JPS6346139B2 - - Google Patents

Info

Publication number
JPS6346139B2
JPS6346139B2 JP55057114A JP5711480A JPS6346139B2 JP S6346139 B2 JPS6346139 B2 JP S6346139B2 JP 55057114 A JP55057114 A JP 55057114A JP 5711480 A JP5711480 A JP 5711480A JP S6346139 B2 JPS6346139 B2 JP S6346139B2
Authority
JP
Japan
Prior art keywords
powder
sintered
bronze
iron
sintering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55057114A
Other languages
Japanese (ja)
Other versions
JPS56156703A (en
Inventor
Tatsunosuke Kikuchi
Isamu Kikuchi
Masanori Kikuchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP5711480A priority Critical patent/JPS56156703A/en
Priority to GB8037929A priority patent/GB2067221B/en
Publication of JPS56156703A publication Critical patent/JPS56156703A/en
Publication of JPS6346139B2 publication Critical patent/JPS6346139B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Description

【発明の詳細な説明】 本発明は焼結合金の製造法に係り、強度、靭性
に優れ、しかも摩擦係数その他の軸受機能におい
て卓越した特性を示す焼結合金を比較的低い成形
圧および焼結温度により工業的有利に製造し得る
方法を提供しようとするものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing a sintered alloy, and the present invention relates to a method for producing a sintered alloy, which is produced by producing a sintered alloy that has excellent strength and toughness, as well as excellent properties in terms of coefficient of friction and other bearing functions, using relatively low molding pressure and sintering. The purpose is to provide a method that can be produced industrially advantageously depending on the temperature.

軸受材その他として用いられる焼結合金として
は従来から種々のものが知られているが、これを
大別すると銅系と鉄系とがあり、銅系にはCu−
Sn、Cu−Sn−C、Cu−Sn−Pb−C合金などが、
又鉄系にはFe−C、Fe−Pb−C、Fe−Cu、Fe
−Cu−C合金などが多様に提案され又実用化さ
れている。しかしこのような従来のものにおい
て、鉄系のものは銅系のものに比較して硬度が高
く、軸材などに対するなじみが必ずしも好ましい
ものとなし得ず、又耐食性などにおいても劣る
が、その機械的性質が優れ、したがつて薄肉化が
可能であると共に比較的安価であるなどのメリツ
トを有し、これらの特性に関しては銅系のものが
対称的な関係を有している。
Various sintered alloys have been known for use as bearing materials and other materials, but they can be roughly divided into copper-based and iron-based.
Sn, Cu-Sn-C, Cu-Sn-Pb-C alloys, etc.
In addition, iron-based materials include Fe-C, Fe-Pb-C, Fe-Cu, Fe
-Cu-C alloys and the like have been variously proposed and put into practical use. However, in such conventional products, iron-based products have higher hardness than copper-based products, do not necessarily conform well to shaft materials, etc., and are inferior in corrosion resistance. Copper-based materials have the advantage of having excellent physical properties, allowing for thin walls, and being relatively inexpensive. Copper-based materials have a symmetrical relationship with respect to these properties.

即ちこの種軸受などに用いられる焼結合金とし
ては上述したような軸材などに対するなじみ、耐
食性、機械的強度などの何れに関しても優れた性
能を有するものが好ましいことは当然であつて従
来から斯様な焼結合金を得べく種々に検討が重ね
られて来たところであるが、上記したような各特
性は技術的に相反するものと言うべく、それらを
有効に満足させる製品は未だ得られるに到つてお
らず、従つて一般的に銅系焼結合金は主として含
油軸受に利用すべきものとされ、機械部品は鉄系
焼結合金を採用すべきものとされている。
In other words, it is natural that the sintered alloy used in this type of bearing should be one that has excellent performance in terms of conformability to the shaft material, corrosion resistance, mechanical strength, etc., as described above, and has been conventionally used. Various studies have been conducted to obtain various sintered alloys, but since the above-mentioned characteristics are technically contradictory, a product that effectively satisfies them has not yet been obtained. Therefore, it is generally believed that copper-based sintered alloys should be used primarily for oil-impregnated bearings, and iron-based sintered alloys should be used for mechanical parts.

本発明は上記したような実情に鑑み検討を重ね
て創案されたものであつて、鉄粉に対しCu、Sn
を含有した青銅の粉末を混合したものを成形した
圧粉体を気化したZnガス雰囲気で焼結すること
を提案するもので、上記圧粉体には必要に応じ黒
鉛粉末、二硫化モリブデン又はモリブデンのよう
な固体潤滑剤を添加する。
The present invention was devised after repeated studies in view of the above-mentioned circumstances.
This proposal proposes sintering a green compact made by molding a mixture of bronze powder containing bronze powder in a vaporized Zn gas atmosphere. Add a solid lubricant such as

即ち斯かる本発明について更に説明すると、本
発明者は上記したような技術構想に立脚して鉄、
銅及び錫の如きを用いた各種焼結合金について仔
細な検討をなした結果、その銅及び錫又は亜鉛を
単体として配合した場合とそれを合金とした青銅
として利用した場合においては焼結時の挙動を異
にすることを発見した。蓋し本発明で採用する銅
を主体とした合金の1つである青銅鋳物として一
般的にはJISH5111に規定されるようにCu:79〜
90%、Sn:2〜11%、Zn:1〜12%のような組
成を有し、他に若干のPbなどを含有するもので
あり、又焼結用青銅粉としては、Cu、Snについ
て上記範囲を超えたものが1974年制定の
JISB1581に規定されていて市販されているもの
であるが、このような範囲内においても夫々の成
分%範囲が種々に異ることによりそれなりに異つ
た特性が得られるとしても、斯かる青銅は何れに
しても銅単体の場合よりは融点が低いものとな
る。然して上記のように鉄、銅、錫の各粉末を配
合した場合にはSnが230℃程度のような比較的低
融点のものであるのに対し、Cuは1083℃、Feは
1539℃と夫々融点が高く、このような3種の金属
粉末を混合成形して焼結させてもSnの逆偏析の
如きを発生し、所謂錫汗を発生してSn含有量が
高くδ相の多い硬質相を形成するようなこととな
つて軸受材などとして好ましい軸材などとのなじ
み性その他に欠けるものとならざるを得ないのに
対し、そのCuとSnとを一旦合金化させて得られ
る青銅粉末の場合には成程Fe粉末が用いられて
いるとしても一般的にFe系焼結金属において採
用される1000℃前後より相当に低い温度で焼結せ
しめられるだけでなしにその焼結時に青銅成分の
一部が鉄と共晶して青銅−鉄の合金組成を作るこ
ととなり、特にこのような青銅−鉄の合金組成に
よつて鉄粒子表面を被覆する傾向が認められて相
当量の鉄粉を配合したものにおいても単なる銅系
焼結合金に近い色彩、感覚を呈することとなつて
組成が均一で、鉄−銅焼結品において不可避的な
偏析などを見ることのない焼結合金を得しめる。
このように均一で偏析がなく、Fe粒子表面を青
銅−鉄の合金で被覆したような組成のものは充分
な耐食性を示すことは明かであり、又Fe粒子が
中核に存在し、それが青銅質合金で被覆されたも
のは従来の鉄系焼結合金と同等ないしそれ以上の
機械的強度を有することとなり、しかもその青銅
質被覆層によつて軸材等に対するなじみも好まし
いものとして得られる。
That is, to further explain the present invention, based on the technical concept as described above, the present inventor has developed an iron,
As a result of detailed studies on various sintered alloys using copper, tin, etc., we found that when copper, tin, or zinc are combined as single substances, and when they are used as an alloy of bronze, I discovered that they behave differently. The bronze casting, which is one of the copper-based alloys used in the present invention, is generally Cu: 79 ~ as specified in JISH5111.
It has a composition of 90%, Sn: 2-11%, Zn: 1-12%, and also contains a small amount of Pb, etc., and as bronze powder for sintering, Cu and Sn are Those exceeding the above range are subject to the 1974 law
Although it is specified in JISB1581 and is commercially available, even if the percentage range of each component varies within this range, different properties can be obtained. Even so, the melting point is lower than that of copper alone. However, when iron, copper, and tin powders are blended as described above, Sn has a relatively low melting point of about 230℃, while Cu has a relatively low melting point of 1083℃ and Fe has a melting point of 1083℃.
Each has a high melting point of 1539℃, and even if these three types of metal powder are mixed and molded and sintered, reverse segregation of Sn occurs, so-called tin sweat is generated, and the Sn content is high and the δ phase is formed. However, once the Cu and Sn are alloyed, it becomes difficult to form a hard phase with a large amount of copper, resulting in a lack of compatibility with shaft materials, etc., which is desirable as a bearing material. In the case of the resulting bronze powder, even if Fe powder is used, it is not only sintered at a temperature considerably lower than the approximately 1000°C generally used for Fe-based sintered metals. During crystallization, a part of the bronze component eutectics with iron to form a bronze-iron alloy composition, and in particular, this bronze-iron alloy composition has been recognized to have a tendency to coat the surface of iron particles. Even when a large amount of iron powder is mixed, the color and feel are similar to that of a simple copper-based sintered alloy, and the composition is uniform, and the sintered product does not show the inevitable segregation that occurs in iron-copper sintered products. Obtain the bond.
It is clear that a composition with a uniform, non-segregating Fe particle surface coated with a bronze-iron alloy exhibits sufficient corrosion resistance. The material coated with the bronze alloy has a mechanical strength equivalent to or higher than that of conventional iron-based sintered alloys, and the bronze coating layer also provides good conformability to shaft materials, etc.

Fe粉末と前記したCuを主体とした青銅粉末と
の配合割合については青銅粉末を10〜85%の範囲
内で実施できる。即ちこれをより具体的に言うな
らば青銅粉末が10%未満の場合には単なる鉄系焼
結体に近いようなものとなつて青銅との合金層も
充分に得られないことから上記したような本発明
の特性を適切に得難い。一方青銅粉末が85%以上
であるようなことは前記したようなFe粒子の中
核的作用が得難いこととなり、その機械的強度等
は銅系焼結合金に近いものとなる。特に青銅粉末
としてSn分の高いものを用いるような場合にお
いては所謂ハードスポツトとしての硬質相が顕わ
れる傾向が示され、この点からも本発明の目的を
達し難いこととなる。
Regarding the blending ratio of the Fe powder and the above-mentioned copper-based bronze powder, the content of the bronze powder can be within the range of 10 to 85%. That is, to put this more specifically, if the bronze powder content is less than 10%, it becomes similar to a mere iron-based sintered body and a sufficient alloy layer with bronze cannot be obtained, as mentioned above. It is difficult to properly obtain the characteristics of the present invention. On the other hand, if the content of bronze powder is 85% or more, it will be difficult to obtain the core effect of Fe particles as described above, and the mechanical strength etc. will be close to that of copper-based sintered alloy. In particular, when a bronze powder with a high Sn content is used, there is a tendency for a hard phase as so-called hard spots to appear, which also makes it difficult to achieve the object of the present invention.

上記のような鉄粉と青銅粉との混合物に対する
圧粉成形は従来から一般的に知られている如何な
る圧粉成形技術によつても適切に行い得られ、こ
れを焼結することによつて上記したような特質を
有する製品を得ることができる。しかし本発明に
おいてはこのような圧粉成形→焼結を具体的に比
較的低い成形力で実施し、しかも機械的強度を充
分に得ることが可能である。蓋しこの種焼結合金
体においてその機械的強度を高めるにはその圧粉
成形時の加圧力増加と焼結温度の上昇を図ること
が必要であるが、斯かる圧粉成形時の高圧は該圧
粉成形機構の作業性を低下しそれなりの運転コス
トアツプを来すだけでなしに成形金型の損耗を高
める。しかも高圧成形で成程機械的強度が高めら
れたとしても他方においてはこの種焼結金属体本
来の特質である多孔性が大きく失われることとな
り、含油軸受などとする場合の含油量が低減す
る。勿論原料たる混合粉の必要量も大とならざる
を得ない。本発明によるものはこのような関係に
対しても好ましい解決を与えるものであつて、比
較的低い圧粉成形体においてもなお高強度の製品
を得しめることを可能とする。即ちこのため上記
したような圧粉成形体の還元性又は無酸化性雰囲
気における焼結に当つてZn又はZnOを圧粉体の
上層に配列し或いは別の容器に入れて共に加熱し
Znガス雰囲気での焼結処理を提案するものであ
つて、それにより蒸発したZnガス体は圧粉組織
に吸収されて合金化する。又このようにすること
によつて前記した銅を主体とする合金粉中に含有
されたZn分が焼結時に気散することも適切に防
止される。こうしてZn分を吸収したものは比較
的低密度であつてもその機械的強度が高められる
こととなり、このように比較的低密度の圧粉成形
体はその圧粉成形が平易且つ円滑に行われ金型の
損耗を低減しうることは明かである。しかも気孔
率も高められることからこの種焼結合金の特性が
充分に確保され、含油量なども高められるし、所
定寸法の製品を得るための原料粉の必要量も縮減
される。
Powder compaction of the above-mentioned mixture of iron powder and bronze powder can be carried out appropriately by any conventionally known compaction technology, and by sintering the mixture, A product having the above-mentioned characteristics can be obtained. However, in the present invention, it is possible to concretely carry out such powder compacting and then sintering with a relatively low compacting force, and to obtain sufficient mechanical strength. In order to increase the mechanical strength of this type of sintered alloy body, it is necessary to increase the pressure and sintering temperature during powder compaction. This not only reduces the workability of the powder compaction mechanism and increases operating costs, but also increases wear and tear on the molding die. Moreover, even if the mechanical strength is increased by high-pressure forming, the porosity, which is an inherent characteristic of this type of sintered metal body, will be largely lost, and the oil content will be reduced when used as an oil-impregnated bearing. . Of course, the required amount of mixed powder as a raw material must also be large. The present invention provides a preferable solution to this relationship, and makes it possible to obtain a product with high strength even with a comparatively low compaction. That is, for this reason, when sintering the powder compact as described above in a reducing or non-oxidizing atmosphere, Zn or ZnO may be arranged in the upper layer of the compact, or placed in a separate container and heated together.
We propose a sintering process in a Zn gas atmosphere, whereby the evaporated Zn gas is absorbed into the compacted powder structure and alloyed. Also, by doing so, it is possible to appropriately prevent the Zn contained in the copper-based alloy powder from being diffused during sintering. In this way, the mechanical strength of the Zn-absorbed product is increased even if it has a relatively low density, and compacting of a relatively low-density powder compact can be performed easily and smoothly. It is clear that wear and tear on the mold can be reduced. Furthermore, since the porosity is increased, the properties of this type of sintered alloy are sufficiently ensured, the oil content etc. are also increased, and the amount of raw material powder required to obtain a product of a predetermined size is reduced.

焼結温度については一般的に1000℃以下であつ
て、前記したような鉄系のもの或いは銅系の焼結
合金を得る場合の焼結温度より全般的に低いもの
でよい。上記のようにZn又はZnOを用いてZn雰
囲気を形成することも700℃以上であればよく、
成程上記したような範囲内でも青銅粉の配合量如
何でそれなりに焼結温度を調整するとしても700
〜1000℃の範囲内で夫々の場合に即した温度が選
ばれる。これをより具体的に言うならば例えば前
記青銅粉末が10%の場合(鉄粉が90%)には950
℃程度であり、又この青銅粉末が85%(鉄粉が15
%)の場合には800℃程度を採用することが上記
したような本発明の特性を有効に発揮する所以で
あり、それらの間の中間的配合関係の場合にはそ
の程度に応じて焼結温度を調整し操業する。
The sintering temperature may generally be 1000° C. or lower, which is generally lower than the sintering temperature used to obtain the above-mentioned iron-based or copper-based sintered alloys. As mentioned above, it is sufficient to form a Zn atmosphere using Zn or ZnO at temperatures above 700°C.
Even within the above range, even if you adjust the sintering temperature depending on the amount of bronze powder mixed, the sintering temperature is 700.
A temperature suitable for each case is selected within the range of ~1000°C. To be more specific, for example, if the bronze powder is 10% (iron powder is 90%), 950
℃, and this bronze powder accounts for 85% (iron powder accounts for 15%).
%), adopting a temperature of about 800°C is the reason why the above-mentioned characteristics of the present invention can be effectively exhibited, and in the case of an intermediate composition relationship between them, the sintering temperature should be adjusted according to the degree. Adjust the temperature and operate.

黒鉛質その他の固形潤滑剤は3%以下で配合さ
れ、このものは圧粉成形を容易にすると共に得ら
れる製品の性能をより改善することができる。本
発明によるものの具体的な実施例について説明す
ると以下の如くである。
Graphite and other solid lubricants are blended in an amount of 3% or less, which facilitates compaction and further improves the performance of the resulting product. Specific embodiments according to the present invention will be described below.

実施例 1 Cu:81.0〜87.0%、Sn:4.0〜6.0%、Zn:4.0〜
7.0%で残部がPb及び不純物より成る青銅鋳物を
溶融してから噴霧処理し得られた青銅粉末の100
〜350メツシユのものと、150〜250メツシユの鉄
粉を準備し、これらのものを等量配合したものを
用いて外径10mm、内径4mmで、高さが8mmの軸受
材にこの場合の標準的な圧粉成形圧である約2500
Kg/cm2の加圧力で成形し、密度が約6.0g/cm3
成形体とし、このものを850℃の還元性雰囲気で
焼結した。
Example 1 Cu: 81.0~87.0%, Sn: 4.0~6.0%, Zn: 4.0~
100% of bronze powder obtained by melting and then spraying a bronze casting consisting of 7.0% Pb and impurities.
Prepare iron powder of ~350 mesh and iron powder of 150 to 250 mesh, and use a mixture of these materials in equal amounts to make a bearing material with an outer diameter of 10 mm, an inner diameter of 4 mm, and a height of 8 mm. The compacting pressure is about 2500
It was molded under a pressure of Kg/cm 2 to obtain a molded body having a density of approximately 6.0 g/cm 3 , which was sintered in a reducing atmosphere at 850°C.

又これとは別に上記のように青銅粉と鉄粉とを
等量配合した混合粉を同一寸法の軸受材に圧粉成
形するに当つてその成形圧を同じく約2500Kg/cm2
とし、従つてその密度も同じとして得られた圧粉
成形体は次いでその上にZnを置いた条件下で上
記同様に850℃の還元性雰囲気で焼結処理し、即
ちこの温度条件で前記Znを気散させたZnガス雰
囲気で焼結させることにより約4.0%のZnを圧粉
成形組織中に吸収させた焼結体とした。このもの
の密度は6.2g/cm3であつてその機械的強度(圧
環強さ)を測定した結果を前記したZnガス雰囲
気を利用しないものと比較すると14〜15%も強度
的に優れたものであつて、なお相当に低密度のも
のであつても所期する機械的強度を確保し得るこ
とが知られた。又その焼結処理時間としては何れ
も約30分間であつた。
Separately, as mentioned above, when the mixed powder containing equal amounts of bronze powder and iron powder is compacted into a bearing material of the same size, the compacting pressure is also about 2500 kg/cm 2
The compacted compact obtained under the same density is then sintered in a reducing atmosphere at 850°C under the condition that Zn is placed thereon, that is, under this temperature condition, the Zn By sintering in a diffused Zn gas atmosphere, a sintered body with approximately 4.0% Zn absorbed into the compacted structure was obtained. The density of this material is 6.2 g/ cm3 , and the results of measuring its mechanical strength (radial crushing strength) show that it is 14-15% superior in strength compared to the above-mentioned material that does not use the Zn gas atmosphere. It has been found that it is possible to secure the desired mechanical strength even if the density is considerably low. The sintering time was about 30 minutes in all cases.

なお得られた焼結金属体についての組成を測定
した結果は、単に還元性雰囲気で焼結したものは
Fe:50.2%、Cu:43.4%、Sn:2.8%、Zn:2.3%
であつたのに対し、Zn粉を置いた還元性Zn雰囲
気で焼結させたものはFe:48.2%、Cu:41.8%、
Sn:2.7%、Zn:6.2%のものであつて、Zn分が
4%程度も高められたものであつた。
The results of measuring the composition of the obtained sintered metal bodies indicate that those simply sintered in a reducing atmosphere are
Fe: 50.2%, Cu: 43.4%, Sn: 2.8%, Zn: 2.3%
On the other hand, those sintered in a reducing Zn atmosphere with Zn powder had Fe: 48.2%, Cu: 41.8%,
It contained Sn: 2.7% and Zn: 6.2%, and the Zn content was increased by about 4%.

実施例 2 実施例1におけると同じ青銅粉及び鉄粉を用
い、青銅粉50%、鉄粉49%、黒鉛粉末1%の割合
で配合したものを実施例1におけると同じに標準
的圧粉成形圧とそれより低い約2100Kg/cm2の圧粉
成形圧で成形した。前者の密度は6.0g/cm3であ
り、又後者の密度は5.8g/cm3である。
Example 2 Using the same bronze powder and iron powder as in Example 1, a mixture of 50% bronze powder, 49% iron powder, and 1% graphite powder was subjected to standard powder compaction as in Example 1. The compacting pressure was lower than that of about 2100 kg/cm 2 . The density of the former is 6.0 g/cm 3 and the density of the latter is 5.8 g/cm 3 .

又これらの圧粉成形体は前者がZnガスを利用
しない還元雰囲気で焼結し、後者の比較的低い成
形圧によるものは実施例1におけると同じにZn
を用いて気散させたZnガス含有還元性雰囲気で
焼結した。焼結温度及び時間などの処理条件につ
いては何れも実施例1におけると同じである。
In addition, these green compacts were sintered in a reducing atmosphere without using Zn gas, and the latter was sintered under a relatively low compaction pressure as in Example 1.
The material was sintered in a reducing atmosphere containing Zn gas diffused using The processing conditions such as sintering temperature and time are all the same as in Example 1.

又このようにして得られたものの組成を測定し
た結果は、前者の単に還元性雰囲気で焼結したも
のはFe:49.4%、Cu:43.7%、Sn:2.8%、Zn:
2.3%てあつたのに対し、後者の還元性Zn雰囲気
で焼結したものはFe:47.4%、Cu:41.9%、
Sn:2.7%、Zn:6.3%であつて、実施例1と同様
にZn分が高められていた。
Also, the composition of the product obtained in this way was measured and found that the former product sintered simply in a reducing atmosphere had Fe: 49.4%, Cu: 43.7%, Sn: 2.8%, and Zn:
2.3%, whereas the latter sintered in a reducing Zn atmosphere had Fe: 47.4%, Cu: 41.9%,
Sn: 2.7%, Zn: 6.3%, and as in Example 1, the Zn content was increased.

更に上記したような実施例1、2のものについ
て夫々タービン油系の潤滑油を含浸させたものに
関しその軸受性能を試験測定した結果は何れも従
来の銅系軸受材と比較して荷重15Kg/cm2以上、
PV値1000以上において好ましい軸受性能を有す
ることが確認され、勿論鉄系のものより全領域に
亘つて好ましいことが知られたが、又このような
実施例のものについてその圧縮成形、気孔率(容
量%)を種々に調整したものについて機械的強度
(圧環強さ)、温度上昇および摩擦係数を検討し測
定した結果を要約して示すと添付図面の通りであ
つて、即ち本発明により比較的低い圧粉成形圧を
採用し気孔率としてそれなりに低い成形体であつ
てもそれが高い成形圧で圧粉成形されたものにお
けると同程度ないしそれ以上の機械的強度を示す
ことは第1図におけるB図に示す通りであつて、
例えば気孔率が3.5〜5%程度低いものが圧環強
さとしては同程度となることが理解される。この
ことは焼結金属体における含油率を高め、その潤
滑性能を高め、又その耐用性を向上し得ることは
自明である。しかもこのような本発明の亜鉛気化
雰囲気での焼結処理によるものは一般的に運転時
における温度上昇の低下および摩擦係数の低下傾
向を示すことが明かであり、例えば同じPV値で
の温度上昇が1〜5℃低く、摩擦係数も夫々に低
減されていて銅系合金粉末を利用した焼結体とし
ての特性を更に改善しているものと言える。
Furthermore, the results of testing and measuring the bearing performance of Examples 1 and 2 impregnated with turbine oil-based lubricating oil, respectively, showed that the bearing performance was lower than that of conventional copper-based bearing materials at a load of 15 kg/kg. cm2 or more,
It was confirmed that the bearing performance was favorable at a PV value of 1000 or more, and of course it was known to be better than iron-based bearings in all areas. The results of examining and measuring the mechanical strength (radial crushing strength), temperature rise, and friction coefficient of variously adjusted materials (volume %) are summarized as shown in the attached drawings. Figure 1 shows that even if a compact is formed using a low compacting pressure and has a relatively low porosity, it exhibits mechanical strength equivalent to or higher than that obtained by compacting at a high compacting pressure. As shown in Figure B in
For example, it is understood that a material with a lower porosity of about 3.5 to 5% has a similar radial crushing strength. It is obvious that this can increase the oil content in the sintered metal body, improve its lubrication performance, and improve its durability. Moreover, it is clear that the sintering process in the zinc vaporization atmosphere of the present invention generally shows a tendency to lower the temperature rise and the friction coefficient during operation, for example, the temperature rise at the same PV value. is 1 to 5°C lower, and the coefficient of friction is also reduced, which can be said to further improve the characteristics of a sintered body using copper-based alloy powder.

実施例 3 Cu:90%、Sn:10%の青銅粉50%に、Fe粉50
%を混合したものを約2200Kg/cm2で圧粉成形した
後、ZnOの粉末中に埋没して850℃で30分間の還
元性雰囲気による焼結処理を行つた。
Example 3 50% bronze powder of Cu: 90%, Sn: 10%, 50% Fe powder
After compacting the mixture at approximately 2200 kg/cm 2 , the mixture was buried in ZnO powder and sintered at 850° C. for 30 minutes in a reducing atmosphere.

得られた焼結体の成分組成は、Fe:46.1%、
Cu:41.3%、Sn:4.6%、Zn:7.9%であつた。
The composition of the obtained sintered body was Fe: 46.1%,
Cu: 41.3%, Sn: 4.6%, Zn: 7.9%.

実施例 4 実施例3におけると同じ青銅粉10%に対しFe
粉90%を混合したものを約2400Kg/cm2で加圧成形
した後、ZnO粉末中に埋没し950℃で30分間の還
元性雰囲気による焼結処理を行つた。
Example 4 For the same 10% bronze powder as in Example 3, Fe
After a mixture of 90% powder was pressure-molded at approximately 2400 kg/cm 2 , it was buried in ZnO powder and sintered at 950°C for 30 minutes in a reducing atmosphere.

得られた焼結体についての成分組成を測定した
結果は、Fe:86.1%、Cu:8.6%、Sn:0.9%、
Zn:41%のものであつた。
The results of measuring the component composition of the obtained sintered body were: Fe: 86.1%, Cu: 8.6%, Sn: 0.9%,
Zn: 41%.

実施例 5 実施例3におけると同じ青銅粉85%に、鉄粉15
%の割合に混合したものを約2100Kg/cm2で加圧成
形し、この圧粉成形体をZnO粉末中に埋没して
800℃で30分間の焼結処理を行つた。
Example 5 The same 85% bronze powder as in Example 3 and 15% iron powder.
% of the mixture was pressure-molded at approximately 2100Kg/ cm2 , and this compacted powder was embedded in ZnO powder.
A sintering process was performed at 800°C for 30 minutes.

得られた焼結体についての成分組成は、Fe:
13.7%、Cu:71.0%、Sn:7.9%、Zn:7.2%のも
のであつた。
The composition of the obtained sintered body is Fe:
13.7%, Cu: 71.0%, Sn: 7.9%, and Zn: 7.2%.

上記したような実施例3〜5のものに実施例
1、2のものと同じにタービン油系潤滑油を含浸
させたものについてその軸受性能を試験測定した
結果をFe系のものおよび前記実施例1のものと
共に第1図と同様に示したのが第2図であつて、
Fe粉を90%配合した実施例4のもの以外は何れ
も実施例1のものより摩擦係数が更に低減され且
つ温度上昇も2〜3℃程度低い。圧環強度におい
ても同じ気孔率のものにおいては実施例3、5の
ものは実施例1に準ずるもので、実施例4のもの
は10Kg/mm2程度高い値を示していて、NH3分解
ガスを用い、1000℃で30分焼結した純鉄系のもの
以上である。
The bearing performance of the bearings of Examples 3 to 5 as described above was impregnated with the same turbine oil-based lubricating oil as in Examples 1 and 2. FIG. 2 shows the same thing as FIG. 1 together with 1.
Except for Example 4, which contained 90% Fe powder, the friction coefficient was further reduced compared to Example 1, and the temperature rise was about 2 to 3°C lower. In terms of radial crushing strength, Examples 3 and 5 are similar to Example 1 when the porosity is the same, and Example 4 shows a value about 10 kg/mm 2 higher, which makes it difficult to absorb NH 3 decomposed gas. It is better than the pure iron type that is used and sintered at 1000℃ for 30 minutes.

なおこれら実施例3〜5のものについて実施例
1、2のものと同じにタービン油を含浸させたも
のの軸受性能を測定した結果を前記実施例1およ
び上記した純鉄系のものと共に示したのが第2図
であつて、実施例3、5のものが摩擦係数におい
て荷重15Kg/cm2以下の領域においても優れてお
り、温度上昇は実施例3〜5のものが何れも全般
的に低い。又圧環強度は実施例4のものが非常に
優れている。
The results of measuring the bearing performance of these Examples 3 to 5 impregnated with turbine oil in the same way as Examples 1 and 2 are shown together with the above Example 1 and the above pure iron type. As shown in Fig. 2, Examples 3 and 5 have excellent friction coefficients even in the region of load 15 kg/cm 2 or less, and the temperature rise is generally low in Examples 3 to 5. . Furthermore, the radial crushing strength of Example 4 is very excellent.

以上説明したような本発明によるときはCuを
主体とし、これにSnを含有させた青銅合金粉末
を混合したものをプレス成形した成形体を焼結さ
せることにより軸材などに対するなじみが良好で
しかもその機械的強度が高く、又耐食性の優れた
ものを得ることができ、加うるに上記焼結に当つ
てZnガス雰囲気を利用することにより比較的低
密度の圧粉成形体であつても好ましい強度を得し
めると共に前記青銅合金粉末中にZnを含有せし
め、又青銅中にZnが含有された場合においても
焼結時における気散を回避し、有利に目的の強度
をもつた焼結体を得しめ且つ該焼結体に対する潤
滑油の含浸量を高めてその軸受性能をより向上し
得るなどの作用効果を有しており、工業的にその
効果の大きい発明である。
According to the present invention as explained above, by sintering a press-formed body made of a mixture of bronze alloy powder mainly composed of Cu and containing Sn, it has good conformability to shaft materials, etc. It is possible to obtain a product with high mechanical strength and excellent corrosion resistance, and in addition, by using a Zn gas atmosphere during the above sintering, it is preferable even if it is a compacted compact with a relatively low density. By incorporating Zn into the bronze alloy powder, it is possible to obtain strength, and even when Zn is contained in the bronze, dispersion during sintering can be avoided, thereby advantageously producing a sintered body having the desired strength. This invention has the advantage of improving bearing performance by increasing the amount of lubricating oil impregnated into the sintered body, and is industrially very effective.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の技術的内容を示すものであつ
て、第1図は青銅粉末に鉄粉を混合した実施例
1、2の場合についての気孔率と圧環強さ及び摩
擦係数や温度上昇の関係を示した図表、第2図は
本発明の実施例3〜5によるものについて前記実
施例1および純鉄系焼結金属と共に同じく気孔率
と圧環強さ及び摩擦係数や温度上昇の関係を示し
た図表である。又第1,2図において、白抜き測
定点を単なる還元雰囲気焼結の場合、ソリツドの
測定点はZnガスを用いた本発明による焼結の場
合を示すものである。
The drawings show the technical contents of the present invention, and Figure 1 shows the relationship between porosity, radial crushing strength, friction coefficient, and temperature rise for Examples 1 and 2 in which iron powder was mixed with bronze powder. Figure 2 shows the relationships between porosity, radial crushing strength, friction coefficient, and temperature rise for Examples 3 to 5 of the present invention, as well as Example 1 and pure iron-based sintered metals. This is a diagram. Furthermore, in FIGS. 1 and 2, the outlined measurement points indicate the case of simple reducing atmosphere sintering, and the solid measurement points indicate the case of sintering according to the present invention using Zn gas.

Claims (1)

【特許請求の範囲】 1 Cuを79%以上とSn11%以下を含有した青銅
粉末10〜85wt部に対し鉄粉15〜90wt部の範囲内
で添加混合したものをプレス成形した圧粉体を気
化したZnガス雰囲気で700〜1000℃により焼結す
ることを特徴とする焼結合金の製造法。 2 Zn又はZnOを圧粉体の上層に配列し或いは
容器内に共に入れて還元又は無酸化雰囲気中で
700〜1000℃に加熱することによりZnガス雰囲気
を形成し且つ焼結する特許請求の範囲第1項に記
載の焼結合金の製造法。
[Scope of Claims] 1. Vaporization of a press-molded compact made by adding and mixing 15 to 90 wt parts of iron powder to 10 to 85 wt parts of bronze powder containing 79% or more of Cu and 11% or less of Sn. A method for producing a sintered alloy, characterized by sintering at 700 to 1000°C in a Zn gas atmosphere. 2 Arrange Zn or ZnO on the upper layer of a green compact or put them together in a container in a reducing or non-oxidizing atmosphere.
The method for producing a sintered alloy according to claim 1, wherein a Zn gas atmosphere is formed and sintered by heating to 700 to 1000°C.
JP5711480A 1979-12-22 1980-05-01 Manufacture of sintered alloy Granted JPS56156703A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP5711480A JPS56156703A (en) 1980-05-01 1980-05-01 Manufacture of sintered alloy
GB8037929A GB2067221B (en) 1979-12-22 1980-11-26 Sintered alloys

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5711480A JPS56156703A (en) 1980-05-01 1980-05-01 Manufacture of sintered alloy

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP25377987A Division JPS63121627A (en) 1987-10-09 1987-10-09 Manufacture of sintered alloy

Publications (2)

Publication Number Publication Date
JPS56156703A JPS56156703A (en) 1981-12-03
JPS6346139B2 true JPS6346139B2 (en) 1988-09-13

Family

ID=13046497

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5711480A Granted JPS56156703A (en) 1979-12-22 1980-05-01 Manufacture of sintered alloy

Country Status (1)

Country Link
JP (1) JPS56156703A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07117097B2 (en) * 1984-09-25 1995-12-18 トヨタ自動車株式会社 CONNECTING GROUND AND MANUFACTURING METHOD THEREOF
CN105312559A (en) * 2015-11-24 2016-02-10 重庆合达科技有限公司 Abrasion resistant oil-containing bearing and manufacturing method thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53146203A (en) * 1977-05-27 1978-12-20 Tatsunosuke Kikuchi Production of sintered alloy body

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53146203A (en) * 1977-05-27 1978-12-20 Tatsunosuke Kikuchi Production of sintered alloy body

Also Published As

Publication number Publication date
JPS56156703A (en) 1981-12-03

Similar Documents

Publication Publication Date Title
JPH01225749A (en) Sintered material for oilless bearing and production thereof
CN101775521A (en) Ultrahigh rotating speed oil bearing for powder metallurgy and manufacturing method thereof
JP2918292B2 (en) Sliding material
JP2009007650A (en) Mixed powder for sintered aluminum-containing copper alloy, and method for producing the same
JP3613569B2 (en) Composite metal powder for sintered bearing and sintered oil-impregnated bearing
JPH01275735A (en) Sintered alloy material and its manufacture
JPH0995759A (en) Oil-impregnated sintered bearing and its production
JPH0140907B2 (en)
JPH07166278A (en) Coppery sliding material and production thereof
US4474732A (en) Fully dense wear resistant alloy
JPH01255631A (en) Sintered alloy material and its manufacture
JPH079046B2 (en) Copper-based sintered body
JPS6346139B2 (en)
GB2067221A (en) Sintered Alloys
JPH01136944A (en) Sintered metallic material
JP2553374B2 (en) Sintered alloy material for oil-impregnated bearing and manufacturing method thereof
JP4177534B2 (en) Alloy powder for copper-based high strength sintered parts
JPH0238540A (en) Production of nongreased sliding material
JPS6346138B2 (en)
JPS6253580B2 (en)
JPH04191301A (en) Iron-based powder mixed material for powder meatallurgy
JPH045745B2 (en)
JPS6347782B2 (en)
JP2631146B2 (en) Sintered metal body and method for producing the same
JPH01283346A (en) Sintered alloy material and its production