JP2539246B2 - Sintered alloy bearing material and manufacturing method thereof - Google Patents

Sintered alloy bearing material and manufacturing method thereof

Info

Publication number
JP2539246B2
JP2539246B2 JP63083080A JP8308088A JP2539246B2 JP 2539246 B2 JP2539246 B2 JP 2539246B2 JP 63083080 A JP63083080 A JP 63083080A JP 8308088 A JP8308088 A JP 8308088A JP 2539246 B2 JP2539246 B2 JP 2539246B2
Authority
JP
Japan
Prior art keywords
powder
copper
weight
parts
sintered alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP63083080A
Other languages
Japanese (ja)
Other versions
JPH01255631A (en
Inventor
勇 菊池
眞紀 菊池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP63083080A priority Critical patent/JP2539246B2/en
Priority to GB8907752A priority patent/GB2220420B/en
Publication of JPH01255631A publication Critical patent/JPH01255631A/en
Application granted granted Critical
Publication of JP2539246B2 publication Critical patent/JP2539246B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • C22C33/0257Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements
    • C22C33/0278Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements with at least one alloying element having a minimum content above 5%
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/11Making porous workpieces or articles
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/0425Copper-based alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/06Sliding surface mainly made of metal
    • F16C33/12Structural composition; Use of special materials or surface treatments, e.g. for rust-proofing
    • F16C33/121Use of special materials

Description

【発明の詳細な説明】 「発明の目的」 本発明は焼結合金軸受材およびその製造法に係り、適
切な強度を確保しながら軸受条件下で銅系材と同等に耐
食性に優れ、かつ軸材などの相手部材に対するなじみ性
が良好で摩擦係数が小さく、軸受材として優れた性能を
有する焼結合金材およびその製造法を提供しようとする
ものである。
DETAILED DESCRIPTION OF THE INVENTION “Object of the Invention” The present invention relates to a sintered alloy bearing material and a method for manufacturing the same, and it is as excellent in corrosion resistance as a copper-based material under bearing conditions while ensuring appropriate strength, and a shaft. An object of the present invention is to provide a sintered alloy material having good compatibility with a mating member such as a material and a small friction coefficient, and having excellent performance as a bearing material, and a method for producing the same.

(産業上の利用分野) 焼結含油軸受その他の焼結合金軸受材およびその製造
技術。
(Industrial field of application) Sintered oil-impregnated bearings and other sintered alloy bearing materials and their manufacturing technology.

(従来の技術) 焼結含油軸受については日本工業規格としてJIS B 15
81−1976に規定されている如く、家庭用電気機器、音響
用機器、事務用機械、農業用機械、自動車その他の運搬
荷役機器などに用いる円筒形、フランジ付円筒形および
球形などの軸受材に関して種々に規定され、又その主た
る成分組成としては純鉄系、鉄−銅系、鉄−炭素系、鉄
−銅−炭素系、鉄−銅−鉛系、青銅系、銅系、鉛−青銅
系など材質、種類は比較的多岐に亘る。
(Conventional technology) For sintered oil-impregnated bearings, JIS B 15
As specified in 81-1976, bearing materials such as cylindrical, flanged cylindrical and spherical used for household electrical equipment, audio equipment, office machinery, agricultural machinery, automobiles and other transporting and handling equipment, etc. It is variously defined, and its main component composition is pure iron, iron-copper, iron-carbon, iron-copper-carbon, iron-copper-lead, bronze, copper, lead-bronze. The materials and types are relatively diverse.

なお例えば特開昭56−51554号公報においては鉄粉と
黄銅粉を用いた圧粉体を焼結することが発表されてお
り、更に本発明者等よっても特開昭60−200927号公報に
おいて鉄粉、黄銅粉および洋白粉を用い、それらの混合
粉による圧粉成形体を還元性雰囲気で焼結処理すること
を提案している。
Note that, for example, in Japanese Patent Laid-Open No. 56-51554, it is announced that a green compact made of iron powder and brass powder is sintered, and the present inventors further disclose in Japanese Patent Laid-Open No. 60-200927. It has been proposed to use iron powder, brass powder, and nickel-white powder to sinter a powder compact formed by mixing these powders in a reducing atmosphere.

(発明が解決しようとする課題) 上記した鉄を主体とした含油軸受においては骨格的強
度に優れ、高荷重用として好ましいが、相手部材に対す
るなじみ性や耐食性に劣っているので利用上制限を受け
る。
(Problems to be Solved by the Invention) The oil-impregnated bearing mainly composed of iron described above is excellent in skeletal strength and is preferable for high loads, but it is inferior in conformability to a counterpart member and corrosion resistance, and thus is restricted in use. .

これに対し銅または青銅を主体としたものにおいては
なじみ性や耐食性は良好であるが、強度上不充分である
から高負荷用に適しない。
On the other hand, a material mainly composed of copper or bronze has good adaptability and corrosion resistance, but is not suitable for high loads because of insufficient strength.

鉄−銅系(鉄−銅−鉛、鉄−銅−炭素などを含む)の
ものはこれらの中間的特性となるが、なお強度や耐食性
において不充分である。
Iron-copper alloys (including iron-copper-lead, iron-copper-carbon, etc.) have intermediate properties between them, but are still insufficient in strength and corrosion resistance.

前記した特開昭56−51554号公報による鉄粉と黄銅粉
を用いたものにおいては耐食性においては好ましいとし
ても強度や相手部材に対するなじみ性などにおいて充分
でない。
In the case of using the iron powder and the brass powder according to the above-mentioned JP-A-56-51554, although the corrosion resistance is preferable, the strength and the conformability to the mating member are not sufficient.

前記特開昭60−200927号公報のものは洋白をも用いる
ことにより強度性を確保しながら充分な耐食性と摩擦係
数低減を図ったものであるが、それらの特性において必
ずしも満足するものとなし得ず、又軸材などの相手部材
に対するなじみ性などにおいて不充分である。
Japanese Patent Application Laid-Open No. Sho 60-200927 aims at achieving sufficient corrosion resistance and reducing the friction coefficient while securing strength by using nickel silver, but it does not always satisfy those characteristics. In addition, it is insufficient in conformity to a mating member such as a shaft.

更に前記したような従来のものにおいては適当な強度
を得ると共に比較的低コストに製品を得るためには相当
量の鉄粉を用いることが不可欠であるところ、このよう
にして混合された鉄粉が成程銅粉や黄銅粉中に埋れると
しても完全被覆されるわけでなく、例えば銅粉30%を配
合した例について第5図に示すように鉄粉1と銅粉2と
が略それらの配合比に準じて露出することとならざるを
得ず、このようにして露出した鉄粉粒子1は相手部材と
接摺してこれを損耗し、又腐食発生の基点となる。
Further, in the conventional one as described above, it is indispensable to use a considerable amount of iron powder in order to obtain an appropriate strength and to obtain a product at a relatively low cost. Is not completely covered even if it is buried in the copper powder or brass powder, for example, as shown in FIG. 5 for the example in which 30% of the copper powder is mixed, the iron powder 1 and the copper powder 2 are substantially the same. Inevitably, the iron powder particles 1 exposed in accordance with the mixing ratio of No. 1 and No. 2 are exposed, and thus the iron powder particles 1 are brought into contact with the mating member to wear it and become a base point of corrosion generation.

「発明の構成」 (課題を解決するための手段) 1. Fe:20〜64wt%、Cu:32.8〜77wt%、Sn:1〜9wt% を含有すると共に、 P:0.02〜0.9wt% を含有し、しかも前記Feが粉粒状をなし、該粉粒状Feの
周面がその20〜50wt%に相当したCuにより実質的完全状
態にメッキ被覆され、気孔率15〜28vol%とされたこと
を特徴とする焼結合金軸受材。
"Structure of the invention" (Means for solving the problem) 1. Fe: 20 to 64 wt%, Cu: 32.8 to 77 wt%, Sn: 1 to 9 wt% and P: 0.02 to 0.9 wt% In addition, the Fe is in the form of powder, and the peripheral surface of the powdery Fe is substantially completely plated with Cu corresponding to 20 to 50 wt% of the Fe, and the porosity is set to 15 to 28 vol%. And sintered alloy bearing material.

2. Fe:20〜64wt%、Cu:28.6〜76.5wt%、Sn:0.75〜8.9
wt% を含有すると共に、 P:0.015〜0.9wt% と黒鉛、二硫化モリブデン、鉛のような固体潤滑材の1
種または2種以上を0.5〜5wt%含有し、しかも前記Feが
粉粒状をなし、該粉粒状Feの周面がその20〜50wt%に相
当したCuにより実質的完全状態にメッキ被覆され、気孔
率15〜28vol%されたことを特徴とする焼結合金軸受
材。
2.Fe: 20-64wt%, Cu: 28.6-76.5wt%, Sn: 0.75-8.9
In addition to containing wt%, P: 0.015 to 0.9 wt% and 1 of solid lubricants such as graphite, molybdenum disulfide and lead.
0.5 to 5 wt% of one kind or two or more kinds, and the Fe is in the form of powder, and the peripheral surface of the powdered Fe is plated and coated in a substantially complete state with Cu corresponding to 20 to 50 wt% thereof, and has pores. Sintered alloy bearing material characterized by a rate of 15 to 28 vol%.

3. 20〜50wt%の銅をメッキ被覆した鉄粉100重量部に
対し、Sn:5〜15wt%、P:0.1〜1.5wt%を含有し残部がCu
および不可避的不純物よりなる燐青銅粉を25〜150重量
部添加混合した原料粉を圧粉成形してから焼結し、次い
で気孔率15〜28vol%にサイジングすることを特徴とす
る焼結合金軸受材の製造法。
3. For 100 parts by weight of iron powder coated with 20 to 50% by weight of copper, Sn: 5 to 15% by weight, P: 0.1 to 1.5% by weight and the balance Cu
Sintered alloy bearings characterized in that 25 to 150 parts by weight of phosphor bronze powder consisting of unavoidable impurities are added and mixed into a raw material powder, which is compacted, sintered, and then sized to a porosity of 15 to 28 vol%. Method of manufacturing timber.

4. 20〜50wt%の銅をメッキ被覆した鉄粉100重量部に
対し、Sn:5〜15wt%、P:0.1〜1.5wt%を含有し残部がCu
および不可避的不純物よりなる燐青銅粉を18〜147重量
部と黒鉛、二硫化モリブデンまたは鉛のような固形潤滑
材の1種または2種以上を0.5〜5.3重量部を添加混合し
た原料粉を圧粉成形してから焼結し、次いで気孔率15〜
28vol%にサイジングすることを特徴とする焼結合金軸
受材の製造法。
4. For 100 parts by weight of iron powder coated with 20 to 50 wt% copper, Sn: 5 to 15 wt%, P: 0.1 to 1.5 wt% and the balance Cu
And 18 to 147 parts by weight of phosphor bronze powder consisting of unavoidable impurities and 0.5 to 5.3 parts by weight of one or more solid lubricants such as graphite, molybdenum disulfide or lead are added and mixed into the raw material powder. Powder forming and sintering, then porosity 15 ~
A method for manufacturing a sintered alloy bearing material, which comprises sizing to 28 vol%.

5. 原料粉を圧粉成形して得られた圧粉成形体を耐熱性
容器に収容すると共に施蓋し、750〜950℃の還元性雰囲
気で焼結する前記3項または4項の何れか1つに記載の
焼結合金軸受材の製造法。
5. Any of the above-mentioned item 3 or item 4 in which the green compact obtained by green compacting the raw material powder is housed in a heat-resistant container, covered and sintered in a reducing atmosphere at 750 to 950 ° C. A method for manufacturing a sintered alloy bearing material according to one of the claims.

(作用) Fe:20〜64wt%、Cu:32.8〜77wt%、Sn:1〜9wt%を含有
すると共に、P:0.02〜0.9wt%を含有することにより強
度を確保しながら相手部材に対するなじみ性を維持し、
しかも耐食性において優れた特性を発揮する。即ち上記
のようなPの適量添加で酸化物の還元清浄作用が得ら
れ、強度および耐食性が適切に向上し、しかも相手部材
に対するなじみ性などが著しく良好となる。
(Function) Contains Fe: 20 to 64 wt%, Cu: 32.8 to 77 wt%, Sn: 1 to 9 wt% and P: 0.02 to 0.9 wt% to ensure strength and compatibility with the mating member. Maintain
Moreover, it exhibits excellent properties in corrosion resistance. That is, by adding an appropriate amount of P as described above, the reducing and cleaning action of the oxide can be obtained, the strength and the corrosion resistance are appropriately improved, and the conformability to the counterpart member is remarkably improved.

焼結合金における前記Feの粉末粒子が20〜50wt%のCu
により実質的完全状態に被覆されていることにより、該
Fe粉末粒子が製品表面において露出することがなくな
り、即ちCuで製品面が有効且つ緻密に被覆されたものと
なって耐食性を大幅に向上し、また相手部材に対するな
じみ性や熱伝導性なども向上せしめられる。粉末粒子間
の焼結についてもFe粒子の介入がないので安定した焼結
関係が形成される。
The powder particles of Fe in the sintered alloy are 20 to 50 wt% Cu
By being coated in a substantially complete state by
Fe powder particles are not exposed on the surface of the product, that is, the product surface is effectively and densely coated with Cu, and corrosion resistance is greatly improved, and compatibility with the counterpart member and thermal conductivity are also improved. Be punished. As for the sintering between powder particles, a stable sintering relationship is formed because there is no intervention of Fe particles.

Feが20wt%以下では強度が充分に得られず、又他の成
分を多量に必要とし高価となる。一方60wt%を超えてFe
を含有したものは摩擦係数を高め、相手部材に対するな
じみ性が確保されないと共に耐食性が急激に劣化する。
When Fe is 20 wt% or less, sufficient strength cannot be obtained, and a large amount of other components is required, resulting in high cost. On the other hand, exceeding 60 wt% Fe
Those containing the alloy have a high friction coefficient, the compatibility with the counterpart member cannot be ensured, and the corrosion resistance rapidly deteriorates.

Cuが32.8wt%以上となることによりなじみ性を確保
し、又77wt%を上限とすることで低コスト性を得しめる
と共にFeの含有量を少なくとも20wt%以上として強度を
得しめる。
When the Cu content is 32.8 wt% or more, the conformability is secured, and when the upper limit is 77 wt%, the low cost property is obtained and the Fe content is at least 20 wt% or more to obtain the strength.

Snを1wt%以上とすることでCuやPと相俟って強度と
耐食性を確保し、又9wt%を上限とすることによりなじ
み性を適切に維持する。
By setting Sn to be 1 wt% or more, strength and corrosion resistance are secured in combination with Cu and P, and by setting the upper limit to 9 wt%, the conformability is appropriately maintained.

Pが0.02wt%以上とされることにより酸化物に対する
還元清浄作用を適切に得しめ強度および耐食性を有効に
高める。一方0.9wt%を上限とすることによって強度と
なじみ性を維持し、摩擦係数の上昇を抑制する。
When P is 0.02 wt% or more, the reducing and cleaning action on the oxide is appropriately obtained, and the strength and the corrosion resistance are effectively enhanced. On the other hand, if the upper limit is 0.9 wt%, strength and conformability are maintained, and an increase in friction coefficient is suppressed.

圧粉成形し焼結後、サイジングして気孔率15vol%以
上とすることにより軸受材などとする場合の含油量を適
切に得しめ、潤滑性能を高める。一方この気孔率が28vo
l%を超えないことにより強度性を確保し、含浸油の流
出、飛散を防止する。
By compacting and sintering, and then sizing to a porosity of 15 vol% or more, the oil content in the case of bearing materials can be properly obtained and the lubrication performance can be improved. On the other hand, the porosity is 28vo
The strength is secured by not exceeding l% and the impregnated oil is prevented from flowing out and scattering.

黒鉛、二硫化モリブデンまたは鉛のような固体潤滑材
の1種または2種以上を0.5wt%以上含有させることに
より潤滑性を高め、摩擦係数を小とする。又5.0wt%を
超えないことにより製品の強度性を維持する。
Lubricity is increased and the coefficient of friction is reduced by containing 0.5 wt% or more of one or more solid lubricants such as graphite, molybdenum disulfide or lead. The strength of the product is maintained by not exceeding 5.0 wt%.

Sn:5〜15wt%、P:0.1〜1.5wt%を含有し残部がCuおよび
不可避的不純物よりなる燐青銅粉を用いることによりC
u、SnおよびPが合金体として同時に添加され、それら
の成分を各別に準備し順次混合する煩雑さを回避する。
又配合された各成分の偏析を適切に防止し、均等な焼結
組織を容易に形成する。又このような燐青銅粉は銅系合
金であるから前記のように鉄粒子に被覆された銅層に対
するなじみが良好で、焼結機構も安定したものとして形
成される。
By using a phosphor bronze powder containing Sn: 5 to 15 wt% and P: 0.1 to 1.5 wt% with the balance being Cu and inevitable impurities, C
u, Sn and P are simultaneously added as an alloy body, and the complication of preparing these components separately and sequentially mixing them is avoided.
Further, segregation of the blended components is appropriately prevented, and a uniform sintered structure is easily formed. Further, since such a phosphor bronze powder is a copper-based alloy, it has good compatibility with the copper layer coated with iron particles as described above, and is formed with a stable sintering mechanism.

(実施例) 上記したような本発明によるものの具体的な実施態様
について説明すると、本発明は基本的にFe、Cu、Snと共
にPを含有した焼結合金であるが、又そのFeがCuで被覆
されたものであって、これらは各別に準備されてよい
が、FeはCuで被覆される。又他の成分も合金として材料
を準備してよいことは前記の通りで、燐−錫、燐銅の各
粉末と鉄粉および銅粉、その他Fe、Cu、Sn、Pの合金体
である各種の合金粉末などを採用することができる。然
し好ましい材料としては純鉄粉末にCuを被覆したものと
燐青銅の粉末を用いることであり、場合によってはNiを
適量含有せしめてよい。
(Example) A specific embodiment of the present invention as described above will be described. The present invention is basically a sintered alloy containing P in addition to Fe, Cu and Sn, and the Fe is Cu. Fe is coated with Cu although they are coated and these may be prepared separately. As described above, the material may be prepared as an alloy for other components as well, and various powders of phosphorus-tin and phosphorous copper, iron powder and copper powder, and alloys of Fe, Cu, Sn and P are also available. It is possible to use alloy powder of However, preferred materials are pure iron powder coated with Cu and phosphor bronze powder, and in some cases Ni may be contained in an appropriate amount.

Feは一般的に20〜64wt%であるが、好ましくは30〜60
wt%であり、より好ましくは40〜55wt%である。又Cuは
一般的には上記のように32.8〜77wt%であるが、好まし
くは35〜60wt%、より好ましくは38〜55wt%とすべきで
ある。Snの一般的範囲1〜9wt%であるが、好ましくは
3〜9wt%、より好ましくは4.5〜9wt%である。Pにつ
いての好ましい範囲は前記した一般的範囲の中で0.02〜
0.9wt%であり、より好ましくは0.06〜0.72wt%であ
る。
Fe is generally 20 to 64 wt%, but preferably 30 to 60
wt%, and more preferably 40 to 55 wt%. Further, Cu is generally 32.8 to 77 wt% as described above, but preferably 35 to 60 wt%, more preferably 38 to 55 wt%. The general range of Sn is 1 to 9 wt%, preferably 3 to 9 wt%, more preferably 4.5 to 9 wt%. The preferred range for P is 0.02 to the above general range.
It is 0.9 wt%, and more preferably 0.06 to 0.72 wt%.

前記した鉄粉は上述したようなCuの20〜50wt%を用い
て被覆したものとして準備される。このような鉄粉に対
する銅の被覆はメッキ法の如きによって行われ、そのよ
うな被覆量はメッキ時における通電量と時間を適当に選
ぶことにより適宜の程度に行い得る。このような銅の被
覆量は重量比で20〜50wt%であることは前記の通りであ
るが、より好ましい範囲としては25〜45%程度である。
このような銅被覆により鉄粉粒子の周面は第1、2図に
示すように完全状態に銅皮膜で被包されることになり、
又このような第1、2図に示すように鉄粉粒子1の表面
に銅の軟質層2aが凹凸3を形成して被覆されたものとし
て得られるから圧粉成形がなおCuの含有量は32.8〜77%
であって、前記20〜50%を超えたCuは別に銅系粉末とし
て添加される。このように別に銅系粉末を添加すること
によって圧粉成形、焼結後においても鉄粉に有効な被覆
状態を維持して好ましいなじみ性と耐食性を確保する。
The above-mentioned iron powder is prepared as coated with 20 to 50 wt% of Cu as described above. Such iron powder is coated with copper by a plating method or the like, and the amount of such coating can be adjusted to an appropriate degree by appropriately selecting the amount of electricity and the time during plating. As described above, the coating amount of such copper is 20 to 50% by weight, but a more preferable range is about 25 to 45%.
Due to such copper coating, the peripheral surface of the iron powder particles is completely covered with the copper coating as shown in FIGS.
Further, as shown in FIGS. 1 and 2, the soft powder layer 2a of copper is formed on the surface of the iron powder particle 1 by forming the unevenness 3 on the surface of the iron powder particle 1 so that the powder compaction is still performed. 32.8-77%
The Cu content exceeding 20 to 50% is added as a copper-based powder separately. By separately adding the copper-based powder in this manner, the coating state effective for the iron powder is maintained even after compacting and sintering, and favorable conformability and corrosion resistance are secured.

なお原材たる鉄粉粒子の大きさについては特に制限さ
れないが、純鉄系焼結体製造のために従来一般的に採用
されている100メッシュ以下程度より更に拡大した粒子
範囲のものを採用することができる。即ち比較的細粒の
ものでも銅被覆によって増径され粒径的に従来一般的範
囲のものと同様に処理することが可能であるし、上記の
ように圧粉成形が容易となることから従来普通の粒径範
囲を超えて大径のものであっても従来法同然の圧粉成形
処理で同等ないしそれより容易に成形することができ
る。
The size of the iron powder particles as the raw material is not particularly limited, but a particle range that is further expanded than the 100 mesh or less, which is conventionally generally used for producing pure iron-based sintered bodies, is adopted. be able to. In other words, even relatively fine-grained ones can be treated in the same manner as those in the conventional general range in terms of particle size by copper coating and the particle size can be treated in the same manner as in the conventional general range. Even those having a large diameter exceeding the normal particle size range can be formed to the same or more easily by a compacting process similar to the conventional method.

固体潤滑材としての黒鉛、二硫化モリブデンなどは粉
末として添加されることは当然であるが、黒鉛のような
固体潤滑材は銅被覆鉄粉、燐青銅粉の何れに対しても比
重が小であって、このような黒鉛の如きを単に混合して
も他の原料粉に対し均一状態に分散させることが困難で
あり、しかも搬送荷役中およびプレスホッパーへの入替
え、圧粉成形時などにおいて黒鉛粉の浮上、片寄りなど
による偏析が発生する。そこでこのような黒鉛の如き固
体潤滑材に関し比較的粗粉のものを採用し、しかもその
微粉分を分級して除去したものを用いると有効であるこ
とが実験により確認された。即ち上記黒鉛粉末として一
般的に市販されているものが1〜30μm、あるいは1〜
50μmの如きであるのに対し本発明者等が好ましい固体
潤滑材としての黒鉛は10〜150μm、特に20〜100μmと
され、粗粉であると共に10μmまたは20μm以下の微粉
分をカットしたものであり、それによって均一分散を容
易化し、また荷役その他の取扱時における偏析発生を可
及的に防止し得る。前記のような10μm未満、あるいは
20μm未満のような微粉分は液中での分級処理で粉塵の
発生がなく、しかも適切に分級し得る。
Graphite, molybdenum disulfide, etc. as solid lubricants are naturally added as powders, but solid lubricants such as graphite have a low specific gravity for both copper-coated iron powder and phosphor bronze powder. Therefore, it is difficult to disperse the raw materials in a uniform state with other raw material powders simply by mixing such graphite, and the graphite is not used during the handling of cargo, replacement with the press hopper, compaction molding, etc. Segregation occurs due to the floating of the powder and offset. Therefore, experiments have confirmed that it is effective to use a relatively coarse powder of a solid lubricant such as graphite, and to use a powder obtained by classifying and removing the fine powder. That is, the commercially available graphite powder is generally 1 to 30 μm, or 1 to 30 μm.
Graphite as a solid lubricant preferred by the inventors of the present invention has a particle size of 50 to 50 μm, and is 10 to 150 μm, particularly 20 to 100 μm, and is a coarse powder and a fine powder having a particle size of 10 μm or 20 μm or less. Thereby, uniform dispersion can be facilitated, and occurrence of segregation during cargo handling or other handling can be prevented as much as possible. Less than 10 μm as above, or
Fine particles having a size of less than 20 μm do not generate dust during classification in a liquid, and can be appropriately classified.

なお本発明によるものは必要に応じ上記以外の金属ま
たは合金粉などを適宜に添附してよい。
In addition, according to the present invention, metal or alloy powder other than the above may be appropriately added if necessary.

圧粉成形は一般的に2〜3TON/cm2程度の圧力下で行わ
れ、その気孔率は22〜35vol%である。22vol%未満では
有効なサイジングを行い且つ含油などに適した気孔率を
もつ製品を得ることが困難となる。一方35vol%を超え
た気孔率を有する圧粉成形体は焼結取扱中などにおいて
損壊、欠損する可能性が高い。焼結は750〜950℃、特に
750〜850℃の還元性雰囲気で行うが、この焼結温度は鉄
粉を用いた場合の焼結温度より相当に低いものであり、
焼結工程を簡易化する。
The powder compaction is generally performed under a pressure of about 2 to 3 TON / cm 2 , and its porosity is 22 to 35 vol%. When the content is less than 22 vol%, it is difficult to perform effective sizing and obtain a product having a porosity suitable for oil impregnation and the like. On the other hand, a green compact having a porosity exceeding 35 vol% is highly likely to be damaged or broken during sintering. Sintering is 750-950 ℃, especially
It is carried out in a reducing atmosphere at 750 to 850 ° C, but this sintering temperature is considerably lower than the sintering temperature when iron powder is used,
Simplify the sintering process.

焼結によってそれなりに変形し、即ち燐青銅を主要原
料として用いる本発明の場合においてもこのような歪み
や変形を避け得ないからサイジングして所要寸法の製品
とする。
Even if the present invention uses phosphor bronze as a main raw material, it will be deformed to some extent by sintering, and since such distortion and deformation cannot be avoided, it is sized to obtain a product of a required size.

本発明によるものの具体的な製造例について説明する
と以下の通りである。
A specific manufacturing example of the device according to the present invention is as follows.

製造例1. Fe粒子表面にその40wt%に相当したCuを被覆させた銅
被覆鉄粉を準備すると共に、Sn:10.4%、P:0.32%の組
成をもった燐青銅粉を準備し、この銅被覆鉄粉30部、
60部および90部に対して燐青銅粉を70部、40部
および10部の割合で添加混合した原料粉を用いた。こ
れら〜の原料粉における理論成分wt%は次の第1表
の如くである。
Production Example 1. While preparing a copper-coated iron powder coated with Cu corresponding to 40 wt% of the Fe particle surface, prepare a phosphor bronze powder having a composition of Sn: 10.4% and P: 0.32%. 30 parts of copper-coated iron powder,
A raw material powder was used in which phosphor bronze powder was added and mixed at a ratio of 70 parts, 40 parts and 10 parts to 60 parts and 90 parts. The theoretical wt% of the raw powders of these are as shown in Table 1 below.

又これら〜の原料粉により圧粉成形、焼結した成
形条件、焼結条件、得られた製品の特性値を要約して示
したのが第2〜第4表であって、第2表は原料粉によ
るもの、第3表は原料粉によるもの、第4表は原料粉
によるものである。
Tables 2 to 4 summarize the compacting conditions and sintering conditions of these raw material powders, the sintering conditions, and the characteristic values of the obtained products. Raw material powder, Table 3 is based on raw material powder, and Table 4 is based on raw material powder.

即ち成形密度比を65〜75%、焼結温度を800℃〜850℃
として実施したものであるが、端面硬さや圧環強度は焼
結温度が850℃とされることにより大幅に上昇されるこ
とが確認された。即ちこのものの有効多孔率と圧環強度
の関係を要約して示したのが第3図であり、又端面硬さ
と有効多孔率の関係を要約して示したのが第4図であっ
て、有効多孔率が30%を超えるような条件下でも好まし
い強度を確保し得ることが確認された。
That is, the molding density ratio is 65-75%, and the sintering temperature is 800 ℃ -850 ℃.
However, it was confirmed that the end face hardness and radial crushing strength were significantly increased by setting the sintering temperature to 850 ° C. That is, FIG. 3 summarizes the relationship between effective porosity and radial crushing strength, and FIG. 4 summarizes the relationship between end face hardness and effective porosity. It was confirmed that preferable strength can be ensured even under the condition that the porosity exceeds 30%.

製造例2. 粒度が100メッシュ以下の鉄粉に30wt%のCuを被覆し
たものと、Snが10wt%、Pを0.35wt%含有した燐青銅を
準備し、これらの粉末を次の第5表に示すような配合割
合で混合した原料粉とした。
Production Example 2. Iron powder having a particle size of 100 mesh or less coated with 30 wt% Cu and phosphor bronze containing 10 wt% Sn and 0.35 wt% P were prepared, and these powders were prepared as shown in Table 5 below. The raw material powder was mixed in the mixing ratio as shown in.

上記した第1表による〜の各原料粉は何れも充分
に混合されてから圧粉成形され、即ち2.0TON/cm2程度の
加圧力で外径が10mm、内径4mmの環状軸受体として成形
した。
Each of the above-mentioned raw material powders according to Table 1 was sufficiently mixed and then compacted, that is, molded into an annular bearing body having an outer diameter of 10 mm and an inner diameter of 4 mm with a pressing force of about 2.0 TON / cm 2 . .

これらの圧粉成形体は次いで焼結工程に移され、即ち
最高温度が1050℃を採るようにされた焼結炉に装入し、
820℃のAXガスによる還元性雰囲気で45分間の焼結処理
を行った。
These green compacts are then transferred to a sintering process, i.e. charged into a sintering furnace with a maximum temperature of 1050 ° C.
Sintering was performed for 45 minutes in a reducing atmosphere of 820 ° C. with AX gas.

このようにして得られた各焼結体は次いでサイジング
をなし、気孔率20vol%の製品とした。このような製品
について拡大鏡により検討したが鉄粉粒子は何れも略完
全状態に銅層によって被覆されており、露出部分を実質
的に観し得ないものであった。
Each sintered body thus obtained was then sized to obtain a product having a porosity of 20 vol%. When such a product was examined with a magnifying glass, all of the iron powder particles were covered with a copper layer in a substantially complete state, and the exposed portion was substantially invisible.

又このようにして得られた各焼結体についてその成分
組成を検討した結果は次の第6表の如くであった。
The results of examining the composition of each sintered body thus obtained are shown in Table 6 below.

上記のようにして得た各製品に対し、次いで浸油処理
をなし、即ち−30mmHg程度の真空条件で気孔中の空気を
除去し且つタービン油を含浸させて含油軸受を得た。
Each product obtained as described above was then subjected to oil immersion treatment, that is, air in pores was removed under a vacuum condition of about -30 mmHg and impregnated with turbine oil to obtain an oil-impregnated bearing.

これらの製品に対し、その特性試験を行った。即ち上
記したような各製品と、別に比較材として前記した従来
技術による鉄系焼結軸受および純鉄粉と黄銅粉とを5
0:50の割合で混合し、圧粉成形、焼結してから前記した
各製品の同じ気孔率である20vol%にサンジングしたも
のを準備し、これらの製品〜および比較材に
ついて圧環強度、摩擦係数およびPV値1000kg/cm2・m・
minで40分(この条件で30分程度までは次第に昇温する
が、以後は殆んど昇温せず)連続回転したときの温度上
昇値を測定した結果は次の第7表の如くである。
These products were subjected to characteristic tests. That is, each of the above-mentioned products, and the iron-based sintered bearing and the pure iron powder and the brass powder according to the prior art described above as a comparative material were separately prepared.
Prepared by mixing at a ratio of 0:50, compacting, sintering and sanding to 20 vol% which is the same porosity of each product described above, for these products ~ and comparative materials radial crushing strength, friction Coefficient and PV value 1000kg / cm 2・ m ・
Table 7 below shows the results of measuring the temperature rise value during continuous rotation at a min of 40 minutes (the temperature gradually rises up to about 30 minutes under this condition, but almost no temperature rises thereafter). is there.

又上記したような本発明による各製品〜および比
較材について湿度80%、温度60℃の耐食性試験を行
い、錆発生の認められるまでの時間を測定した結果は次
の第8表の如くであった。
Table 8 below shows the results obtained by performing the corrosion resistance test on each of the products according to the present invention and the comparative materials as described above at a humidity of 80% and a temperature of 60 ° C, and measuring the time until the occurrence of rust. It was

即ちこの製造例のものは銅被覆率が30wt%と製造例1
より少い被覆量のものであるが、それにしても非常に優
れた耐食性を有していることが確認された。
That is, in this production example, the copper coverage is 30 wt% and the production example 1
It was confirmed that although the coating amount was smaller, it still had very excellent corrosion resistance.

製造例3. 前記した製造例2における第5表のによる割合のも
のに対し、外掛けで黒鉛粉末を2wt%含有せしめた以外
はすべて製造例1におけると同じに実施して製品とし
た。
Production Example 3. A product was produced in the same manner as in Production Example 1 except that 2 wt% of graphite powder was externally added to the proportions shown in Table 5 in Production Example 2 described above.

このものについて摩擦係数は0.062であって製造例2
のものより優れた潤滑特性を有していることが確認さ
れ、しかもその圧環強度は26.5kg/cm2であって、強度的
にもこのような軸受材などにおいて要求される要件を充
分に満足しており、好ましい製品があることが確認され
た。
The friction coefficient of this product is 0.062, and the manufacturing example 2
It has been confirmed that it has better lubrication properties than the above, and its radial crushing strength is 26.5 kg / cm 2 , which also satisfies the requirements for such bearing materials in terms of strength. Therefore, it was confirmed that there is a preferable product.

製造例4. 製造例2におけるの鉄粉に対する銅被覆量を20wt%
と40wt%に変更した以外は総べて製造例2におけると同
じに実施した。
Production Example 4. 20% by weight of the copper coating on the iron powder in Production Example 2
And the same procedure as in Production Example 2 except that the content was changed to 40 wt%.

即ち銅被覆量20wt%のものをとし、又この銅被覆量
40wt%のものをとして得られた製品の成分組成は次の
第9表の如くである。
That is, the copper coating amount is 20 wt%, and this copper coating amount is
The component composition of the product obtained with 40 wt% is as shown in Table 9 below.

即ちCu被覆量の変動に伴い、それぞれの数値はそれな
りに異るとしても、殊更に揮散成分の如きを含有しない
この製造例の場合において実質的な成分組成は製造例1
のものと同様と言える。
That is, in spite of the fact that the respective values differ to some extent as the Cu coating amount changes, the substantial composition of the components is substantially the same as in Production Example 1 especially in the case of containing no volatile components.
It can be said that it is similar to that of.

又このものについて圧環強度、摩擦係数、連続回転時
の温度上昇値および製造例1におけると同じ試験条件下
での発錆の認められた時間を求めた結果は次の第10表の
如くである。
Table 10 shows the results of the radial crushing strength, the coefficient of friction, the temperature rise value during continuous rotation, and the time during which rusting was observed under the same test conditions as in Production Example 1 were determined for this product. .

即ち上記のように鉄粉に対する銅被覆量が変化しても
上記したような特性値は何れも満足すべきものであるこ
とが確認された。
That is, it was confirmed that all the above characteristic values should be satisfied even if the copper coating amount relative to the iron powder changes as described above.

「発明の効果」 以上説明したような本発明によるときは鉄系焼結材に
おけると同等な強度を具備しながら軸材などに対するな
じみ性が銅焼結材におけると同じに良好で、又耐食性な
どにおいて著しく優れた軸受材およびその好ましい製造
法を提供するものであって工業的にその効果の大きい発
明である。
[Advantages of the Invention] According to the present invention as described above, while having the same strength as that of the iron-based sintered material, the compatibility with the shaft material is as good as that of the copper-sintered material, and the corrosion resistance, etc. The present invention provides a bearing material which is remarkably excellent and a preferable manufacturing method thereof, and is an invention having a great effect industrially.

【図面の簡単な説明】[Brief description of drawings]

図面は本発明の技術的内容を示すものであって、第1図
と第2図は本発明で用いる銅被覆鉄粉の1例を顕微鏡的
に拡大して示した断面図、第3図は製造例1によるもの
の圧環強度と有効多孔率の関係を要約して示した図表、
第4図は同じく製造例1によるものの表面硬さと有効多
孔率との関係を要約して示した図表、第5図は従来技術
による鉄粉70wt%、銅粉30wt%の割合による製品の表面
性状を顕微鏡的に拡大して示した説明図である。 然してこれらの図面において、1は鉄粉粒子、2は銅粉
粒子、2aは銅被覆ないし銅被覆された鉄粉粒子を示すも
のである。
The drawings show the technical contents of the present invention. FIGS. 1 and 2 are cross-sectional views showing one example of the copper-coated iron powder used in the present invention in a microscopically enlarged manner, and FIG. A chart summarizing the relationship between the radial crushing strength and the effective porosity according to Production Example 1,
FIG. 4 is a table which summarizes the relationship between the surface hardness and the effective porosity in the same manner as in Production Example 1, and FIG. 5 is the surface property of the product according to the ratio of 70 wt% iron powder and 30 wt% copper powder according to the conventional technique. It is explanatory drawing which expanded and showed microscopically. In these drawings, 1 is iron powder particles, 2 is copper powder particles, and 2a is copper powder or copper powder particles coated with copper.

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】Fe:20〜64wt%、Cu:32.8〜77wt%、Sn:1〜
9wt% を含有すると共に、 P:0.02〜0.9wt% を含有し、しかも前記Feが粉粒状をなし、該粉粒状Feの
周面がその20〜50wt%に相当したCuにより実質的完全状
態にメッキ被覆され、気孔率15〜28vol%とされたこと
を特徴とする焼結合金軸受材。
1. Fe: 20-64 wt%, Cu: 32.8-77 wt%, Sn: 1-
It contains 9 wt% and P: 0.02 to 0.9 wt%, and the Fe is in the form of powder, and the peripheral surface of the powder Fe is made substantially complete by Cu corresponding to 20 to 50 wt%. A sintered alloy bearing material which is plated and has a porosity of 15 to 28 vol%.
【請求項2】Fe:20〜64wt%、Cu:28.6〜76.5wt%、Sn:
0.75〜8.9wt% を含有すると共に、 P:0.015〜0.9wt% と黒鉛、二硫化モリブデン、鉛のような固体潤滑材の1
種または2種以上を0.5〜5wt%含有し、しかも前記Feが
粉粒状をなし、該粉粒状Feの周面がその20〜50wt%に相
当したCuにより実質的完全状態にメッキ被覆され、気孔
率15〜28vol%とされたことを特徴とする焼結合金軸受
材。
2. Fe: 20 to 64 wt%, Cu: 28.6 to 76.5 wt%, Sn:
It contains 0.75 to 8.9 wt% and P: 0.015 to 0.9 wt% and 1 of solid lubricants such as graphite, molybdenum disulfide and lead.
0.5 to 5 wt% of one kind or two or more kinds, and the Fe is in the form of powder, and the peripheral surface of the powdered Fe is plated and coated in a substantially complete state with Cu corresponding to 20 to 50 wt% thereof, and has pores. A sintered alloy bearing material characterized by a rate of 15 to 28 vol%.
【請求項3】20〜50wt%の銅をメッキ被覆した鉄粉100
重量部に対し、Sn:5〜15wt%、P:0.1〜1.5wt%を含有し
残部がCuおよび不可避的不純物よりなる燐青銅粉を25〜
150重量部添加混合した原料粉を圧粉成形してから焼結
し、次いで気孔率15〜28vol%にサイジングすることを
特徴とする焼結合金軸受材の製造法。
3. An iron powder 100 coated with 20 to 50 wt% of copper.
25 parts by weight of phosphor bronze powder containing Sn: 5 to 15 wt%, P: 0.1 to 1.5 wt% and the balance Cu and unavoidable impurities with respect to parts by weight.
A method for producing a sintered alloy bearing material, which comprises compacting and mixing 150 parts by weight of raw material powder mixed and mixed, and then sizing to a porosity of 15 to 28 vol%.
【請求項4】20〜50wt%の銅をメッキ被覆した鉄粉100
重量部に対し、Sn:5〜15wt%、P:0.1〜1.5wt%を含有し
残部がCuおよび不可避的不純物よりなる燐青銅粉を18〜
147重量部と黒鉛、二硫化モリブデンまたは鉛のような
固形潤滑材の1種または2種以上を0.5〜5.3重量部を添
加混合した原料粉を圧粉成形してから焼結し、次いで気
孔率15〜28vol%にサイジングすることを特徴とする焼
結合金軸受材の製造法。
4. An iron powder 100 coated with 20 to 50 wt% of copper.
18 parts by weight of phosphor bronze powder containing Sn: 5-15 wt%, P: 0.1-1.5 wt% and the balance Cu and unavoidable impurities with respect to parts by weight.
147 parts by weight and 0.5 or 5.3 parts by weight of one or more solid lubricants such as graphite, molybdenum disulfide or lead are added and mixed, and the raw material powder is compacted and sintered, and then the porosity is obtained. A method for manufacturing a sintered alloy bearing material, which comprises sizing to 15 to 28 vol%.
【請求項5】原料粉を圧粉成形して得られた圧粉成形体
を耐熱性容器に収容すると共に施蓋し、750〜950℃の還
元性雰囲気で焼結する請求項3または4の何れか1つに
記載の焼結合金軸受材の製造法。
5. A powder compact obtained by compacting raw material powder is housed in a heat-resistant container, capped, and sintered in a reducing atmosphere at 750 to 950 ° C. The method for manufacturing a sintered alloy bearing material according to any one of claims.
JP63083080A 1988-04-06 1988-04-06 Sintered alloy bearing material and manufacturing method thereof Expired - Fee Related JP2539246B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP63083080A JP2539246B2 (en) 1988-04-06 1988-04-06 Sintered alloy bearing material and manufacturing method thereof
GB8907752A GB2220420B (en) 1988-04-06 1989-04-06 Sintered alloy and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63083080A JP2539246B2 (en) 1988-04-06 1988-04-06 Sintered alloy bearing material and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH01255631A JPH01255631A (en) 1989-10-12
JP2539246B2 true JP2539246B2 (en) 1996-10-02

Family

ID=13792205

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63083080A Expired - Fee Related JP2539246B2 (en) 1988-04-06 1988-04-06 Sintered alloy bearing material and manufacturing method thereof

Country Status (2)

Country Link
JP (1) JP2539246B2 (en)
GB (1) GB2220420B (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19738919C1 (en) 1997-09-05 1999-04-29 Maxon Motor Gmbh Process for manufacturing a plain bearing and plain bearing
ES2164526B1 (en) * 1999-04-23 2003-10-16 Applic Metales Sinter COMPOSITE MATERIAL FOR HIGH PERFORMANCE AUTOLUBRICANT BEARINGS AND BEARING OBTAINED WITH THE SAME.
EP1019220A1 (en) 1998-08-03 2000-07-19 Tyrolit Schleifmittelwerke Swarovski KG Abrasive tool
US6245718B1 (en) * 2000-05-01 2001-06-12 Bearing Sliding Inc. Composite material for antifriction workpieces
JPWO2005124171A1 (en) * 2004-06-15 2008-04-10 日本電産サンキョー株式会社 Sintered bearing, manufacturing method thereof, and motor provided with sintered bearing
WO2006080554A1 (en) * 2005-01-31 2006-08-03 Komatsu Ltd. Sintered material, iron-based sintered sliding material and process for producing the same, sliding member and process for producing the same, and connecting apparatus
JP5772498B2 (en) * 2011-10-24 2015-09-02 日立化成株式会社 Sintered oil-impregnated bearing and manufacturing method thereof
CN107502808A (en) * 2017-07-28 2017-12-22 义乌市台荣超硬制品有限公司 A kind of complete pre-alloyed diamond tool tyre case powder
JP2019167569A (en) * 2018-03-22 2019-10-03 Ntn株式会社 Mechanical component and method of manufacturing the same
JP2021060077A (en) * 2019-10-07 2021-04-15 Ntn株式会社 Sintered oil-containing bearing

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2067221B (en) * 1979-12-22 1984-01-11 Tokyo Oilless Metal Ind Sintered alloys

Also Published As

Publication number Publication date
GB2220420A (en) 1990-01-10
GB2220420B (en) 1991-05-29
GB8907752D0 (en) 1989-05-17
JPH01255631A (en) 1989-10-12

Similar Documents

Publication Publication Date Title
KR101567840B1 (en) Powder method of manufacturing a component and component
JP5684977B2 (en) Cu-based sintered sliding member
JP3782446B2 (en) High-strength, high-temperature, self-lubricating composite material and manufacturing method thereof
EP2087250B1 (en) Bearing having improved consume resistivity and manufacturing method thereof
US20130251586A1 (en) Sintered bearing and preparation method thereof
JP5059022B2 (en) Iron-copper composite powder for powder metallurgy and method for producing the same
GB2216545A (en) Sintered alloy for oil-retaining bearing and method for manufacturing the sintered alloy
JP2539246B2 (en) Sintered alloy bearing material and manufacturing method thereof
EP1993760A2 (en) Low cost bronze powder for high performance bearings
JPH01275735A (en) Sintered alloy material and its manufacture
JP3613569B2 (en) Composite metal powder for sintered bearing and sintered oil-impregnated bearing
JPH0995759A (en) Oil-impregnated sintered bearing and its production
JP2553374B2 (en) Sintered alloy material for oil-impregnated bearing and manufacturing method thereof
JPH079046B2 (en) Copper-based sintered body
JPH01136944A (en) Sintered metallic material
JP2617334B2 (en) Sintered alloy material and method for producing the same
JPS63282221A (en) Manufacture of composite sintered material
GB2067221A (en) Sintered Alloys
JPH01283346A (en) Sintered alloy material and its production
JP2631146B2 (en) Sintered metal body and method for producing the same
JPS6164838A (en) High density copper sintered alloy
JP4029176B2 (en) Sintered oil-impregnated bearing
JPH1192846A (en) Sintered friction material and its production
JPH0499836A (en) Sintered copper series sliding material
JP5424121B2 (en) Sliding material

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees