JPS6164838A - High density copper sintered alloy - Google Patents

High density copper sintered alloy

Info

Publication number
JPS6164838A
JPS6164838A JP18700184A JP18700184A JPS6164838A JP S6164838 A JPS6164838 A JP S6164838A JP 18700184 A JP18700184 A JP 18700184A JP 18700184 A JP18700184 A JP 18700184A JP S6164838 A JPS6164838 A JP S6164838A
Authority
JP
Japan
Prior art keywords
alloy
copper
hard particles
density
fine hard
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18700184A
Other languages
Japanese (ja)
Inventor
Yoshitaka Takahashi
義孝 高橋
Akira Manabe
明 真鍋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP18700184A priority Critical patent/JPS6164838A/en
Publication of JPS6164838A publication Critical patent/JPS6164838A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the titled alloy superior in resistances to wear, burning and pitching, by dispersing a specified ratio of fine hard particles composed of iron alloy having a specified compsn. in matrix structure of a Cu alloy contg. a specified quantity of Ni. CONSTITUTION:Into the Cu alloy contg. by weight ratio 5-50% Ni as matrix structure, fine hard particles composed of at least >=one kind among 0.2-3.5% C, 0.5-25% Cr, 0.3-7.0% Mo, 0.5-25% W, 0.2-6.0% V, 0.5-18% Co, 0.2-3.0% Ni, <=1.2% Mn and the balance Fe with inevitable impurities are dispersed by 10-70wt% to prepare the Cu sintered alloy. By regulating hardness of fine hard particles to >=200 Hv, average particle diameter to 5-150mu and performing conventional powder press molding and heating, sintering, the titled alloy having sintered density of >=90% of theoretical density is manufactured easily.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、高密度銅系焼結合金に関し、詳しくは、Cu
−Nt系合金からなる基地組織中に特定 □組成を有す
る微細硬質粒子を分散させて、優れた耐摩耗性、耐焼付
性、耐ピツチング性を併せ保有させることによって、苛
酷な使用条件のもとで摺動する摺動部材等として、好適
に適用することができる高密度銅系焼結合金にかかる。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a high-density copper-based sintered alloy, and more specifically,
- By dispersing fine hard particles with a specific composition in the matrix structure consisting of Nt-based alloys, it has excellent wear resistance, seizure resistance, and pitting resistance, making it possible to withstand harsh usage conditions. The present invention relates to a high-density copper-based sintered alloy that can be suitably applied as a sliding member etc. that slides on the surface.

〔従来の技術〕[Conventional technology]

焼結部材は、粉末冶金用金属粉末原料を金型等により圧
粉成形した後、加熱焼結炉により焼き固めて製造するも
ので、生産性が高く製品精度が優れていることから、自
動車用部品等に多く使用されている。
Sintered parts are manufactured by compacting metal powder raw materials for powder metallurgy using a mold, etc., and then baking and solidifying them in a heating sintering furnace.Because of their high productivity and excellent product precision, they are used for automobiles. It is widely used for parts, etc.

そして、焼結合金には、一般的に鉄系焼結合金と銅系焼
結合金があり、代表的な焼結合金である焼結軸受合金と
しても、JIS規格B1581に鉄系焼結合金と銅系焼
結合金とが規定されている。
Sintered alloys generally include iron-based sintered alloys and copper-based sintered alloys, and sintered bearing alloys, which are representative sintered alloys, are classified as iron-based sintered alloys in JIS standard B1581. A copper-based sintered alloy is specified.

そして、銅系焼結合金は、一般的には、耐焼付性に優れ
ていることから軸受部材等に広く用いられているものの
、耐摩耗性に劣ることから高荷重の負荷される摺動部材
等には適用することが困難とされていた。
Copper-based sintered alloys generally have excellent seizure resistance, so they are widely used in bearing parts, etc.; however, because of their poor wear resistance, they are used in sliding parts that are subjected to high loads. It was considered difficult to apply to such cases.

一方、鉄系焼結合金は、耐摩耗性に優れているものの耐
焼付性に劣ることから、潤滑油等の供給が不足しやすい
部位に摺動部材として通用すると焼付を発生しやすいと
いう欠点があった。
On the other hand, although iron-based sintered alloys have excellent wear resistance, they have poor seizure resistance, so if they are used as sliding members in areas where lubricating oil is likely to be insufficiently supplied, they are prone to seizure. there were.

そこで、上述のような従来の銅系焼結合金と鉄系焼結合
金の欠点を補うものとして、鉄系合金粉末と銅系合金粉
末を混合して粉末冶金用混合粉末原料とした後、圧粉成
形、加熱焼結して製造した銅・鉄系焼結合金が開発され
ている(例えば、特公昭56−52988号等)。
Therefore, in order to compensate for the drawbacks of the conventional copper-based sintered alloy and iron-based sintered alloy as mentioned above, iron-based alloy powder and copper-based alloy powder are mixed to form a mixed powder raw material for powder metallurgy, and then pressed. Copper-iron based sintered alloys manufactured by powder molding and heating sintering have been developed (for example, Japanese Patent Publication No. 56-52988, etc.).

そして、この銅・鉄系焼結合金においては、鉄系合金粉
末に銅系合金粉末を重量比率で10〜40%混合し、さ
らに、若干の錫と二硫化モリブデンを混粉した混合粉末
を、粉末冶金用混合粉末原料として圧粉成形5加熱焼結
することにより、耐摩耗性及び潤滑特性を向上させるこ
ととしている。
In this copper/iron-based sintered alloy, a mixed powder is prepared by mixing iron-based alloy powder with copper-based alloy powder at a weight ratio of 10 to 40%, and a small amount of tin and molybdenum disulfide. It is intended to improve wear resistance and lubrication properties by compacting and heating and sintering the powder as a mixed powder raw material for powder metallurgy.

しかし、最近の高負荷エンジン等に使用される摺動部材
においては、最近のエンジンの高性能化(高速回転化、
高出力化)に伴って使用条件がさらに苛酷となり、上記
の銅・鉄系焼結合金(特公昭56−52988号)であ
っても、必ずしも、充分な摺動性能及び耐久性を確保す
ることができていないのが現樗犬である。
However, in the sliding parts used in recent high-load engines, etc., the performance of recent engines (high speed rotation,
As the usage conditions become more severe with the increase in output (high output), even with the above-mentioned copper-iron sintered alloy (Special Publication No. 56-52988), it is not always necessary to ensure sufficient sliding performance and durability. It is the current Hakuinu that has not been able to do this.

ところで、一般的に軸受部材として使用されている銅系
焼結合金の基地組織を構成するCu−5n系合金におい
ては1.加熱焼結過程において僅かながら体積膨張する
ことから、焼結体密度が圧粉成形体の密度とほぼ同等と
なり、従って、焼結体密度を理論密度の90%以上とす
るためには、予め、圧粉成形体の密度を理論密度の90
%以上としておくことが必要となる。
By the way, in the Cu-5n alloy that constitutes the matrix structure of copper-based sintered alloys that are generally used as bearing members, 1. Since the volume expands slightly during the heating and sintering process, the density of the sintered compact becomes almost the same as the density of the compacted compact. Therefore, in order to make the density of the sintered compact 90% or more of the theoretical density, in advance, The density of the powder compact is 90% of the theoretical density.
% or more.

そし゛て、圧粉成形体をこのような高密度とするには、
圧粉成形時の加圧力を通常の銅系焼結合金における圧粉
成形時の加圧力(3〜7 ton / cm ”)より
大幅に高くする必要がある。
Therefore, in order to make the powder compact have such a high density,
It is necessary to make the pressure during powder compaction significantly higher than the pressure during powder compaction (3 to 7 ton/cm'') for ordinary copper-based sintered alloys.

しかし、圧粉成形体を圧粉成形する型の焼付。However, the mold for compacting the compacted product is baked.

型の摩耗、操業の安全性等を考慮すると、圧粉成形時の
加圧力を7 ton / cm ”を越える高い加圧力
とすることは、実用上極めて困難であり、実質的には殆
ど不可能に近いものとなる。
Considering mold wear, operational safety, etc., it is extremely difficult in practice to increase the pressure force during powder compaction to a high pressure force exceeding 7 ton/cm, and practically it is almost impossible. It will be close to.

上述の背景から、銅系焼結合金の基地組織を構成する合
金をCu−5n系合金として、理論密度の90%以上の
焼結体密度を確保するには、新しい工程を追加すること
が必要となってくる。
From the above background, it is necessary to add a new process in order to ensure a sintered compact density of 90% or more of the theoretical density by using a Cu-5n alloy as the alloy that constitutes the base structure of the copper-based sintered alloy. It becomes.

即ち、そのような焼結体密度を高める1手段としては、
加熱焼結した後改めて再加圧する方法が考えられるもの
の、再加圧工程を追加すると製造された焼結合金の製造
コストが大幅に高騰することから、実用的な方法とはな
りえない。
That is, one way to increase the density of such a sintered body is to
Although it is possible to repressurize after heating and sintering, adding the repressing step would significantly increase the manufacturing cost of the manufactured sintered alloy, so this is not a practical method.

そこで、本発明者らは、このようなCu−5n系合金を
基地組織用合金とした、銅系焼結合金における問題点を
解決すべく研究を重ねた結果に基づいて、銅系焼結合金
の基地組織用合金としてCu−Ni系合金を開発した。
Therefore, the present inventors have developed a copper-based sintered alloy based on the results of repeated research to solve the problems in copper-based sintered alloy using such a Cu-5n alloy as a base structure alloy. We have developed a Cu-Ni alloy as an alloy for the matrix structure.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上述のような従来の技術の現状に鑑み、本発明が解決し
ようとする問題点は、従来の銅系焼結合金は耐焼付性に
優れており軸受部材等に広く用いられているものの、耐
摩耗性に劣ることから高荷重の負荷される摺動部材等に
は通用することが困難であり、また、鉄系焼結合金は耐
摩耗性に優れているものの耐焼付性に劣ることから、潤
滑油等の供給が不足しやすい部位に摺動部材として適用
すると焼付を発生しやすく、さらに、これら銅系合金粉
末と鉄系合金粉末を混合して製造した銅・鉄系焼結合金
であっても、最近の高負荷エンジン等に使用される摺動
部材としては、必ずしも、充分な摺動特性及び耐久性を
確保することができていないことである。
In view of the current state of the conventional technology as described above, the problem that the present invention attempts to solve is that although conventional copper-based sintered alloys have excellent seizure resistance and are widely used for bearing members, etc., Due to its poor abrasion resistance, it is difficult to be used in sliding parts that are subject to high loads.Furthermore, although iron-based sintered alloys have excellent wear resistance, they have poor seizure resistance. If used as a sliding member in areas where the supply of lubricating oil, etc. is likely to be insufficient, seizure is likely to occur. However, it is not always possible to ensure sufficient sliding characteristics and durability for sliding members used in recent high-load engines and the like.

従って、本発明の技術的課題とするところは、Cu−N
i系合金を基地組織用合金とすることにより、優れた耐
焼付性及び耐ピツチング性を確保するとともに、このC
u−Ni系合金からなる基地組織中に、特定組成を有す
る微細硬質粒子の適量を分散させて優れた耐摩耗性を付
与し、苛酷な使用条件のもとでも優れた摺動特性を保有
させることによって、銅系焼結合金でありながら優れた
耐摩耗性を有し、摺動部材としての好適な通用を可能と
することにある。
Therefore, the technical problem of the present invention is to
By using the i-series alloy as the base structure alloy, it is possible to ensure excellent seizure resistance and pitting resistance, as well as to maintain this carbon
An appropriate amount of fine hard particles with a specific composition is dispersed in the base structure of the u-Ni alloy to provide excellent wear resistance and maintain excellent sliding properties even under severe usage conditions. As a result, although it is a copper-based sintered alloy, it has excellent wear resistance and can be suitably used as a sliding member.

〔問題点を解決するための手段〕[Means for solving problems]

このような従来の技術における問題点に鑑み、本発明に
おける、従来の技術の問題点を解決するための手段は、
重量比率で、Ni;5〜50%を含有する銅系合金から
なる基地組織中に、C;0゜2〜3.5%、及び、Cr
;0.5〜25%2Mo;0.3〜7.0%、W、0.
5〜25%、V;0.2〜6゜0%、Co;0.5〜1
8%、Ni;0.2〜3゜0%。
In view of such problems in the conventional technology, the means for solving the problems in the conventional technology in the present invention are as follows:
In a base structure consisting of a copper-based alloy containing Ni; 5 to 50% by weight, C; 0.2 to 3.5% and Cr.
; 0.5-25% 2Mo; 0.3-7.0%, W, 0.
5-25%, V; 0.2-6゜0%, Co; 0.5-1
8%, Ni; 0.2-3°0%.

Mn;1.2%以下のうちから少なくとも1種類以上、
残部不可避の不純物とFeからなる微細硬質粒子を、重
量比率にて10〜70%分〜70%ことを特徴とする高
密度銅系焼結合金、及び、重量比率で、Ni;5〜50
%を含有する銅系合金からなる基地組織中に、C; 0
.2〜3.5%、及び。
Mn: at least one type from 1.2% or less,
A high-density copper-based sintered alloy characterized by fine hard particles consisting of Fe and unavoidable impurities in a weight ratio of 10 to 70%, and a weight ratio of Ni; 5 to 50.
In the base structure consisting of a copper-based alloy containing %C;
.. 2-3.5%, and.

Cr;0.5〜25%、 Mo ; 0.3〜7.0%
、W;0.5〜25%、V、0.2〜6.0%、Co;
0.5〜18%、N1H0,2〜3.0%、Nb、0.
05〜3゜0%、B;0.03〜0.5%、P;0.1
〜0.8%。
Cr: 0.5-25%, Mo: 0.3-7.0%
, W; 0.5-25%, V, 0.2-6.0%, Co;
0.5-18%, N1H0.2-3.0%, Nb, 0.
05-3゜0%, B; 0.03-0.5%, P; 0.1
~0.8%.

Mn;1.2%以下、Si;1.5%以下のうちから少
なくとも1種類以上、残部不可避の不純物とFeからな
る微細硬質粒子を、重量比率にて10〜70%分〜70
%ことを特徴とする高密度銅系焼結合金からなっている
Fine hard particles consisting of at least one type of Mn: 1.2% or less, Si: 1.5% or less, the remainder unavoidable impurities, and Fe in a weight ratio of 10 to 70% to 70%.
It is made of a high-density copper-based sintered alloy characterized by a

〔作用〕[Effect]

以下、本発明の作用について説明する。 Hereinafter, the effects of the present invention will be explained.

本発明において、基地組織を構成する合金をCu−Ni
系合金としているのは、この合金においては、加熱焼結
過程において体積収縮を惹起して焼結体寸法が収縮する
ことから、焼結体密度が圧粉成形体の密度より高くなる
からであり、このことは、本発明材の重要な特徴となっ
ている。
In the present invention, the alloy constituting the base structure is Cu-Ni.
The reason why this alloy is used is that the density of the sintered body becomes higher than the density of the compacted body because this alloy causes volumetric shrinkage during the heating sintering process and the dimensions of the sintered body shrink. This is an important feature of the material of the present invention.

さらに、基地組織を構成するCu−Ni系合金の液相生
成温度が、従来の銅合金の融点より高いことから、従来
のCu−3n系合金等を基地組織を構成する合金とした
、銅系焼結合金の加熱焼結温度より高温での加熱焼結が
可能となり、より強固な焼結体とすることも可能となる
Furthermore, since the liquid phase formation temperature of the Cu-Ni alloy that constitutes the matrix structure is higher than the melting point of conventional copper alloys, copper-based It becomes possible to perform heating and sintering at a higher temperature than the heating and sintering temperature of the sintered alloy, and it also becomes possible to form a stronger sintered body.

上述の基地組織を構成するCu−Ni系合金の特性から
、本発明の高密度銅系焼結合金は、焼結体密度を理論密
度の90%以上とするにも、通常の圧粉成形、加熱焼結
の工程で容易に製造することが可能となり、優れた耐ピ
ツチング性を確保することができるのである。
Due to the characteristics of the Cu-Ni alloy constituting the base structure described above, the high-density copper-based sintered alloy of the present invention can be made by ordinary powder compacting, even if the sintered body density is 90% or more of the theoretical density. It can be easily manufactured using a heating and sintering process, and excellent pitting resistance can be ensured.

また、本発明の高密度銅系焼結合金においては、上述の
ように基地組織を構成する銅系合金中にNiが添加され
ていることから、基地組織の硬さが向上し、耐摩耗性の
向上にも有効に作用するのである。
In addition, in the high-density copper-based sintered alloy of the present invention, since Ni is added to the copper-based alloy constituting the base structure as described above, the hardness of the base structure is improved and the wear resistance is improved. It also has an effective effect on improving.

しかし、本発明の高密度銅系焼結合金におけるNi添加
量は、5%未満では基地組織の硬さ向上効果が充分でな
く、一方、50%を越えると逆に基地組織の硬さを低下
する傾向があって好ましくないことから5〜50%とし
た。
However, when the amount of Ni added in the high-density copper-based sintered alloy of the present invention is less than 5%, the effect of improving the hardness of the base structure is insufficient, while when it exceeds 50%, the hardness of the base structure is decreased. Since this tends to be undesirable, it is set at 5 to 50%.

次に、本発明において微細硬質粒子は、炭化物形成元素
を含有する鉄系微細硬質粒子とするのが望ましく、硬さ
は)lv200以上とする必要がある。
Next, in the present invention, the fine hard particles are desirably iron-based fine hard particles containing carbide-forming elements, and the hardness must be lv200 or more.

これは、微細硬質粒子の硬さがHV200未満では、耐
摩耗性の改善に対する寄与が殆ど認められないからであ
る。
This is because if the hardness of the fine hard particles is less than HV200, almost no contribution to the improvement of wear resistance is recognized.

次に、微細硬質粒子の大きさは、平均粒径で5〜150
μが望ましい。
Next, the size of the fine hard particles is 5 to 150 in average particle size.
μ is desirable.

これは、微細硬質粒子の大きさが5μ未満では耐摩耗性
の改善効果が充分でなく、逆に、150μを越えると微
細硬質粒子が粗大となり過ぎて、摺動する相手材に対す
る損傷性が増大する場合もあり、また、微細硬質粒子が
基地組織から脱落しやすくなることから5〜150μと
した。
This is because if the size of the fine hard particles is less than 5μ, the effect of improving wear resistance is not sufficient, and on the other hand, if the size exceeds 150μ, the fine hard particles become too coarse, increasing the damage to the sliding mating material. In addition, the fine hard particles are likely to fall off from the matrix structure, so the thickness was set at 5 to 150 μm.

また、Cu−Ni系合金の基地組織中に分散させる微細
硬質粒子の分散量は、10〜70%とするのが望ましい
Further, it is desirable that the amount of fine hard particles dispersed in the matrix structure of the Cu-Ni alloy is 10 to 70%.

これは、微細硬質粒子の分散量が、10%未満では耐摩
耗性の改善効果が充分でなく、70%を越える多量とな
ると分散微細硬質粒子量が過多となり耐焼付性が劣化す
ることから10〜70%とした。
This is because if the amount of dispersed fine hard particles is less than 10%, the effect of improving wear resistance will not be sufficient, and if the amount exceeds 70%, the amount of dispersed fine hard particles will be excessive and the seizure resistance will deteriorate. ~70%.

さらに、焼結体密度は、理論密度の90%以上とするこ
とが必要である。
Furthermore, the density of the sintered body needs to be 90% or more of the theoretical density.

これは、焼結体密度が理論密度の90%未満では耐ピツ
チング性が低下するからである。
This is because pitting resistance decreases when the sintered body density is less than 90% of the theoretical density.

〔実施例〕 以下、添付図面に基づいて、本発明の1実施例を説明す
る。
[Embodiment] Hereinafter, one embodiment of the present invention will be described based on the accompanying drawings.

第1表は、各本発明材及び比較材の緒特性評価用試験片
の製造条件を示している。
Table 1 shows the manufacturing conditions for test pieces for evaluating the properties of each of the present invention materials and comparative materials.

第1表 注1)組成(1)は、1.5%C−0,2%Mn−12
%Cr−1%Mo−0,35%V−BalFeからなる
組成のJIS規格5KDII相当材である。
Table 1 Note 1) Composition (1) is 1.5%C-0, 2%Mn-12
It is a material equivalent to JIS standard 5KDII with a composition consisting of %Cr-1%Mo-0,35%V-BalFe.

注2)組成(2)は、0.4%C−5%Cr−1%Mo
−O,S%P−BalFeからなる組成である。
Note 2) Composition (2) is 0.4%C-5%Cr-1%Mo
-O,S%P-BalFe.

注3)組成(3)は、0.9%C−4,5%Cr−5%
M o −6%W−2%V−BalFeからなるJIS
規格5KD9相当材の組成である。
Note 3) Composition (3) is 0.9%C-4,5%Cr-5%
JIS consisting of M o -6%W-2%V-BalFe
This is the composition of a material equivalent to standard 5KD9.

注4)組成(4)は、0.02%C−1,1%Cr −
0゜3%Mn−Ba1FeからなるJIS規格規格SC
r付当材成である。  ゛ 本発明材■は、銅系焼結合金の基地組織中に分散させる
微細硬質粒子を、1.5%C−0,2%Mn−12%C
r−1%Mo−0,35%V−BalFgからなる組成
のJIS規格5KDII相当材の組成を有する市販合金
粉末として、この微細硬質粒子を15重量%と電解銅粉
末及び電解銅粉末に対して10重量%のNi粉末と潤滑
剤としてのステアリン酸亜鉛粉末とを、■型混合機にて
30分間混粉した。
Note 4) Composition (4) is 0.02%C-1,1%Cr-
JIS standard SC consisting of 0゜3%Mn-Ba1Fe
This material is made with r.゛The present invention material (■) has fine hard particles dispersed in the matrix structure of a copper-based sintered alloy of 1.5%C-0.2%Mn-12%C.
As a commercially available alloy powder having a composition equivalent to JIS standard 5KDII with a composition consisting of r-1% Mo-0, 35% V-BalFg, 15% by weight of these fine hard particles was added to electrolytic copper powder and electrolytic copper powder. 10% by weight of Ni powder and zinc stearate powder as a lubricant were mixed for 30 minutes in a ■ type mixer.

上述により製造された粉末冶金用混合粉末原料を、圧粉
成形型により4 ton / cm 2の加圧力で圧粉
成形した。
The mixed powder raw material for powder metallurgy produced as described above was compacted with a pressure of 4 ton/cm 2 using a powder compacting die.

ついで、この圧粉成形体をアンモニア分解ガス雰囲気中
にて、1000℃×30分間の加熱焼結を実施し、本発
明材■の試験片を製作した。
Next, this compacted compact was heated and sintered at 1000° C. for 30 minutes in an ammonia decomposition gas atmosphere to produce a test piece of the material (1) of the present invention.

なお、微細硬質粒子としては、硬さHv390゜平均粒
径72μのものを使用した。
The fine hard particles used had a hardness of 390° Hv and an average particle diameter of 72 μm.

次に、本発明材■は銅系焼結合金の基地組織中への微細
硬質粒子の分散量を40重量%とじ、他の条件は基本的
には本発明材■と同一条件として本発明材■の試験片を
製作した。
Next, the present invention material (1) was prepared using the same conditions as the present invention material (2), except that the amount of fine hard particles dispersed in the base structure of the copper-based sintered alloy was set at 40% by weight. A test piece (①) was manufactured.

次に、本発明材■は、銅系焼結合金の基地組織中への微
細硬質粒子の分散量を65重量%とし、他の角件は基本
的には本発明材■と同一条件として本発明材■の試験片
を製作した。
Next, the present invention material (2) was prepared under the same conditions as the present invention material (2), except that the amount of fine hard particles dispersed in the base structure of the copper-based sintered alloy was 65% by weight. A test piece of the invention material (■) was manufactured.

次に、本発明材■は、銅系焼結合金の基地組織中に分散
させた微細硬質粒子の平均粒径を30μとし、他の条件
は基本的には本発明材■と同−条件として本発明材■の
試験片を製作した。
Next, the present invention material (1) was made under the same conditions as the present invention material (2), except that the average particle diameter of the fine hard particles dispersed in the base structure of the copper-based sintered alloy was 30 μm. A test piece of the invention material (1) was prepared.

次に、本発明材■は、銅系焼結合金の基地組織中に分散
させた微細硬質粒子の平均粒径を140μとし、他の条
件は基本的には本発明材■と同一条件として本発明材■
の試験片を製作した。
Next, the present invention material (1) was prepared under the same conditions as the present invention material (2), except that the average particle diameter of the fine hard particles dispersed in the base structure of the copper-based sintered alloy was 140 μm. Invented material■
A test piece was manufactured.

次に、本発明材■は、銅系焼結合金の基地組織をCu−
45重量%Ni系合金とし、他の条件は基本的には本発
明材■と同一条件として本発明材■の試験片を製作した
Next, the present invention material (1) has a Cu-based sintered alloy base structure.
A test piece of the invention material (2) was prepared using a 45% by weight Ni-based alloy, and other conditions were basically the same as those of the invention material (1).

次に、本発明材■は、銅系焼結合金の基地組織中に分散
させた微細硬質粒子を、0.4%C−5%Cr−1%M
 o −0,5%P−BalFgからなる組成の噴霧粉
末とし、他の条件は基本的には本発明材■と同一条件と
して本発明材■の試験片を製作した。
Next, the present invention material
A test piece of the invention material (2) was prepared using a sprayed powder having a composition of o -0.5% P-BalFg, and other conditions were basically the same as those of the invention material (1).

なお、微細硬質粒子の平均粒径は60μ、硬さはHv2
60のものである。
The average particle size of the fine hard particles is 60μ, and the hardness is Hv2.
60.

次に、本発明材■は、銅系焼結合金の基地組織中に分散
させた微細硬質粒子を、0.9%C−4,5%Cr−5
%M o −6%W−2%V−BalFeからなるJI
S規格5KD9相当材の組成を有する噴霧粉末とし、他
の条件は基本的−には本発明材■と同一条件として本発
明材■の試験片を製作した。
Next, the present invention material
JI consisting of %Mo-6%W-2%V-BalFe
A test piece of the invention material (2) was prepared using an atomized powder having a composition equivalent to S standard 5KD9 material, and other conditions were basically the same as those of the invention material (1).

なお、微細硬質粒子の分散量は40重量%、平均粒径は
38μ、硬さはHV430のものである。
The amount of fine hard particles dispersed was 40% by weight, the average particle size was 38μ, and the hardness was HV430.

次に、比較材■は、本発明材■と同様に銅系焼結合金の
基地組織中に分散させた微細硬質粒子を、0、9%C−
4,5%Cr−5%M o −6%W−2%V−Bal
FeからなるJIS規格5KD9相当材の組成を有する
噴霧粉末とし、他の条件は基本的には本発明材■と同一
条件として比較材■の試験片を製作した。
Next, comparative material (2) was prepared by adding 0.9% C-
4,5%Cr-5%Mo-6%W-2%V-Bal
A test piece of Comparative Material (2) was prepared using a spray powder having a composition of a material equivalent to JIS standard 5KD9 consisting of Fe, and other conditions being basically the same as those of Inventive Material (2).

なお、微細硬質粒子の分散量は5%としている。Note that the amount of fine hard particles dispersed is 5%.

次に、比較材■は、本発明材■と同様に銅系焼結合金の
基地組織中に分散させた微細硬質粒子を、0、9%C−
4,5%Cr−5%Mo−6%W−2%V−BalFe
からなるJIS規格5KD9相当材の組成を有する噴霧
粉末とし、他の条件は基本的には本発明材■と同一条件
として比較材■の試験片を製作した。
Next, comparative material (2) was prepared by adding 0.9% C-
4,5%Cr-5%Mo-6%W-2%V-BalFe
A test piece of Comparative Material (2) was prepared using an atomized powder having a composition equivalent to JIS Standard 5KD9 material consisting of the following, and other conditions being basically the same as those of Inventive Material (2).

なお、微細硬質粒子の分散量は80%としている。Note that the amount of fine hard particles dispersed is 80%.

次に、比較材■は、本発明材■と同様に銅系焼結合金の
基地組織中に分散させた微細硬質粒子を、0.9%C−
4,5%Cr−5%M o −6%W−2%V−Bal
FeからなるJIS規格5KD9相当材の組成を有する
噴霧粉末とし、他の条件は基本的には本発明材■と同一
条件として比較材■の試験片を製作した。
Next, comparative material (2) was prepared by adding 0.9% C-
4,5%Cr-5%Mo-6%W-2%V-Bal
A test piece of Comparative Material (2) was prepared using a spray powder having a composition of a material equivalent to JIS standard 5KD9 consisting of Fe, and other conditions being basically the same as those of Inventive Material (2).

なお、微細硬質粒子の分散量は80%、平均粒径は20
5μ1粒子硬さはHV41Qとしている。
The amount of fine hard particles dispersed was 80%, and the average particle size was 20%.
The 5μ1 particle hardness is HV41Q.

次に、比較材■は、銅系焼結合金の基地組織中に分散さ
せた微細硬質粒子を、0.02%G −1,1%Q r
 −0,3%Mn−Ba1FeからなるJIS規格SC
r相当材の組成を有する噴霧粉末とし、他の条件は基本
的には本発明材■と同一条件として比較材■の試験片を
製作した。
Next, for comparison material (■), fine hard particles dispersed in the matrix structure of copper-based sintered alloy were mixed at 0.02%G -1,1%Q r
- JIS standard SC consisting of 0.3% Mn-Ba1Fe
A test piece of Comparative Material (2) was prepared using a spray powder having the composition of the R-equivalent material and other conditions being basically the same as those of Inventive Material (2).

なお、微細硬質粒子の分散量は80%、平均粒径は40
μ1粒子硬さはHV120としている。
The amount of fine hard particles dispersed was 80%, and the average particle size was 40%.
The μ1 particle hardness is HV120.

次に、比較材■は、銅系焼結合金の基地組織を構成する
合金をcu−ssnの組成の銅系合金粉末を用いて、そ
の銅系焼結合金の基地組織中に分散させた微細硬質粒子
を、1.5%C−12%Cr−1%M O−0,35%
V −0,2%Mn−Ba1FeからなるJIS規格5
KDI相当材の組成を有する噴霧粉末とし、他の条件は
基本的には本発明材■と同一条件として比較材■の試験
片を製作した。
Next, comparative material ① was prepared by dispersing the alloy constituting the base structure of the copper-based sintered alloy into the base structure of the copper-based sintered alloy using copper-based alloy powder having a composition of cu-ssn. Hard particles: 1.5%C-12%Cr-1%MO-0.35%
V - JIS standard 5 consisting of 0.2% Mn-Ba1Fe
A test piece of Comparative Material (2) was prepared using a sprayed powder having the composition of a material equivalent to KDI, and other conditions being basically the same as those of Inventive Material (2).

なお、微細硬質粒子の分散量は80%、平均粒径は72
μ2粒子硬さはHV390としている。
The amount of dispersed fine hard particles is 80%, and the average particle size is 72%.
The μ2 particle hardness is HV390.

上述により製作された各試験片に対して、大越式摩耗試
験機による「摩耗痕幅」により耐摩耗性を評価し、また
、焼付試験機による「焼付荷重」により耐焼付性を評価
し、また、森弐転勤疲労試験機による転勤疲労試験にお
けるピッチング発生に基づいて、「50%破壊寿命」に
より耐ピ・ノチング性を評価した。
For each test piece produced as described above, the wear resistance was evaluated by the "wear scar width" using an Okoshi type abrasion tester, and the seizure resistance was evaluated by the "seizure load" using a seizure tester. Based on the occurrence of pitting in a transfer fatigue test using a Mori 2 transfer fatigue tester, the pitch-notching resistance was evaluated by "50% fracture life."

なお、各試験における試験条件は下記の通りである。The test conditions for each test are as follows.

即ち、大越式摩耗試験においては、荷重;18゜9Kg
、相手材の周速; 0.119  m/sec 、摩耗
距M;160m、相手材の材質;JIS規格545Cと
して「摩耗痕幅」を測定した。
That is, in the Okoshi type abrasion test, the load was 18°9Kg.
, the circumferential speed of the mating material; 0.119 m/sec, the wear distance M; 160 m, the material of the mating material; "wear scar width" was measured according to JIS standard 545C.

また、焼付試験は、滑り速度; 15  m/sec 
In addition, in the seizure test, the sliding speed was 15 m/sec.
.

荷重+ 20 Kg/ cm 2から20 Kg/ c
m ”づつ漸増(各荷重段階において30分試験継続)
、潤滑剤;SAE#40の潤滑油、相手材としては材質
JIS規格545Cを用いて、真円度;1μ以下1表面
粗さ;1.2〜2.0μのディスク、シュー試験片とし
ては本発明材■〜■及び比較材■〜■により製作した試
験片で、表面粗さ;1.9〜3.5μとして、「焼付荷
重Jを測定した。
Load + 20 Kg/cm 2 to 20 Kg/c
Gradual increase in m” increments (test continued for 30 minutes at each load stage)
, lubricant: SAE #40 lubricating oil, mating material JIS standard 545C, roundness: 1 μ or less, 1 surface roughness: 1.2 to 2.0 μ disk, shoe test piece: Hon. Seizure load J was measured using test specimens prepared from the invention materials ■ to ■ and comparative materials ■ to ■, with surface roughness of 1.9 to 3.5μ.

また、ピッチング試験は、森弐転勤疲労試験機を用いて
、試験荷重を100 Kgとして鋼球による転勤疲労試
験による「50%破壊寿命」を測定した。
Further, in the pitching test, the "50% fracture life" was measured by a rolling fatigue test using a steel ball using a Mori 2 rolling fatigue testing machine with a test load of 100 kg.

なお、使用した鋼球は、3/8インチのものである。Note that the steel balls used were 3/8 inch.

それらの試験結果を第2表に示している。The test results are shown in Table 2.

第2表 上述の第2表から明らかなように、本発明材■〜■は比
較材■〜■に比較して、摩耗試験における「摩耗痕幅」
が小さいことから耐摩耗性に優れており、また、焼付試
験における「焼付荷重」が大きいことから耐焼付性に優
れており、さらに、ピッチング試験における「50%破
壊寿命」が大きいことから耐ピツチング性に優れている
ことが理解される。
Table 2 As is clear from Table 2 above, the inventive materials ■ to ■ have a higher wear scar width in the abrasion test than the comparative materials ■ to ■.
It has excellent wear resistance because it has a small amount of friction, it has excellent seizure resistance because it has a large "seizure load" in the seizure test, and it has excellent pitting resistance because it has a large "50% fracture life" in the pitting test. It is understood that they are superior in sex.

〔発明の効果〕〔Effect of the invention〕

以上により明らかなように、本発明にかかる高密度銅系
焼結合金によれば、Cu−Ni系合金を基地組織用合金
とすることにより、優れた耐焼付性及び耐ピツチング性
を確保するとともに、このCu−Ni系合金からなる基
地組織中に、特定組成を有する微細硬質粒子の適量を分
散させて優れた耐摩耗性を付与し、苛酷な使用条件のも
とでも優れた摺動特性を保有させることによって、銅系
焼結合金でありながら優れた耐摩耗性有する摺動部材と
しての好適な適用を可能とすることができる利点がある
As is clear from the above, according to the high-density copper-based sintered alloy according to the present invention, by using the Cu-Ni-based alloy as the base structure alloy, it is possible to ensure excellent seizure resistance and pitting resistance. , by dispersing an appropriate amount of fine hard particles with a specific composition into the matrix structure made of this Cu-Ni alloy, it imparts excellent wear resistance and provides excellent sliding properties even under severe usage conditions. This has the advantage that it can be suitably applied as a sliding member that has excellent wear resistance even though it is a copper-based sintered alloy.

Claims (1)

【特許請求の範囲】 1、重量比率で、Ni;5〜50%を含有する銅系合金
からなる基地組織中に、C;0.2〜3.5%、及び、
Cr;0.5〜25%、Mo;0.3〜7.0%、W;
0.5〜25%、V;0.2〜6.0%、Co;0.5
〜18%、Ni;0.2〜3.0%、Mn;1.2%以
下のうちから少なくとも1種類以上、残部不可避の不純
物とFeからなる微細硬質粒子を、重量比率にて10〜
70%分散させたことを特徴とする高密度銅系焼結合金
。 2、重量比率で、Ni;5〜50%を含有する銅系合金
からなる基地組織中に、C;0.2〜3.5%、及び、
Cr;0.5〜25%、Mo;0.3〜7.0%、W;
0.5〜25%、V;0.2〜6.0%、Co;0.5
〜18%、Ni;0.2〜3.0%、Nb;0.05〜
3.0%、B;0.03〜0.5%、P;0.1〜0.
8%、Mn;1.2%以下、Si;1.5%以下のうち
から少なくとも1種類以上、残部不可避の不純物とFe
からなる微細硬質粒子を、重量比率にて10〜70%分
散させたことを特徴とする高密度銅系焼結合金。 3、微細硬質粒子の硬さをHv200以上とした、特許
請求の範囲第1項または第2項記載の高密度銅系焼結合
金。 4、微細硬質粒子の平均粒径を5〜150μとした、特
許請求の範囲第1項または第2項記載の高密度銅系焼結
合金。 5、焼結体密度を理論密度の90%以上とした、特許請
求の範囲第1項または第2項記載の高密度銅系焼結合金
[Claims] 1. In a base structure consisting of a copper-based alloy containing Ni; 5 to 50% by weight, C; 0.2 to 3.5%, and
Cr; 0.5-25%, Mo; 0.3-7.0%, W;
0.5-25%, V; 0.2-6.0%, Co; 0.5
~18%, Ni: 0.2~3.0%, Mn: at least one type from 1.2% or less, the balance consisting of unavoidable impurities and Fe, at a weight ratio of 10~
A high-density copper-based sintered alloy characterized by 70% dispersion. 2. C; 0.2 to 3.5%, and
Cr; 0.5-25%, Mo; 0.3-7.0%, W;
0.5-25%, V; 0.2-6.0%, Co; 0.5
~18%, Ni; 0.2~3.0%, Nb; 0.05~
3.0%, B; 0.03-0.5%, P; 0.1-0.
8%, Mn: 1.2% or less, Si: 1.5% or less, the remainder being unavoidable impurities and Fe.
A high-density copper-based sintered alloy characterized in that fine hard particles consisting of the following are dispersed in a weight ratio of 10 to 70%. 3. The high-density copper-based sintered alloy according to claim 1 or 2, wherein the hardness of the fine hard particles is Hv200 or more. 4. The high-density copper-based sintered alloy according to claim 1 or 2, wherein the fine hard particles have an average particle diameter of 5 to 150 μm. 5. The high-density copper-based sintered alloy according to claim 1 or 2, wherein the sintered body density is 90% or more of the theoretical density.
JP18700184A 1984-09-06 1984-09-06 High density copper sintered alloy Pending JPS6164838A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18700184A JPS6164838A (en) 1984-09-06 1984-09-06 High density copper sintered alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18700184A JPS6164838A (en) 1984-09-06 1984-09-06 High density copper sintered alloy

Publications (1)

Publication Number Publication Date
JPS6164838A true JPS6164838A (en) 1986-04-03

Family

ID=16198467

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18700184A Pending JPS6164838A (en) 1984-09-06 1984-09-06 High density copper sintered alloy

Country Status (1)

Country Link
JP (1) JPS6164838A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04297536A (en) * 1991-03-20 1992-10-21 Toyota Motor Corp Wear resistant copper-base alloy excellent in self-lubricity
JPH1096037A (en) * 1996-09-20 1998-04-14 Mitsui Mining & Smelting Co Ltd Copper alloy excellent in wear resistance
US5843243A (en) * 1995-02-17 1998-12-01 Toyota Jidosha Kabushiki Kaisha Wear-resistant copper-based alloy
WO2002055748A1 (en) * 2001-01-15 2002-07-18 Toyota Jidosha Kabushiki Kaisha Wear-resistant copper-base alloy
GB2418868B (en) * 2003-07-28 2007-10-17 Callaway Golf Co High density alloy for improved mass properties of an article
JP2016060922A (en) * 2014-09-16 2016-04-25 株式会社リケン Cu-BASED SINTERED ALLOY AND MANUFACTURING METHOD THEREFOR

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04297536A (en) * 1991-03-20 1992-10-21 Toyota Motor Corp Wear resistant copper-base alloy excellent in self-lubricity
US5843243A (en) * 1995-02-17 1998-12-01 Toyota Jidosha Kabushiki Kaisha Wear-resistant copper-based alloy
JPH1096037A (en) * 1996-09-20 1998-04-14 Mitsui Mining & Smelting Co Ltd Copper alloy excellent in wear resistance
WO2002055748A1 (en) * 2001-01-15 2002-07-18 Toyota Jidosha Kabushiki Kaisha Wear-resistant copper-base alloy
JPWO2002055748A1 (en) * 2001-01-15 2004-10-21 トヨタ自動車株式会社 Wear-resistant copper-based alloy
GB2418868B (en) * 2003-07-28 2007-10-17 Callaway Golf Co High density alloy for improved mass properties of an article
JP2016060922A (en) * 2014-09-16 2016-04-25 株式会社リケン Cu-BASED SINTERED ALLOY AND MANUFACTURING METHOD THEREFOR

Similar Documents

Publication Publication Date Title
DE60300224T2 (en) Sintered alloy for valve seats, valve seat and method for its manufacture
JP4891421B2 (en) Powder metallurgy mixture and method for producing powder metallurgy parts using the same
JP3298634B2 (en) Sliding material
JP4183346B2 (en) Mixed powder for powder metallurgy, iron-based sintered body and method for producing the same
US8287615B2 (en) High-strength composition iron powder and sintered part made therefrom
EP2087250B1 (en) Bearing having improved consume resistivity and manufacturing method thereof
US8142904B2 (en) Copper based sintered slide member
JPH03502216A (en) Copper-based sintered materials, their uses and methods for producing molded parts from them
JP2007107034A (en) Method for producing abrasion-resistant sintered member
WO1990004657A1 (en) Copper-based sintered alloy
EP2778243B1 (en) Iron based sintered sliding member and method for producing the same
US5346668A (en) Copper based alloy for wear resistant sliding layer and sliding member
JPH1171651A (en) Ferrous sintered alloy for valve seat
US5545249A (en) Sintered bearing alloy for high-temperature application and method of manufacturing an article of the alloy
KR100263283B1 (en) Iron-based powder containing chromium, molybdenium and manganese
JPH079046B2 (en) Copper-based sintered body
JPS6164838A (en) High density copper sintered alloy
JP2539246B2 (en) Sintered alloy bearing material and manufacturing method thereof
JPH07166278A (en) Coppery sliding material and production thereof
JP3298636B2 (en) Sliding material
JPS60147514A (en) High-temperature abrasion resistant valve seat
US3758281A (en) Msintered alloy and wear resisting sliding parts manufactured therefro
EP0796927A2 (en) Powder-produced material having wear-resistance
JPS61291954A (en) Sintering material having wear resistance and corrosion resistance at high temperature and its manufacture
JPH0555592B2 (en)