JPH079046B2 - Copper-based sintered body - Google Patents

Copper-based sintered body

Info

Publication number
JPH079046B2
JPH079046B2 JP59141266A JP14126684A JPH079046B2 JP H079046 B2 JPH079046 B2 JP H079046B2 JP 59141266 A JP59141266 A JP 59141266A JP 14126684 A JP14126684 A JP 14126684A JP H079046 B2 JPH079046 B2 JP H079046B2
Authority
JP
Japan
Prior art keywords
hard particles
copper
weight
sintered body
based sintered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP59141266A
Other languages
Japanese (ja)
Other versions
JPS6119750A (en
Inventor
義孝 高橋
貞孝 大淵
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP59141266A priority Critical patent/JPH079046B2/en
Publication of JPS6119750A publication Critical patent/JPS6119750A/en
Publication of JPH079046B2 publication Critical patent/JPH079046B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、耐摩耗性、耐焼付性がよい銅系焼結体に関す
る。本発明の銅系焼結体は、苛酷な条件下で摺動する摺
動部材として適する。本発明の銅系焼結体が用いられる
代表的な例としては、軸受、歯車、カムがある。
TECHNICAL FIELD The present invention relates to a copper-based sintered body having excellent wear resistance and seizure resistance. The copper-based sintered body of the present invention is suitable as a sliding member that slides under severe conditions. Bearings, gears, and cams are typical examples of the copper-based sintered body of the present invention.

[従来の技術] 焼結体としては一般に鉄系焼結体と銅系焼結体とがあ
る。例えば、代表的な焼結体である焼結軸受合金として
は、JISB1581に規定されているように鉄系焼結体と銅系
焼結体とがある。
[Prior Art] As a sintered body, there are generally an iron-based sintered body and a copper-based sintered body. For example, as a sintered bearing alloy that is a typical sintered body, there are an iron-based sintered body and a copper-based sintered body as specified in JIS B1581.

銅系焼結体は、一般には耐焼付性が良好であり、軸受材
などに広く用いられている。しかし耐摩耗性が劣るた
め、高荷重が加わる摺動部品などには使用されることが
少なかった。
Copper-based sintered bodies generally have good seizure resistance and are widely used for bearing materials and the like. However, because of its poor wear resistance, it was rarely used for sliding parts to which a high load is applied.

一方、鉄系焼結体は、耐摩耗性が良好であるが、耐焼付
性が劣るため潤滑油などの供給が不足する部品に用いる
と焼付を生じやすいという欠点があった。
On the other hand, although the iron-based sintered body has good wear resistance, it has a drawback that seizure is likely to occur when it is used for a part in which supply of lubricating oil or the like is insufficient due to poor seizure resistance.

上記欠点を補う意味で鉄系粉末と銅系粉末を混ぜ合せて
焼結した焼結体が近年開発されている。このものは、特
公昭56−52988号公報に係る「耐摩耗性ならびに潤滑性
にすぐれる鉄系焼結合金」である。このものでは、鉄系
粉末に銅系粉末を10〜40%を混ぜ、更に若干の錫と二硫
化モリブデンを混ぜて耐摩耗性及び潤滑性を向上させて
いる。然しながら内燃機関に用いられる摺動部品におい
ては、最近の高性能化に伴い使用条件は更に一層苛酷に
なり、そのため上記した特公昭56−52988号公報に係る
焼結合金では、必ずしも充分ではなかった。
In order to make up for the above-mentioned drawbacks, a sintered body obtained by mixing and sintering an iron-based powder and a copper-based powder has been developed in recent years. This is an "iron-based sintered alloy having excellent wear resistance and lubricity" according to Japanese Patent Publication No. 56-52988. In this product, 10 to 40% of copper powder is mixed with iron powder, and a small amount of tin and molybdenum disulfide are further mixed to improve wear resistance and lubricity. However, in the sliding parts used in the internal combustion engine, the operating conditions have become more severe with the recent advance in performance, and therefore the sintered alloy according to Japanese Patent Publication No. 56-52988 described above was not always sufficient. .

[発明が解決しようとする問題点] 本発明は上記した従来技術の問題点を解決せんとなされ
たものであり、耐摩耗性および耐焼付性が優れた銅系焼
結体を提供することを目的とする。
[Problems to be Solved by the Invention] The present invention has been made to solve the above-mentioned problems of the prior art, and provides a copper-based sintered body having excellent wear resistance and seizure resistance. To aim.

[問題点を解決するための手段] 本発明は、銅系焼結体の長所である耐焼付性をそこなう
事なく、鉄系焼結体と同等の耐摩耗性を備えた焼結体を
提案するものである。
[Means for Solving Problems] The present invention proposes a sintered body having wear resistance equivalent to that of an iron-based sintered body without impairing the seizure resistance, which is an advantage of the copper-based sintered body. To do.

即ち本発明の同系焼結体は、銅系金属粉末と鉄系の硬質
粒子とを混合した混合体を焼結して得られるものであ
る。
That is, the same-type sintered body of the present invention is obtained by sintering a mixture obtained by mixing copper-based metal powder and iron-based hard particles.

銅系金属粉末と鉄系の硬質粒子との混合体を焼結して得
られる、銅系金属を主体とするマトリックスと該マトリ
ックスに分散された硬質粒子とから構成される銅系焼結
体であり、 硬質粒子の割合は、銅系焼結体全体を100重量%とした
とき、10〜70重量%であり、 かつ硬質粒子は、Hv200以上の硬さをもち、硬質粒子全
体を100重量%としたとき重量%で、クロム、モリブデ
ン、タングステン、バナジウム、ニオブ、コバルト、リ
ン、マンガンのうちの1種又は2種以上0.2〜66%、炭
素0.2〜3.0%、不可避の不純物、残部鉄の組成をもつこ
とを特徴とするものである。
A copper-based sintered body obtained by sintering a mixture of copper-based metal powder and iron-based hard particles, comprising a matrix mainly composed of copper-based metal and hard particles dispersed in the matrix. The ratio of hard particles is 10 to 70% by weight, based on 100% by weight of the entire copper-based sintered body, and the hard particles have a hardness of Hv200 or more and 100% by weight of the entire hard particles. % By weight, one or more of chromium, molybdenum, tungsten, vanadium, niobium, cobalt, phosphorus and manganese 0.2 to 66%, carbon 0.2 to 3.0%, inevitable impurities, balance iron composition It is characterized by having.

本発明においては、マトリックスは、銅系金属粉末を焼
結した部分である。従って本発明の銅系焼結体は、耐焼
付性が良好である。前記した銅系金属粉末とは、銅(C
u)を主体とする粉末の意味である。銅系金属粉末は、
一般に用いられる銅系粉末を用いることができる。例え
ば、純度の高い電解銅粉、スズ(Sn)を含む銅粉を用い
ることができる。この場合スズ含有量は、マトリックス
全体を100重量%としたとき10重量%以下特に8重量%
がよい。銅系金属粉末は、粉末粒子の平均粒径が10〜10
0μ程度のものを用いることが望ましい。その理由は硬
質粒子を均一に分散させるため、および100μ以上では
焼結性が悪く、10μ以下では粉末価格が高くなるからで
ある。本発明では上記銅系金属粉末に、固体潤滑剤例え
ば鉛や黒鉛を含ませてもよい。鉛や黒鉛は双方を含ませ
ても、あるいはいずれか一方を含ませてもよい。鉛や黒
鉛は、銅やスズにはほとんど固溶せず、銅粒子の粒界に
存在する。鉛や黒鉛は、相手材と摺動したときに、潤滑
作用を果し、耐焼付性を一層向上させる。鉛や黒鉛は、
マトリックス全体を100%としたとき8重量%以下であ
ることが望ましい。8重量%を越えると、焼結体の強度
が低下するからである。
In the present invention, the matrix is a portion obtained by sintering copper-based metal powder. Therefore, the copper-based sintered body of the present invention has good seizure resistance. The above-mentioned copper-based metal powder is copper (C
It means the powder mainly composed of u). The copper-based metal powder is
Generally used copper-based powder can be used. For example, electrolytic copper powder with high purity and copper powder containing tin (Sn) can be used. In this case, the tin content is 10% by weight or less, especially 8% by weight, based on 100% by weight of the entire matrix.
Is good. The average particle diameter of the copper-based metal powder is 10 to 10
It is desirable to use one having a size of about 0 μ. The reason for this is that the hard particles are dispersed uniformly, and if the particle size is 100 μm or more, the sinterability is poor, and if the particle size is 10 μm or less, the powder price increases. In the present invention, the copper-based metal powder may contain a solid lubricant such as lead or graphite. Both lead and graphite may be contained, or either one may be contained. Lead and graphite are almost insoluble in copper and tin and exist at the grain boundaries of copper particles. When lead or graphite slides on the mating material, it exerts a lubricating action and further improves the seizure resistance. Lead and graphite are
It is preferably 8% by weight or less when the entire matrix is 100%. This is because if it exceeds 8% by weight, the strength of the sintered body will decrease.

上記マトリックスには硬質粒子が分散している。硬質粒
子は、炭化物形成元素を含む鉄系粒子の意味である。該
硬質粒子は、一般的には硬質粒子全体を100重量%とし
たとき重量%で、クロム、モリブデン、タングステン、
バナジウム、ニオブのうち1種又は2種以上0.2〜66
%、炭素0.2〜3.0%、不可避の不純物、残部鉄の組成を
もつものである。該硬質粒子は、一般に、硬質粒子全体
を100重量%としたとき重量%で、クロム0.5〜25%、モ
リブデン0.3〜7.0%、タングステン0.5〜25%、バナジ
ウム0.2〜6.0%、ニオブ0.05〜3%のうち1種又は2種
以上を含む組成にすることが望ましい。更に硬質粒子の
組成は、硬質粒子全体を100重量%としたとき重量%
で、クロム0.5〜25%、モリブデン0.3〜7.0%、タング
ステン0.5〜25%、バナジウム0.2〜6.0%、ニオブ0.05
〜3%、コバルト2.0〜20%、リン0.1〜0.8%、マンガ
ン1.2%以下、シリコン1.5%以下を含むことにしてもよ
い。
Hard particles are dispersed in the matrix. The hard particles mean iron-based particles containing a carbide-forming element. The hard particles are generally, by weight% when the entire hard particles are 100% by weight, chromium, molybdenum, tungsten,
One or more of vanadium and niobium 0.2 to 66
%, Carbon 0.2 to 3.0%, inevitable impurities, and the balance iron. The hard particles are generally 0.5% by weight of chromium, 0.5 to 25% of molybdenum, 0.3 to 7.0% of tungsten, 0.5 to 25% of tungsten, 0.2 to 6.0% of vanadium, and 0.05 to 3% of niobium, based on 100% by weight of the entire hard particles. It is desirable to have a composition containing one or more of the above. Furthermore, the composition of the hard particles is such that the total weight of the hard particles is 100% by weight.
, Chromium 0.5-25%, molybdenum 0.3-7.0%, tungsten 0.5-25%, vanadium 0.2-6.0%, niobium 0.05
.About.3%, cobalt 2.0 to 20%, phosphorus 0.1 to 0.8%, manganese 1.2% or less, and silicon 1.5% or less.

該硬質粒子は、炭化物を多く析出させている。上記した
炭化物は、一般的にはクロム、モリブデン、タングステ
ン、バナジウム、ニオブの1種又は2種以上を含む単一
炭化物や複炭化物から構成される。炭化物は例えばCr2C
3、Mo2C、WC、VC、NbC等である。
The hard particles deposit a large amount of carbide. The above-mentioned carbide is generally composed of a single carbide or a double carbide containing one or more of chromium, molybdenum, tungsten, vanadium, and niobium. Carbide is, for example, Cr 2 C
3 , Mo 2 C, WC, VC, NbC, etc.

硬質粒子は上記炭化物を含むため、硬さはかたく、一般
にビッカース硬度(荷重300g)で200以上である。硬さ
が上記値よりも低いと焼結体の耐摩耗性は向上しない。
硬質粒子は、ビッカース硬度400〜600、例えば550のか
たさをもつものを用いることが望ましい。
Since the hard particles contain the above-mentioned carbides, the hardness is hard, and the Vickers hardness (load 300 g) is generally 200 or more. If the hardness is lower than the above value, the wear resistance of the sintered body is not improved.
It is desirable to use hard particles having a Vickers hardness of 400 to 600, for example, a hardness of 550.

硬質粒子に含まれる不可避の不純物は、少ない方が望ま
しい。例えば2%以下が望ましい(不可避の不純物とし
ては、Al、S等がある)。
It is desirable that the unavoidable impurities contained in the hard particles be small. For example, 2% or less is desirable (as unavoidable impurities, there are Al, S, etc.).

硬質粒子は、一般に、上記組成をもつ合金工具鋼、高速
度鋼、耐熱鋼等を噴霧法によって形成する。
Hard particles are generally formed by spraying alloy tool steel, high speed steel, heat resistant steel, etc. having the above composition.

硬質粒子の大きさは平均粒径が通常5〜150μm程度が
望ましい。硬質粒子の大きさが5μm未満では耐摩耗性
向上効果が小さいからである。逆に150μmを越えると
粒子が多すぎて相手攻撃性を示す事があり、又マトリッ
クスから硬質粒子が脱落しやすいからである。尚、硬質
粒子の平均粒径は、累積粒度分布の50%粒子径とした。
硬質粒子の形状は一般に粒状や丸い方がよい。
It is desirable that the hard particles have an average particle size of usually 5 to 150 μm. This is because if the size of the hard particles is less than 5 μm, the effect of improving wear resistance is small. On the other hand, if the particle size exceeds 150 μm, the number of particles may be too large to show the opponent attacking property, and the hard particles are likely to fall off from the matrix. The average particle size of the hard particles was 50% of the cumulative particle size distribution.
The shape of the hard particles is generally preferably granular or round.

硬質粒子の割合は、銅系焼結体の用途等に応じて設定す
るが、銅系焼結体全体を100重量%としたとき、10〜70
%程度が望ましい。その理由は10%未満では、硬質粒子
が少なすぎて耐摩耗性の向上に寄与せず、又70%を越え
ると、硬質粒子成分が増えすぎるため耐焼付性が低下す
るからである。
The proportion of hard particles is set according to the application of the copper-based sintered body, etc., but when the total weight of the copper-based sintered body is 100% by weight, it is 10 to 70.
% Is preferable. The reason is that if it is less than 10%, the hard particles are too small to contribute to the improvement of wear resistance, and if it exceeds 70%, the hard particle component is excessively increased and the seizure resistance is lowered.

上記した硬質粒子は、マトリックス中に均一に分散して
いることが望ましい。
It is desirable that the hard particles described above are uniformly dispersed in the matrix.

本発明の銅系焼結体を製造するにあたっては、まず上記
したような組成をもつ硬質粒子、銅系金属粉末を混合し
た混合体を形成する。この場合にはV型混合機などの通
常の混合手段を用いることができる。混合時間は通常10
〜40分間とする。次に、混合体を所定の形状に圧縮成形
して圧粉体とする。圧縮は、金型成形による通常の手段
の他、ラバープレス等の手段を用いることができる。成
形圧力は、通常2〜7ton/cm2とする。圧粉体の密度は均
一であることが望ましい。上記のように圧粉体を形成し
たら、該圧粉体を加熱して焼結する。焼結は、通常、還
元性雰囲気、あるいは不活性ガス雰囲気中で700〜1000
℃で10〜60分間加熱することにより行なう。この様に製
造すると、銅系金属粉末は互いに結合し、焼結体のマト
リックスは銅系となり、該マトリックスに硬質粒子を分
散させることができる。
In producing the copper-based sintered body of the present invention, first, a mixture of hard particles having the above-described composition and copper-based metal powder is formed. In this case, an ordinary mixing means such as a V-type mixer can be used. Mixing time is usually 10
~ 40 minutes. Next, the mixture is compression molded into a predetermined shape to obtain a green compact. For the compression, a usual means such as molding with a die, or a means such as a rubber press can be used. The molding pressure is usually 2 to 7 ton / cm 2 . It is desirable that the green compact has a uniform density. After forming the green compact as described above, the green compact is heated and sintered. Sintering is usually 700-1000 in a reducing atmosphere or an inert gas atmosphere.
It is performed by heating at ℃ for 10 to 60 minutes. When manufactured in this manner, the copper-based metal powders are bonded to each other, the matrix of the sintered body becomes copper-based, and the hard particles can be dispersed in the matrix.

[発明の効果] 本発明の銅系焼結体は、実施例の試験値で示すように、
摩耗痕巾が小さく又焼付荷重が大きく、耐摩耗性、耐焼
付性の双方に優れた性質を有する。
[Effects of the Invention] The copper-based sintered body of the present invention, as shown by the test values of Examples,
It has a small wear scar and a large seizure load, and has excellent wear resistance and seizure resistance.

[実施例] 第1表は各実施例の試料をつくる場合の条件を示すもの
である。以下、各実施例についより詳しく説明する。
[Examples] Table 1 shows the conditions for preparing the samples of each example. Hereinafter, each example will be described in more detail.

(実施例1)硬質粒子全体を100重量%としたとき重量
%で、Cr4%、Mo5%、W6.1%、V1.8%、C0.9%、不純物
1%以下、残部鉄の組成をもつ硬質粒子を用いた。この
硬質粒子は、JIS−SKH9相当の噴霧法で形成したものあ
る。この硬質粒子は、第1表に示すように、平均粒径が
38μm、硬さがビッカース硬度(荷重300g)で550であ
る。この硬質粒子と、Cu−Sn合金粉と、潤滑剤とをV型
混合機で30分間混合した。実施例1では、硬質粒子の割
合は、銅系焼結体全体を100重量%としたとき10%であ
る。Cu−Sn合金粉のSn含有量は、Cu−Sn合金粉全体を10
0重量%としたとき8重量%である。Cu−Sn合金粉の粒
径は149μ以下である。潤滑剤は、混合体全体を100重量
%としたとき0.5重量%とした。上記のようにして得ら
れた混合粉末を成形型により4ton/cm2の圧力で成形し圧
粉体を形成した。この圧粉体をアンモニア分解ガス中に
おいて900℃で30分間焼結し、実施例1の試料を得た。
(Example 1) Cr4%, Mo5%, W6.1%, V1.8%, C0.9%, impurities 1% or less, and the balance iron composition by weight% when the total amount of hard particles is 100% by weight. The hard particles were used. The hard particles are formed by a spraying method equivalent to JIS-SKH9. As shown in Table 1, the hard particles have an average particle size of
The hardness is 38 μm and the hardness is 550 in Vickers hardness (load 300 g). The hard particles, Cu-Sn alloy powder, and lubricant were mixed for 30 minutes with a V-type mixer. In Example 1, the proportion of hard particles is 10% when the entire copper-based sintered body is 100% by weight. The Sn content of the Cu-Sn alloy powder is 10% for the entire Cu-Sn alloy powder.
When it is 0% by weight, it is 8% by weight. The particle size of the Cu-Sn alloy powder is 149μ or less. The lubricant was 0.5% by weight when the whole mixture was 100% by weight. The mixed powder obtained as described above was molded with a molding die at a pressure of 4 ton / cm 2 to form a green compact. The green compact was sintered in an ammonia decomposition gas at 900 ° C. for 30 minutes to obtain a sample of Example 1.

(実施例2)実施例1の場合と基本的に同じ条件で実施
例2の試料を形成した。但し、本例の場合には、硬質粒
子の割合は、銅系焼結体全体を100重量%としたとき、4
0重量%とした。
(Example 2) A sample of Example 2 was formed under the same conditions as in Example 1. However, in the case of this example, the proportion of hard particles is 4 when the entire copper-based sintered body is 100% by weight.
It was set to 0% by weight.

(実施例3)実施例1の場合と基本的に同じ条件で実施
例3の試料を形成した。但し、本例の場合には、硬質粒
子の割合は、銅系焼結体全体を100重量%としたとき、7
0重量%とした。
(Example 3) The sample of Example 3 was formed under the same conditions as in Example 1. However, in the case of this example, the ratio of the hard particles is 7 when the entire copper-based sintered body is 100% by weight.
It was set to 0% by weight.

(実施例4)実施例1の場合とほぼ同じ条件で実施例4
の試料を形成した。但し本例の場合には、硬質粒子の割
合は、銅系焼結体全体を100重量%としたとき、40重量
%である。又、銅系金属粉末として電解銅粉を用いた。
(Embodiment 4) Embodiment 4 under substantially the same conditions as in Embodiment 1
Samples of However, in the case of this example, the ratio of the hard particles is 40% by weight when the total amount of the copper-based sintered body is 100% by weight. Also, electrolytic copper powder was used as the copper-based metal powder.

(実施例5)硬質粒子全体を100重量%としたとき重量
%でCr12%、Mo1%、V0.35%、Mn0.2%、C1.5%、不純
物0.6%、残部鉄の組成をもつ硬質粒子を用いた。この
硬質粒子は、JIS−SKD11相当の市販の噴霧粉を用いた。
この硬質粒子は、平均粒系が63μm、硬さがビッカース
硬度で490である。銅系金属粉末は電解銅粉とした。硬
質粒子の割合は、銅系焼結体全体を100重量%としたと
き40重量%である。後の条件は、実施例1の場合と基本
的に同一とした。
(Example 5) Hard having a composition of Cr12%, Mo1%, V0.35%, Mn0.2%, C1.5%, impurities 0.6% and balance iron in weight% when the total amount of hard particles is 100% by weight. Particles were used. As the hard particles, commercially available spray powder equivalent to JIS-SKD11 was used.
The hard particles have an average particle size of 63 μm and a hardness of 490 in Vickers hardness. The copper-based metal powder was electrolytic copper powder. The ratio of the hard particles is 40% by weight when the entire copper-based sintered body is 100% by weight. The subsequent conditions were basically the same as in Example 1.

(実施例6)硬質粒子全体を100重量%としたとき、重
量%でCr4.5%、Mo5.0%、W6.0%、V2.0%、C0.9%、不
純物0.8%、残部鉄の組成をもつ硬質粒子を用いた。こ
の硬質粒子は、JIS−SKH9相当の市販の合金鋼粉末を用
いた。この硬質粒子は、平均粒子径が140μm、硬さが
ビッカース硬度で530である。銅系金属粉末としてCu−S
n合金粉(Sn含有量8%)を用いた。硬質粒子の割合
は、銅系焼結体全体を100重量%としたとき40重量%で
ある。後の条件は、実施例1の場合と基本的に同一とし
た。
(Example 6) Cr4.5%, Mo5.0%, W6.0%, V2.0%, C0.9%, impurities 0.8%, balance iron with weight% when the total amount of hard particles is 100% by weight. Hard particles having the composition of were used. As the hard particles, a commercially available alloy steel powder corresponding to JIS-SKH9 was used. The hard particles have an average particle diameter of 140 μm and a hardness of Vickers hardness of 530. Cu-S as copper-based metal powder
n alloy powder (Sn content 8%) was used. The ratio of the hard particles is 40% by weight when the entire copper-based sintered body is 100% by weight. The subsequent conditions were basically the same as in Example 1.

(実施例7)硬質粒子全体を100重量%としたとき重量
%、Cr5.0%、Mo1.0%、P0.5%、C0.5%、不純物0.2
%、残部鉄の組成をもつ硬質粒子を用いた。この硬質粒
子は水噴霧法によって形成した。この硬質粒子は、平均
粒径が50μm、硬さがビッカース硬度で250である。銅
系金属粉末は、Snを8%含有するCu−Sn合金粉を用い
た。硬質粒子の割合は、銅系焼結体全体を100重量%と
したとき40重量%とした。後の条件は、実施例1の場合
を基本的に同一とした。
(Example 7) Weight%, Cr5.0%, Mo1.0%, P0.5%, C0.5%, impurities 0.2 when the total amount of hard particles is 100% by weight.
%, And hard particles having the composition of the balance iron were used. The hard particles were formed by the water spray method. The hard particles have an average particle size of 50 μm and a hardness of Vickers hardness of 250. As the copper-based metal powder, a Cu-Sn alloy powder containing 8% Sn was used. The proportion of hard particles was 40% by weight when the entire copper-based sintered body was 100% by weight. The subsequent conditions were basically the same as in Example 1.

(実施例8)銅系金属粉末は、マトリックス全体を100
重量%としたとき、Snを8重量%含むと共に、3重量%
の鉛粉を含むものを用いた。硬質粒子は実施例1と同じ
ものを用いた。硬質粒子の割合は、銅系焼結体全体を10
0重量%としたとき、40重量%とした。
(Embodiment 8) The copper-based metal powder is used for the entire matrix of 100.
When 8% by weight is included, 3% by weight
The one containing lead powder was used. The same hard particles as in Example 1 were used. The ratio of hard particles is 10 for the entire copper-based sintered body.
When it was 0% by weight, it was 40% by weight.

(参考例9)硬質粒子の割合は、銅系焼結体全体を100
重量%としたとき5重量%とした。後の条件は、実施例
1の場合と基本的に同一である。
(Reference Example 9) The ratio of hard particles is 100 for the entire copper-based sintered body.
When it was defined as weight%, it was defined as 5 weight%. The subsequent conditions are basically the same as in the case of the first embodiment.

(参考例10)硬質粒子の割合は、銅系焼結体全体を100
重量%としたとき、80重量%とした。後の条件は、実施
例1の場合と基本的に同一である。
(Reference Example 10) The ratio of hard particles is 100 for the entire copper-based sintered body.
When it was defined as weight%, it was defined as 80 weight%. The subsequent conditions are basically the same as in the case of the first embodiment.

(実施例11)硬質粒子全体を100重量%としたとき、重
量%でCr4.3%、Mo5.2%、W5.8%、V1.9%、C0.9%、不
純物0.6%、残部鉄の組織をもつ硬質粒子を用いた。
(Example 11) Cr4.3%, Mo5.2%, W5.8%, V1.9%, C0.9%, impurities 0.6%, balance iron with weight% when the total amount of hard particles is 100% by weight. Hard particles having the texture of were used.

この硬質粒子は、JIS−SKH9相当の市販合金鋼粉末であ
る。
These hard particles are commercially available alloy steel powders equivalent to JIS-SKH9.

この硬質粒子は、平均粒径が190μm、硬さがビッカー
ス硬度で550である。硬質粒子の割合は、銅系焼結体全
体を100重量%としたとき、40重量%である。
The hard particles have an average particle size of 190 μm and a hardness of 550 in Vickers hardness. The ratio of the hard particles is 40% by weight when the entire copper-based sintered body is 100% by weight.

後の条件は、実施例1の場合と基本的に同一である。The subsequent conditions are basically the same as in the case of the first embodiment.

(比較例2)硬質粒子全体を100重量%としたとき重量
%でCr1.2%、Mn0.5%、C0.03%、不純物0.4%、残部鉄
の組織をもつ硬質粒子を用いた。この硬質粒子はJIS−S
Cr相当の低合金噴霧粉である。この硬質粒子は、平均粒
径が40μm、硬さがビッカース硬度で120である。後の
条件は、実施例1の場合と基本的に同一である。
(Comparative Example 2) Hard particles having a Cr 1.2%, Mn 0.5%, C 0.03%, impurity 0.4%, and balance iron structure in terms of weight% were used when the total amount of the hard particles was 100% by weight. This hard particle is JIS-S
It is a low alloy spray powder equivalent to Cr. The hard particles have an average particle size of 40 μm and a hardness of 120 in Vickers hardness. The subsequent conditions are basically the same as in the case of the first embodiment.

(耐摩耗性試験) 実施例の各試験片について大越式摩耗試験を実施し、摩
耗痕巾の大小により各試験片の耐摩耗性を評価した。大
越式摩耗試験の条件は、荷重18.9kg、相手材の周速0.11
9m/sec、摺動距離160m、相手材FC23とした。
(Abrasion resistance test) An Ogoshi-type abrasion test was performed on each test piece of the example, and the abrasion resistance of each test piece was evaluated based on the size of the abrasion scar. The conditions for the Ogoshi-type wear test are a load of 18.9 kg and a peripheral speed of 0.11 of the mating material.
9m / sec, sliding distance 160m, mating material FC23.

(耐焼付性試験) 又実施例の各試験片について次に記す条件で焼付試験を
行ない、シュー試験片や相手材が焼付きに至った荷重を
求め、この焼付荷重の大小により耐焼付性を評価した。
(Seizure resistance test) Further, a seizure test is performed on each test piece of the example under the conditions described below to obtain a load that causes seizure of the shoe test piece and the mating material, and the seizure resistance is determined by the magnitude of the seizure load. evaluated.

焼付試験は、(1)滑り速度:15m/secで一定、(2)荷
重20kgf/cm2より20kgf/cm2ずつ斬増(各荷重段階は30分
間継続)、(3)潤滑SAE30を滴下、(4)相手材は、
材質がFC23で、真円度1μm以下、表面あらさ1.2〜2.0
Sのディスク、(5)シュー試験片、実施例により製作
した試験片で、その表面あらさを1.9〜3.5Sとした。
Seizure test (1) Sliding speed: constant at 15 m / sec, (2) Load 20 kgf / cm 2 from 20 kgf / cm 2 by Kizo (each load stage continued for 30 minutes), dropwise (3) lubricating SAE 30, (4) The partner material is
Material is FC23, roundness is less than 1μm, surface roughness is 1.2 ~ 2.0
The surface roughness of the S disc, (5) shoe test piece, and the test piece manufactured according to the example was set to 1.9 to 3.5S.

(各実施例の試験結果) 第1図に耐摩耗性試験と耐焼付性試験の試験結果を表示
した。第1図に示すように耐摩耗性試験及び耐焼付性試
験の双方とも、実施例1〜8の方が、良好であった。即
ち耐摩耗性試験においては、特に実施例1〜8の試験片
の摩耗痕巾は0.8〜2.0mm程度であり、極めて少なかっ
た。又実施例1〜8の試験片の焼付荷重は138〜180kgf/
cm2程度であり、大きかった。
(Test Results of Examples) FIG. 1 shows the test results of the abrasion resistance test and the seizure resistance test. As shown in FIG. 1, in both the wear resistance test and the seizure resistance test, Examples 1 to 8 were better. That is, in the abrasion resistance test, the wear scar width of the test pieces of Examples 1 to 8 was about 0.8 to 2.0 mm, which was extremely small. The seizure load of the test pieces of Examples 1 to 8 is 138 to 180 kgf /
It was about cm 2 and was large.

以上のことから、実施例のなかでも、特に実施例1〜8
が耐摩耗性及び耐焼付性の双方に優れていることがわか
る。従って、耐摩耗性及び耐焼付性の双方を向上させる
ためには、硬質粒子の割合は、銅系焼結体全体を100重
量%としたとき、10〜70%程度が望ましいことがわか
る。又、耐摩耗性を向上させるためには、硬質粒子の硬
さは、Hv250(実施例7)程度よりも Hv490(実施例5)や、Hv550実施例(1〜4)程度が望
ましいことがわかる。
From the above, among Examples, particularly Examples 1 to 8
Is excellent in both wear resistance and seizure resistance. Therefore, in order to improve both wear resistance and seizure resistance, it is found that the proportion of hard particles is preferably about 10 to 70% when the entire copper-based sintered body is 100% by weight. Further, in order to improve the wear resistance, the hardness of the hard particles is more than Hv250 (Example 7). It can be seen that Hv490 (Example 5) and Hv550 Examples (1 to 4) are preferable.

[比較例] この比較例は、Cu−8Sn合金分と潤滑剤0.5%とを混合し
た混合体を成形型で圧縮成形して圧粉体を形成し、その
圧粉体を770℃でアンモニア分解ガス中で焼結したもの
である。
[Comparative Example] In this comparative example, a mixture obtained by mixing Cu-8Sn alloy and 0.5% of a lubricant was compression molded with a molding die to form a green compact, and the green compact was decomposed with ammonia at 770 ° C. It was sintered in gas.

この比較例では、第1図に示すように、摩耗痕巾は12.2
mmであり、実施例1に比してかなり大きかった。又焼付
荷重は40kgf/cm2であり、実施例1に比してかなり小さ
かった。
In this comparative example, as shown in FIG.
mm, which was considerably larger than that in Example 1. The baking load was 40 kgf / cm 2 , which was considerably smaller than that in Example 1.

【図面の簡単な説明】[Brief description of drawings]

第1図は、各実施例及び比較例の試験結果を示すグラフ
である。
FIG. 1 is a graph showing the test results of each example and comparative example.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭53−112209(JP,A) 特開 昭53−76910(JP,A) 特開 昭51−14804(JP,A) 特開 昭57−169064(JP,A) 特公 昭45−17042(JP,B1) 特公 昭44−19015(JP,B1) 特公 昭37−15451(JP,B1) 特公 昭56−36694(JP,B2) ─────────────────────────────────────────────────── --- Continuation of front page (56) Reference JP-A-53-112209 (JP, A) JP-A-53-76910 (JP, A) JP-A-51-14804 (JP, A) JP-A-57- 169064 (JP, A) JP 45-17042 (JP, B1) JP 44-19015 (JP, B1) JP 37-15451 (JP, B1) JP 56-36694 (JP, B2)

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】銅系金属粉末と鉄系の硬質粒子との混合体
を焼結して得られる、該銅系金属を主体とするマトリッ
クスと該マトリックスに分散された該硬質粒子とから構
成される銅系焼結体であり、 前記硬質粒子の割合は、前記銅系焼結体全体を100重量
%としたとき、10〜70重量%であり、 かつ前記硬質粒子は、Hv200以上の硬さをもち、硬質粒
子全体を100重量%としたとき重量%で、クロム、モリ
ブデン、タングステン、バナジウム、ニオブ、コバル
ト、リン、マンガンのうちの1種又は2種以上0.2〜66
%、炭素0.2〜3.0%、不可避の不純物、残部鉄の組成を
もつことを特徴とする銅系焼結体。
1. A matrix composed mainly of the copper-based metal and obtained by sintering a mixture of copper-based metal powder and iron-based hard particles, and the hard particles dispersed in the matrix. Is a copper-based sintered body, the proportion of the hard particles is 10 to 70 wt% when the entire copper-based sintered body is 100 wt%, and the hard particles have a hardness of Hv200 or more. %, Based on 100% by weight of the total hard particles, and one or more of chromium, molybdenum, tungsten, vanadium, niobium, cobalt, phosphorus and manganese 0.2 to 66
%, Carbon 0.2-3.0%, unavoidable impurities, balance iron composition.
【請求項2】硬質粒子は、硬質粒子全体を100重量%と
したとき、重量%で、クロム0.5〜25%、モリブデン0.3
〜7.0%、タングステン0.5〜25%、バナジウム0.2〜6.0
%、ニオブ0.05〜3%のうち1種又は2種以上を含む特
許請求の範囲第1項記載の銅系焼結体。
2. Hard particles are such that, when the total amount of the hard particles is 100% by weight, chromium is 0.5 to 25% and molybdenum is 0.3% by weight.
~ 7.0%, Tungsten 0.5 ~ 25%, Vanadium 0.2 ~ 6.0
%, Niobium 0.05 to 3%, 1 type, or 2 or more types, The copper-type sintered compact of Claim 1.
【請求項3】硬質粒子は、硬質粒子全体を100重量%と
したとき、重量%で、クロム0.5〜25%、モリブデン0.3
〜7.0%、タングステン0.5〜25%、バナジウム0.2〜6.0
%、ニオブ0.05〜3%、コバルト2.0〜20%、リン0.1〜
0.8%、マンガン1.2%以下を含む特許請求の範囲第1項
記載の銅系焼結体。
3. Hard particles are such that chromium is 0.5 to 25% and molybdenum is 0.3% by weight based on 100% by weight of the entire hard particles.
~ 7.0%, Tungsten 0.5 ~ 25%, Vanadium 0.2 ~ 6.0
%, Niobium 0.05 to 3%, cobalt 2.0 to 20%, phosphorus 0.1 to
The copper-based sintered body according to claim 1, which contains 0.8% or less and 1.2% or less of manganese.
【請求項4】硬質粒子は、平均粒径が5〜150μmであ
る特許請求の範囲第1項、第2項または第3項記載の銅
系焼結体。
4. The copper-based sintered body according to claim 1, 2 or 3, wherein the hard particles have an average particle diameter of 5 to 150 μm.
【請求項5】マトリックスはスズを含み、マトリックス
全体を100重量%としたときにスズ1〜10重量%である
特許請求の範囲第1項、第2項または第3項記載の銅系
焼結体。
5. The copper-based sintering according to claim 1, 2 or 3, wherein the matrix contains tin, and tin is 1 to 10% by weight when the entire matrix is 100% by weight. body.
【請求項6】マトリックス鉛、黒鉛のうち1種又は2種
を含む特許請求の範囲第1項、第2項または第3項記載
の銅系焼結体。
6. The copper-based sintered body according to claim 1, 2, or 3 containing one or two of matrix lead and graphite.
JP59141266A 1984-07-07 1984-07-07 Copper-based sintered body Expired - Fee Related JPH079046B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59141266A JPH079046B2 (en) 1984-07-07 1984-07-07 Copper-based sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59141266A JPH079046B2 (en) 1984-07-07 1984-07-07 Copper-based sintered body

Publications (2)

Publication Number Publication Date
JPS6119750A JPS6119750A (en) 1986-01-28
JPH079046B2 true JPH079046B2 (en) 1995-02-01

Family

ID=15287898

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59141266A Expired - Fee Related JPH079046B2 (en) 1984-07-07 1984-07-07 Copper-based sintered body

Country Status (1)

Country Link
JP (1) JPH079046B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7678173B2 (en) 2004-01-15 2010-03-16 Taiho Kogyo Co., Ltd. Pb-free copper-alloy sliding material
US7883588B2 (en) 2004-06-10 2011-02-08 Taiho Kogyo Co., Ltd. Pb-free bearing used for fuel-injection pump
US9028582B2 (en) 2008-01-23 2015-05-12 Taiho Kogyo Co., Ltd. Process for production of sintered copper alloy sliding material and sintered copper alloy sliding material
US9434005B2 (en) 2007-05-15 2016-09-06 Taiho Kogyo Co., Ltd. Pb-free copper-alloy sliding material, and plain bearing
JP2017520702A (en) * 2015-04-24 2017-07-27 ハノン システムズ Double-head swash plate compressor and cylinder block manufacturing method
US10041148B2 (en) 2006-08-05 2018-08-07 Taiho Kogyo Co., Ltd. Pb-free copper alloy sliding material

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6280242A (en) * 1985-10-02 1987-04-13 Nippon Kagaku Yakin Kk Copper-base sintered thrust bearing containing oil
KR20100014704A (en) 2007-04-26 2010-02-10 가부시키가이샤 고마쓰 세이사쿠쇼 Copper alloy-based slide material, and copper alloy-based slide member
CN110650812B (en) * 2017-04-07 2022-04-05 日本制铁株式会社 Sintered friction material
CN111101010B (en) * 2019-12-26 2021-08-17 浙江杭机新型合金材料有限公司 High-strength high-conductivity copper-niobium alloy material and preparation method thereof
DE102020213651A1 (en) * 2020-10-29 2022-05-05 Mahle International Gmbh Wear-resistant, highly thermally conductive sintered alloy, especially for bearing applications and valve seat inserts

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5636694A (en) * 1979-08-31 1981-04-09 Matsushita Electric Works Ltd Automatic player

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7678173B2 (en) 2004-01-15 2010-03-16 Taiho Kogyo Co., Ltd. Pb-free copper-alloy sliding material
US7883588B2 (en) 2004-06-10 2011-02-08 Taiho Kogyo Co., Ltd. Pb-free bearing used for fuel-injection pump
US10041148B2 (en) 2006-08-05 2018-08-07 Taiho Kogyo Co., Ltd. Pb-free copper alloy sliding material
US9434005B2 (en) 2007-05-15 2016-09-06 Taiho Kogyo Co., Ltd. Pb-free copper-alloy sliding material, and plain bearing
US9028582B2 (en) 2008-01-23 2015-05-12 Taiho Kogyo Co., Ltd. Process for production of sintered copper alloy sliding material and sintered copper alloy sliding material
US9669461B2 (en) 2008-01-23 2017-06-06 Taiho Kogyo Co., Ltd. Process for production of sintered copper alloy sliding material and sintered copper alloy sliding material
JP2017520702A (en) * 2015-04-24 2017-07-27 ハノン システムズ Double-head swash plate compressor and cylinder block manufacturing method
US10167858B2 (en) 2015-04-24 2019-01-01 Hanon Systems Double-headed swash type compressor and method for manufacturing cylinder block

Also Published As

Publication number Publication date
JPS6119750A (en) 1986-01-28

Similar Documents

Publication Publication Date Title
JP4891421B2 (en) Powder metallurgy mixture and method for producing powder metallurgy parts using the same
EP2087250B1 (en) Bearing having improved consume resistivity and manufacturing method thereof
EP2778243B1 (en) Iron based sintered sliding member and method for producing the same
US5346668A (en) Copper based alloy for wear resistant sliding layer and sliding member
JP2002129296A (en) Iron-base sintered alloy material for valve seat, and valve seat made of iron-base sintered alloy
EP0202035B1 (en) Wear-resistant, sintered iron alloy and process for producing the same
GB2216545A (en) Sintered alloy for oil-retaining bearing and method for manufacturing the sintered alloy
WO2007080824A1 (en) Copper base sintered slide member
EP2781283A1 (en) Iron base sintered sliding member and method for producing same
US5256494A (en) Sliding member with a sintered copper alloy layer
JPH079046B2 (en) Copper-based sintered body
GB2109004A (en) Anti-wear sintered alloy and process for the manufacture thereof
JPH07188712A (en) Sliding material excellent in corrosion resistance and wear resistance and its production
US6039785A (en) Material for the powder-metallurgical production of shaped parts, in particular valve seat rings or valve guides with high resistance to wear
CN1018657B (en) Heat-resistant antifriction self-lubricating material and its manufacturing method
JPH01275735A (en) Sintered alloy material and its manufacture
JPH0995759A (en) Oil-impregnated sintered bearing and its production
JPH07166278A (en) Coppery sliding material and production thereof
JPS58189361A (en) Oil-containing bearing made of sintered fe alloy with superior fitness and lubricity
JPS5938350A (en) Sintered al alloy for friction member and sliding member
JPS60147514A (en) High-temperature abrasion resistant valve seat
JPS6164838A (en) High density copper sintered alloy
GB2067221A (en) Sintered Alloys
JPS61291954A (en) Sintering material having wear resistance and corrosion resistance at high temperature and its manufacture
JP2517675B2 (en) Sintered copper alloy for high load sliding

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees