発明の目的 本発明は、酢酸す) IJウムの過冷却現象を防止し、
安価で、吸放熱性能の安定した単位重量当りもしくは単
位体積当シの蓄熱量の大きい蓄熱材を提供しようとする
ものである。
Purpose of the invention The present invention prevents the supercooling phenomenon of IJium acetate,
The purpose of the present invention is to provide a heat storage material that is inexpensive, has stable heat absorption and radiation performance, and has a large amount of heat storage per unit weight or unit volume.

発明の構成 本発明のもっとも特徴とするところは、酢酸ナトリウム
(NaCH3COO) と水とよりなる系を主成分とし
、NaCJCOO・3H20の結晶化の際の過冷却を防
止するための結晶核形成材として、2チオン酸ナトリウ
ム(Na2S206) +ピロ硫酸カリウム(K2S2
07 ) +亜硫酸カリウム(K2S03) +硫酸リ
チウム(Li2SO4) 、亜テルル酸カリウム(K 
2TeO3)ならびに過塩素酸カリウム(KClO2)
 よりなる化合物群より選択された少なくとも1種を前
記の酢酸ナトリウムと水よりなる系に混合することにあ
る。
Structure of the Invention The most characteristic feature of the present invention is that the main component is a system consisting of sodium acetate (NaCH3COO) and water, and is used as a crystal nucleation material to prevent supercooling during crystallization of NaCJCOO.3H20. , sodium dithionate (Na2S206) + potassium pyrosulfate (K2S2
07) + Potassium sulfite (K2S03) + Lithium sulfate (Li2SO4), Potassium tellurite (K
2TeO3) and potassium perchlorate (KClO2)
The method consists of mixing at least one compound selected from the group consisting of the following compounds into the above-mentioned system consisting of sodium acetate and water.

ところで、第1図にNaCH3COOH2O系の状態図
を示す。この図より、NaCJCiOO60,3重量%
とH2O39,7重量%とからなる系はNaCH,Co
o −CH2O組成に相当し、この組成では、過冷却が
起こらなければ約58°Cで融解と凝固が起こるのがわ
かる。また、NaCH3COO50重量%とH2O60
重量%の系は、約55℃以上の温度では均一なN a 
GH5COO水溶液となる。この均一な水溶液を55℃
以下に冷却すると、過冷却が起こらなければ、NaCJ
COO・5H20が結晶化しはじめ、冷却されるにした
がってN a CHs COO・3H20結晶の比率が
増加する。約30℃まで冷却されると、60重量%のN
aCH5000−H20系全質量の約60チがNa(1
(scOo ・3H20の結晶となり、残り40%がN
acl(3coo水溶液として存在する。そのため、N
aCH5COO50重量%とH2O3○重量係の系は5
5℃以上の温度から3o′Gまで冷却されると、過冷却
がほとんどなく、NaGHsGOO・3H2oがうまく
結晶化したとすると、単位質量消9.NaCHsOOO
・CH2O組成の場合の約6○チの潜熱が得られること
になる。また、NaCH5COOH2O系の水の比率が
高くなるとともに、蓄熱量の有する顕熱が増加し、顕熱
による蓄熱量が大きくなるのは当然である。っ捷りNa
CH3COOとH2Oの比率をコントロールすることに
よって、融解潜熱による蓄熱と、顕熱による蓄熱を併用
して行い、その潜熱と顕熱による蓄熱の割合をコントロ
ールすることによって、大いに蓄熱材の応用範囲が広が
る。しかし、あ−まりN a CHs COOの濃度の
低い系を用いることは、融解潜熱を用いた蓄熱材の特徴
が失なわれてしまうため、Na CHs C00を4O
N量チ以上含有するNaCH3COO−H2O系を用い
るのが適切である。
By the way, FIG. 1 shows a phase diagram of the NaCH3COOH2O system. From this figure, NaCJCiOO60.3% by weight
A system consisting of 9.7% by weight of H2O and NaCH, Co
It corresponds to the o -CH2O composition, and it can be seen that with this composition, melting and solidification occur at about 58°C unless supercooling occurs. In addition, NaCH3COO50% by weight and H2O60
% system has a uniform Na at temperatures above about 55°C.
This becomes a GH5COO aqueous solution. This homogeneous aqueous solution was heated to 55°C.
When cooled below, if supercooling does not occur, NaCJ
COO.5H20 begins to crystallize, and as it cools, the proportion of Na CHs COO.3H20 crystals increases. When cooled to about 30°C, 60% by weight N
Approximately 60 cm of the total mass of the aCH5000-H20 system is Na(1
(scOo ・3H20 crystals, remaining 40% is N
acl (exists as a 3coo aqueous solution. Therefore, N
The system of aCH5COO50% by weight and H2O3○ weight is 5
When cooled from a temperature of 5°C or higher to 3o'G, there is almost no supercooling, and if NaGHsGOO.3H2o is successfully crystallized, the unit mass will be reduced by 9. NaCHsOOOO
・A latent heat of approximately 60 cm is obtained in the case of CH2O composition. Furthermore, as the proportion of NaCH5COOH2O water increases, the amount of sensible heat that is stored increases, and it is natural that the amount of stored heat due to sensible heat increases. Cutting Na
By controlling the ratio of CH3COO and H2O, heat storage by latent heat of fusion and heat storage by sensible heat are performed together, and by controlling the ratio of heat storage by latent heat and sensible heat, the range of applications of heat storage materials is greatly expanded. . However, if a system with a low concentration of Na CHs COO is used, the characteristics of a heat storage material using latent heat of fusion will be lost;
It is appropriate to use a NaCH3COO-H2O system containing N amount of 1 or more.

逆に、Na(Hy、 Coo −H2O系においてNa
CH5COOの含有量を増加させていくと、第1図より
明らかなよ゛うにNa(1(3000を6o、3重jt
%以上含有する系では、58°C以上の温度からその温
度以下に冷却した際、う捷〈過冷却が破れたとすると、
NaC4000・3H20が結晶化する。しかし、当然
系全体がNa OH3000・3 H20とならず、一
部NaCH3COOのまま残る。それで、NaCJCO
Oを80重量%よシ多ぐ含むNaCH,coo −H2
O系では単位質量当りの潜熱量がNaCH3COO・3
H,、O組成の場合の約50チ以下になるため実用的で
なくなる。
Conversely, in the Na(Hy, Coo -H2O system)
As the content of CH5COO increases, as is clear from Figure 1, Na(1(3000 to 6o, triple jt
% or more, when cooling from a temperature of 58°C or higher to a temperature below that temperature, if the supercooling is broken,
NaC4000.3H20 crystallizes. However, naturally the entire system does not become NaOH3000.3H20, and a portion remains as NaCH3COO. So, NaCJCO
NaCH,coo-H2 containing more than 80% by weight of O
In the O system, the amount of latent heat per unit mass is NaCH3COO・3
Since it is less than about 50 cm in the case of H,,O composition, it is not practical.

そのため、実際用いるNaCH5COO−H,、O系は
、Na(J(5000を80重量%以下の範囲で含有す
るのが適切であると考えられる。
Therefore, it is considered appropriate that the actually used NaCH5COO-H,,O system contains Na(J(5000) in a range of 80% by weight or less.

なお、結晶核形成材としての2チオン酸す) IJウム
(Na2S206)、ピロ硫酸カリウム(K2S207
)。
In addition, dithionic acid (Na2S206) and potassium pyrosulfate (K2S207) are used as crystal nucleation materials.
).

亜硫酸カリウム(K2SO5) +硫酸リチウム(Li
2S04)、亜テルル酸カリウム(K2S207 )な
らびに、iM趨素酸カリウム(KClO2)は、NaO
H5COOを58重量%以上含有するuacH3coo
 H2O系の場合は、この系100重量部に対して、そ
れぞれ1重量部程度で十分効果があり、当然のことなが
ら、さらにそれ以上加えても、十分過冷却防止効果を有
する。
Potassium sulfite (K2SO5) + Lithium sulfate (Li
2S04), potassium tellurite (K2S207), and iM potassium chlorite (KClO2) are NaO
uacH3coo containing 58% by weight or more of H5COO
In the case of the H2O system, about 1 part by weight of each is sufficient for 100 parts by weight of the system, and of course, even if more than that is added, the effect is sufficient to prevent supercooling.

NaCH3cooが68重量%未満である系の場合には
、それが58重量%以上含まれている系に比較して、結
晶核形成材のNaCH3COOH20系中への溶解量が
増加するため、それぞれの添加量を上記値より増加させ
なければならない。
In the case of a system in which NaCH3coo is less than 68% by weight, the amount of crystal nucleating material dissolved in the NaCH3COOH20 system increases compared to a system in which NaCH3coo is contained in an amount of 58% by weight or more. The amount must be increased from the above value.

しかしながら、本発明にかかる蓄熱材を空調用蓄熱装置
等で使用する際には、100〜100○今程度用いるの
が普通であると考えられる。そのような場合には、N 
a GHs COO・3H20結晶が融解した状態にお
いても、全体が均一な組成にならず、」二部にはNaG
H5C00低濃度の溶液が、下部には結晶核形成材の沈
澱物およびN a CH3G OOと結晶核形成材との
高濃度液体が存在することになる。そのため、結晶核形
成材の混合量が、均一な溶液を形成する場合の最少量に
比較してはるかに少量でも結晶核形成材がNa0Hs 
Coo −H20系中に溶解してしまわずに結晶核形成
材として゛作用する。結晶核形成に必要な前記結晶核形
成材の最少量つまり混合量の下限は、用いるNaCH5
COO−H2O系の量や蓄熱材を収納する容器の形状に
依存するため、その使用形態に応じてそれぞれについて
適宜決めてやればよい。
However, when the heat storage material according to the present invention is used in a heat storage device for air conditioning, etc., it is considered normal to use a heat storage material of about 100 to 100 degrees. In such a case, N
Even in the molten state of a GHs COO 3H20 crystal, the composition is not uniform throughout, and the second part contains NaG.
A solution with a low concentration of H5C00 is present, and a precipitate of the crystal nucleating material and a liquid with a high concentration of Na CH3G OO and the crystal nucleating material are present at the bottom. Therefore, even if the mixed amount of the crystal nucleation material is much smaller than the minimum amount for forming a uniform solution, the crystal nucleation material is Na0Hs.
It acts as a crystal nucleation material without being dissolved in the Coo-H20 system. The minimum amount of the crystal nucleation material necessary for crystal nucleation, that is, the lower limit of the mixing amount, is the NaCH5 used.
Since it depends on the amount of the COO-H2O system and the shape of the container housing the heat storage material, it may be determined appropriately depending on the usage pattern.

しかし、あまり大量に結晶核形成材を加えることは、蓄
熱材として好ましいことではなく、蓄熱材全体として見
た場合の蓄熱量の減少につながる。
However, adding too much crystal nucleation material is not preferable as a heat storage material, and leads to a decrease in the amount of heat storage in the heat storage material as a whole.

そのため、実用的には、結晶核形成材の混合割合は、N
aCH3COO−H20系100重量部に対して、40
重量部を超えないことが望ましい。
Therefore, in practice, the mixing ratio of the crystal nucleation material is N
40 parts by weight for 100 parts by weight of aCH3COO-H20 system
It is desirable not to exceed parts by weight.

実施例の説明 実施例1 NaCJCOO”3H2010○oqと第1表に示した
結晶核形成材1○qをビーカーに入ノt、ウォーターバ
ス中で75℃まで加熱して、N a CI(sCOO・
3H20をすべて融解した。この混合物を内径100 
ijm、長さ100πmの円筒形容器に収納し、熱電対
挿入管を付した栓で密封した。その容器をウォーターバ
ス中に入れ、TO’Cと40’Cの間で加熱冷却を連続
して行なった。
Description of Examples Example 1 2010 oz of NaCJCOO"3H and 1 q of the crystal nucleation material shown in Table 1 were placed in a beaker and heated to 75°C in a water bath to form NaCI (sCOO.
All of the 3H20 was melted. This mixture has an inner diameter of 100
The container was placed in a cylindrical container with a length of 100 πm and was sealed with a stopper equipped with a thermocouple insertion tube. The container was placed in a water bath and heated and cooled continuously between TO'C and 40'C.

第2図は結晶核形成材として、2チオン酸ナトリウムを
用いた場合の試料を、連続して100回加熱と冷却を繰
シ返した際の過冷却度すなわち凝固温度と過冷却の破れ
る温度との差の変化の様子を示したものである。図の横
軸は加熱冷却サイクルの繰り返し回数を対数目盛で示し
たものであり、縦軸は過冷却度(°C)である。この図
より、本実施例の蓄熱材の加熱および冷却をioo回繰
り返しても、過冷却度が3〜4℃の範囲で安定しており
、過冷却防止機能は劣化せずに、有効に作用しているの
がわかる。
Figure 2 shows the degree of supercooling, that is, the solidification temperature, and the temperature at which supercooling breaks when a sample is repeatedly heated and cooled 100 times using sodium dithionate as a crystal nucleation material. This figure shows how the difference in . The horizontal axis of the figure shows the number of repetitions of the heating/cooling cycle on a logarithmic scale, and the vertical axis shows the degree of supercooling (°C). From this figure, even if the heating and cooling of the heat storage material of this example is repeated ioo times, the degree of supercooling remains stable in the range of 3 to 4 degrees Celsius, and the supercooling prevention function remains effective without deterioration. I can see that you are doing it.

ところで、第3図は結晶核形成材としてピロ硫酸カリウ
ムを用いた場合の過冷却度であり、第4図は亜硫酸カリ
ウム、第5図は硫酸リチウム、第6図は亜テルル酸カリ
ウム、第7図は過塩素酸カリウムを用いた場合である。
By the way, Figure 3 shows the degree of supercooling when potassium pyrosulfate is used as the crystal nucleation material, Figure 4 shows potassium sulfite, Figure 5 shows lithium sulfate, Figure 6 shows potassium tellurite, and Figure 7 shows the degree of supercooling when potassium pyrosulfate is used as the crystal nucleation material. The figure shows the case using potassium perchlorate.

これら実施例の試料はいずれも、過冷却度が5℃付近で
安定している。
In all of the samples of these Examples, the degree of supercooling is stable at around 5°C.

実施例2 晶核形成材500 gとを内部にヒータを有する内径8
0 cm、高さ9ocInの円筒形容器中に収納し、熱
電対挿入管を付したふたで密封した。容器内部のヒータ
でNa()(5COO・3H20をγo”Cまで加熱し
て、N a CH5G OO・3H20をすべて融解し
た。それからヒータによる加熱を停止し、冷却したとこ
ろ、結晶核形成材として2チオン酸ナトリウム、ピロ硫
酸カリウム、亜硫酸カリウム、硫酸リチウム。
Example 2 500 g of crystal nucleus forming material and an inner diameter of 8 with a heater inside.
The sample was placed in a cylindrical container with a height of 0 cm and a height of 9 ocIn, and was sealed with a lid equipped with a thermocouple insertion tube. Na()(5COO・3H20 was heated to γo”C using a heater inside the container, and all of the Na CH5GOO・3H20 was melted. Then, heating by the heater was stopped and the mixture was cooled. As a crystal nucleation material, 2 Sodium thionate, potassium pyrosulfate, potassium sulfite, lithium sulfate.

亜テルル酸カリウムならびに過塩素酸カリウムのいずれ
を用いた場合にも53℃付近で過冷却が破れ、容器内部
の温度が58℃まで上昇した。その後50回加熱と冷却
を繰返したが、いずれの場合も過冷却度が約5°Cのと
ころで安定して過冷却が破れ、本実施例の蓄熱材が十分
蓄熱材として機能することが確認できた。
In both cases where potassium tellurite and potassium perchlorate were used, supercooling was broken at around 53°C, and the temperature inside the container rose to 58°C. After that, heating and cooling were repeated 50 times, but in each case, the supercooling was broken stably at a degree of supercooling of about 5°C, confirming that the heat storage material of this example sufficiently functions as a heat storage material. Ta.

比較例1 NaCH3COO−3H,,01000gを実施例1と
同様の容器に収納し、70°Cまで加熱してN a G
 H5G OO・3H20をすべて融解した。その後、
冷却したところ、室温丑で達してもN a OH3GO
O・3H20は結晶化しなかった。
Comparative Example 1 1000g of NaCH3COO-3H, 01000g was stored in the same container as in Example 1, heated to 70°C, and NaG
All H5G OO・3H20 was melted. after that,
When cooled, even if it reached room temperature, N a OH3GO
O.3H20 did not crystallize.

比較例2 NaCH3COO−3H2050o1(7を実施例2と
同様の容器に収納し、容器内部のヒータでNaCH3C
OO・3H20を70”C,まで加熱して、NaCH3
COO・3H20をすべて融解した。その後ヒータによ
る加熱を停止して冷却したところ、室温まで過冷却して
しまったO 以上実施例で示したように、本発明の蓄熱材はNaCJ
COO−H2O系に、NaCH,5Coo ・3 H2
Oの結晶核形成材として、2チオン酸ナトリウム(Na
2S206) 、ピロ硫酸カリウム(K2S207)。
Comparative Example 2 NaCH3COO-3H2050o1 (7) was stored in a container similar to Example 2, and NaCH3C was heated using a heater inside the container.
Heating OO・3H20 to 70”C, NaCH3
All COO.3H20 was melted. After that, when the heating by the heater was stopped and the temperature was cooled, the temperature was supercooled to room temperature.
In the COO-H2O system, NaCH, 5Coo ・3 H2
Sodium dithionate (Na
2S206), potassium pyrosulfate (K2S207).

亜硫酸カリウム(X2SO5) 、硫酸リチウム(Li
2SO4) +亜テルル酸カリウム(K2S207 )
 ならびに過塩素酸カリウム(xcio4)よりなる化
合物群よシ選択された少なくとも1種を加えた混合物で
あるから、過冷却のほとんど示さない安定した吸収熱性
能を有し、安価でかつ蓄熱量の大きなものとなっている
。そして、実施例ではこれら結晶核形成材を単独で使用
した場合について示しているが、その複数種を組合わせ
て使用しても同等の作用効果を得ることができるもので
ある。
Potassium sulfite (X2SO5), lithium sulfate (Li
2SO4) + potassium tellurite (K2S207)
Since it is a mixture containing at least one selected from the compound group consisting of potassium perchlorate (xcio4) and potassium perchlorate (xcio4), it has stable heat absorption performance with almost no supercooling, is inexpensive, and has a large amount of heat storage. It has become a thing. Although the examples show cases in which these crystal nucleation materials are used alone, equivalent effects can be obtained even when a plurality of these materials are used in combination.

発明の効果 本発明の蓄熱材は、空調用の蓄熱装置だけでなく、蓄熱
式保温器等の蓄熱を利用するあらゆる方面に応用可能な
ものである。
Effects of the Invention The heat storage material of the present invention is applicable not only to heat storage devices for air conditioning, but also to all fields that utilize heat storage, such as heat storage type heat insulators.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は酢酸す) IJウムー水系の状態図である。 第2図から第7図までは本発明にかかる蓄熱材の実施例
を100回繰り返し加熱・冷却したときの過冷却度の変
化の様子を示すものである。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第 
1 図 7420 s、c〃、ca亀t o、、、/VarH3
C6’0第2図 f /θ lθρ 縁り曳りし伺壇り(@) 第3図 滋tI)iJL回転(TfJン 第4図 f /ρ lθθ 、攻巣・)上4 し回ぞり (@) 第5図 糸【り達し@歇(@ン 第6図 菊 7 図 !θg メ東1)支り一〇回衆(ロ)
Figure 1 is a phase diagram of the acetic acid (IJ) water system. FIG. 2 to FIG. 7 show how the degree of supercooling changes when the heat storage material according to the embodiment of the present invention is repeatedly heated and cooled 100 times. Name of agent: Patent attorney Toshio Nakao and 1 other person
1 Figure 7420 s, c〃, ca turtle to, , /VarH3
C6'0 2nd figure f /θ lθρ Enri-hikishi Kidadan (@) 3rd figure Shigeru tI) iJL rotation (TfJn 4th figure f /ρ lθθ, attacking nest・) Top 4 Circling (@) Figure 5 Thread reach @ 歇 (@n Figure 6 Chrysanthemum 7 Figure! θg Me East 1) Support 10 times (Ro)

Claims (3)

【特許請求の範囲】[Claims] (1)酢酸ナトリウム(NaCH3COO)と水(H2
O)とよりなる系に、2チオン酸ナトリウム (Na252o6) +ピロ硫酸カリウム(K2B4O
7)。 亜硫酸カリウム−(K2SO3) +硫酸リチウム(L
i25O4) +亜テルル酸カリウム(K2TeO,)
ならびに過塩素酸カリウム(KClO2)よりなる化合
物群より選択された少なくとも1種の結晶核形成材を含
有させてなることを特徴とする蓄熱材。
(1) Sodium acetate (NaCH3COO) and water (H2
O), sodium dithionate (Na252o6) + potassium pyrosulfate (K2B4O
7). Potassium sulfite - (K2SO3) + Lithium sulfate (L
i25O4) + potassium tellurite (K2TeO,)
and at least one crystal nucleation material selected from the group of compounds consisting of potassium perchlorate (KClO2).
(2)酢酸ナトリウムと水とよシなる系において、酢酸
ナトIJウムが4○〜8○重景%含まれていることを特
徴とする特許請求の範囲第1項記載の蓄熱材。
(2) The heat storage material according to claim 1, characterized in that in a system consisting of sodium acetate and water, 40 to 80 weight percent of sodium acetate is contained.
(3)酢酸ナトリウムと水とよシなる系100重量部に
対する結晶核形成材の配合量が4○重量部を超えないこ
とを特徴とする特許請求の範囲第1項記載の蓄熱材。
(3) The heat storage material according to claim 1, characterized in that the amount of the crystal nucleating agent added to 100 parts by weight of the system consisting of sodium acetate and water does not exceed 4 parts by weight.
JP23922883A 1983-12-19 1983-12-19 Thermal energy storage material Pending JPS60130671A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23922883A JPS60130671A (en) 1983-12-19 1983-12-19 Thermal energy storage material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23922883A JPS60130671A (en) 1983-12-19 1983-12-19 Thermal energy storage material

Publications (1)

Publication Number Publication Date
JPS60130671A true JPS60130671A (en) 1985-07-12

Family

ID=17041649

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23922883A Pending JPS60130671A (en) 1983-12-19 1983-12-19 Thermal energy storage material

Country Status (1)

Country Link
JP (1) JPS60130671A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5641532A (en) * 1995-12-15 1997-06-24 The Procter & Gamble Company Beverages having stable flavor/cloud emulsions in the presence of polyphosphate-containing preservative systems by including gellan gum

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5641532A (en) * 1995-12-15 1997-06-24 The Procter & Gamble Company Beverages having stable flavor/cloud emulsions in the presence of polyphosphate-containing preservative systems by including gellan gum

Similar Documents

Publication Publication Date Title
JP2000319648A (en) Heat storage material
CN106221675A (en) A kind of phase-change and energy-storage medium
JPS60130671A (en) Thermal energy storage material
US4595516A (en) Heat storage material
JP7452527B2 (en) Cold storage material composition
JPS60130673A (en) Thermal energy storage material
JPS60163988A (en) Thermal energy storage material
JPS60130672A (en) Thermal energy storage material
JPS60260676A (en) Thermal energy storage material
JPS6367832B2 (en)
JPS5951586B2 (en) heat storage material
JPS60120786A (en) Thermal energy storage material
JPS60260677A (en) Thermal energy storage material
JPS617378A (en) Thermal energy storage material
JPS6121579B2 (en)
JPS604580A (en) Thermal energy storage material
JPS6151079A (en) Thermal energy storage material
JPS6228995B2 (en)
JPS5942034B2 (en) heat storage material
JPS588712B2 (en) Heat storage agent composition
Kannan et al. The Effects of Nucleating Agents on Phase Transition of a Salt Hydrate Phase-Change Material for Thermal Energy Storage Heat Exchangers
JPS6147189B2 (en)
JPS61197668A (en) Thermal energy storage material
JPS61190583A (en) Heat-accumulation material and production thereof
JPS581714B2 (en) Heat storage agent composition