JP2617334B2 - Sintered alloy material and method for producing the same - Google Patents

Sintered alloy material and method for producing the same

Info

Publication number
JP2617334B2
JP2617334B2 JP63110562A JP11056288A JP2617334B2 JP 2617334 B2 JP2617334 B2 JP 2617334B2 JP 63110562 A JP63110562 A JP 63110562A JP 11056288 A JP11056288 A JP 11056288A JP 2617334 B2 JP2617334 B2 JP 2617334B2
Authority
JP
Japan
Prior art keywords
weight
powder
sintered
copper
alloy material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP63110562A
Other languages
Japanese (ja)
Other versions
JPH01283345A (en
Inventor
勇 菊地
眞紀 菊地
Original Assignee
菊池 勇
菊池 眞紀
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 菊池 勇, 菊池 眞紀 filed Critical 菊池 勇
Priority to JP63110562A priority Critical patent/JP2617334B2/en
Priority to GB8910565A priority patent/GB2219601B/en
Publication of JPH01283345A publication Critical patent/JPH01283345A/en
Priority to HK767/91A priority patent/HK76791A/en
Application granted granted Critical
Publication of JP2617334B2 publication Critical patent/JP2617334B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • C22C33/0257Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements
    • C22C33/0278Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements with at least one alloying element having a minimum content above 5%
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/09Mixtures of metallic powders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/17Metallic particles coated with metal
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/0425Copper-based alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Sliding-Contact Bearings (AREA)
  • Powder Metallurgy (AREA)

Description

【発明の詳細な説明】 「発明の目的」 本発明は焼結合金材およびその製造法に係り、強度お
よび耐食性が共に優れ、しかも軸材などの相手部材に対
するなじみ性が良好で摩擦係数が小さく、軸受材などと
して優れた性能を有する焼結合金材およびその製造法を
提供しようとするものである。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] The present invention relates to a sintered alloy material and a method for producing the same, which are excellent in both strength and corrosion resistance, have good adaptability to a mating member such as a shaft material, and have a small friction coefficient. It is an object of the present invention to provide a sintered alloy material having excellent performance as a bearing material or the like and a method for producing the same.

(産業上の利用分野) 焼結含油軸受その他焼結合金材およびその製造技術。(Industrial application fields) Sintered oil-impregnated bearings and other sintered alloy materials and their manufacturing technologies.

(従来の技術) 焼結含油軸受については日本工業規格としてJIS B 15
81−1976に規定されている如く、家庭用電気機器、音響
用機器、事務用機械、農業用機械、自動車その他の運搬
荷役機器などに用いる円筒形、フランジ付円筒形および
球形などの軸受材に関して種々に規定され、又その主た
る成分組成としては純鉄系、鉄−銅系、鉄−炭素系、鉄
−銅−炭素系、鉄−銅−鉛系、青銅系、銅系、鉛−青銅
系など材質、種類は比較的多岐に亘る。
(Conventional technology) For sintered oil-impregnated bearings, JIS B 15
As specified in 81-1976, bearing materials such as cylindrical, flanged cylindrical and spherical used for household electrical equipment, audio equipment, office machinery, agricultural machinery, automobiles and other transporting and handling equipment, etc. It is variously defined, and its main component composition is pure iron, iron-copper, iron-carbon, iron-copper-carbon, iron-copper-lead, bronze, copper, lead-bronze. The materials and types are relatively diverse.

なお例えば特開昭56−51554号公報においては鉄粉と
黄銅粉を用いた圧粉体を焼結することが発表されてお
り、更に本発明者等によっても特開昭60−200927号公報
において鉄粉、黄銅粉および洋白粉を用い、それらの混
合粉による圧粉成形体を還元性雰囲気で焼結処理するこ
とを提案している。
In addition, for example, in Japanese Patent Application Laid-Open No. 56-51554, sintering a green compact using iron powder and brass powder is disclosed, and the present inventors further disclosed in Japanese Patent Application Laid-Open No. 60-200927. It has been proposed to use an iron powder, a brass powder, and a nickel-white powder, and to perform a sintering process on a green compact formed of a mixture thereof in a reducing atmosphere.

また特開昭56−90954号公報においては同じく本発明
者等によって、鉄粉に青銅粉末を配合した原料粉を圧粉
成形、焼結することが提案されている。
In Japanese Patent Application Laid-Open No. 56-90954, the present inventors have also proposed compacting and sintering a raw material powder obtained by mixing a bronze powder with an iron powder.

(発明が解決しようとする課題) 上記した鉄を主体とした含油軸受においては骨格的強
度に優れ、高荷重用として好ましいが、相手部材に対す
るなじみ性や耐食性に劣っているので利用上制限を受け
る。
(Problems to be Solved by the Invention) The above oil-impregnated bearings mainly composed of iron are excellent in skeletal strength and are preferable for high loads, but are limited in use because they are inferior in compatibility and corrosion resistance to mating members. .

これに対し銅または青銅を主体としたものにおいては
なじみ性や耐食性は良好であるが、強度上不充分である
から高負荷用に適しない。
On the other hand, a material mainly composed of copper or bronze has good adaptability and corrosion resistance, but is not suitable for high loads because of insufficient strength.

鉄−銅系(鉄−銅−鉛、鉄−銅−炭素などを含む)の
ものはこれらの中間的特性となるが、なお強度や耐食性
において不充分である。
Iron-copper alloys (including iron-copper-lead, iron-copper-carbon, etc.) have intermediate properties between them, but are still insufficient in strength and corrosion resistance.

前記した特開昭56−51554号公報や特開昭56−90954号
公報による鉄粉と黄銅粉または鉄粉と青銅粉を用いたも
のにおいては耐食性においては好ましいとしても強度や
相手部材に対するなじみ性などにおいて充分でない。
In the case of using iron powder and brass powder or iron powder and bronze powder according to the above-mentioned JP-A-56-51554 and JP-A-56-90954, the strength and conformability to the mating member are preferable even if the corrosion resistance is preferable. Is not enough.

前記特開昭60−200927号公報のものは洋白をも用いる
ことにより強度性を確保しながら充分な耐食性と摩擦係
数低減を図ったものであるが、それらの特性において必
ずしも満足するものとなし得ず、又軸材などの相手部材
に対するなじみ性などにおいて不充分である。
Japanese Patent Application Laid-Open No. Sho 60-200927 aims at achieving sufficient corrosion resistance and reducing the friction coefficient while securing strength by using nickel silver, but it does not always satisfy those characteristics. In addition, it is insufficient in conformity to a mating member such as a shaft.

更に前記したような従来のものにおいては適当な強度
を得ると共に比較的低コストに製品を得るためには相当
量の鉄粉を用いることが不可欠であるところ、このよう
にして混合された鉄粉が成程銅粉や黄銅粉中に埋れると
してもそれなりに露出することとならざるを得ず、この
ようにして露出した鉄粉粒子は相手部材と接摺してこれ
を損耗し、又腐食発生の基点となる。
Furthermore, in order to obtain an appropriate strength and obtain a product at a relatively low cost in the above-mentioned conventional products, it is essential to use a considerable amount of iron powder. Even if buried in copper powder or brass powder, it must be exposed to some extent, and the iron powder particles exposed in this way will rub against the mating member and wear it, and It is a starting point for occurrence.

即ち前記したような従来法によるものにおいては銅粉
などの混合量が高くなるに従ってこの添加された銅粉な
どによる色彩感覚を次第に帯びて来ることとなり、鉄粉
のみによる製品とは異った感触を示すようになるが、こ
れを顕微鏡的に観察した場合には各原料粉(鉄粉と銅粉
など)が略その混合比に従った状態に露出しており、こ
のような製品について耐食性試験をなした場合には銅粉
などの部分ではその腐食が低減されるとしても鉄粉部分
では腐食が容易に発生進行する。相手部材に対する損耗
などについてもこれと同じであって、露出した鉄粉自体
は軸材などに対してやはり鉄としての損耗を与えること
とならざるを得ない。
That is, in the case of the conventional method as described above, as the mixing amount of the copper powder or the like increases, the color sensation due to the added copper powder or the like gradually takes on, and the feel is different from the product using only the iron powder. When observed microscopically, each raw material powder (iron powder and copper powder, etc.) is exposed in a state substantially according to the mixing ratio, and such products are subjected to a corrosion resistance test. However, even if the corrosion is reduced in a portion such as copper powder, the corrosion easily occurs and proceeds in an iron powder portion. The same applies to the wear to the mating member and the like, and the exposed iron powder itself must inevitably give the shaft material and the like wear as iron.

「発明の構成」 (課題を解決するための手段) 1.Fe:20〜64wt%、Cu:27〜59wt%、Zn:6〜24wt%、Sn:
0.06〜0.6wt%、Al:tr〜3wt% を含有すると共に、 Mn:0.1〜3wt% を含有し、しかも前記Feによる鉄粉粒子表面に被覆率90
%以上のCuによる被覆状態とされたことを特徴とし、気
孔率15〜28vol%とされた焼結合金材。
"Constitution of the Invention" (Means for solving the problem) 1. Fe: 20 to 64 wt%, Cu: 27 to 59 wt%, Zn: 6 to 24 wt%, Sn:
It contains 0.06 to 0.6 wt%, Al: tr to 3 wt%, and Mn: 0.1 to 3 wt%, and has a coverage of 90% on the surface of the iron powder particles by Fe.
A sintered alloy material having a porosity of 15 to 28 vol%, characterized by being coated with at least Cu.

2.Fe:20〜64wt%、Cu:24.2〜58.7wt%、Zn:4.5〜23.8wt
%、Sn:0.05〜0.6wt%、Al:tr〜2.98wt% を含有すると共に、 Mn:0.08〜2.98wt% を含有し、しかも黒鉛、二硫化モリブデン、鉛のような
固体潤滑材の1種または2種以上を0.5〜5wt%を含有
し、前記Feによる鉄粉粒子表面に被覆率90%以上のCuに
よる被覆状態とされたことを特徴とし、気孔率が15〜28
vol%とされた焼結合金材。
2.Fe: 20 ~ 64wt%, Cu: 24.2 ~ 58.7wt%, Zn: 4.5 ~ 23.8wt
%, Sn: 0.05 to 0.6 wt%, Al: tr to 2.98 wt%, Mn: 0.08 to 2.98 wt%, and one kind of solid lubricants such as graphite, molybdenum disulfide, and lead Alternatively, it is characterized in that the surface of the iron powder particles of Fe is coated with Cu having a coating ratio of 90% or more, and the porosity is 15 to 28.
Sintered alloy material with vol%.

3.20〜50wt%の銅を被覆率90%以上の被覆状態とした鉄
粉100重量部を用いることを特徴とし、この銅被覆鉄粉
に対し、Zn:30〜40wt%、Sn:0.3〜1wt%、Al:tr〜5wt
%、Mn:0.5〜5wt%を含有し残部がCuおよび不可避的不
純物よりなるマンガン青銅粉を25〜150重量部添加混合
した原料粉を圧粉成形してから焼結し、次いで気孔率15
〜28vol%にサイジングすることより成る焼結合金材の
製造法。
3. It is characterized by using 100 parts by weight of iron powder coated with 20 to 50% by weight of copper and having a coating rate of 90% or more. Zn: 30 to 40% by weight, Sn: 0.3 to 1% by weight based on the copper coated iron powder. , Al: tr ~ 5wt
%, Mn: 0.5 to 5% by weight, the balance being 25 to 150 parts by weight of manganese bronze powder containing Cu and unavoidable impurities added, mixed, compacted and sintered, and then porosity 15
A method for producing a sintered alloy material by sizing to ~ 28vol%.

4.原料粉を圧粉成形して得られた圧粉成形体を耐熱性容
器に収容すると共に施蓋し、800〜950℃の還元性雰囲気
で焼結する請求項3に記載の焼結合金材の製造法。
4. The sintered alloy according to claim 3, wherein the green compact obtained by compacting the raw material powder is housed in a heat-resistant container, covered, and sintered in a reducing atmosphere at 800 to 950 ° C. The method of manufacturing the material.

5.20〜50wt%の銅を被覆率90%以上の被覆状態とした鉄
粉100重量部を用いることを特徴とし、この銅被覆鉄粉
に対し、Zn:30〜40wt%、Sn:0.3〜1wt%、Al:tr〜5wt
%、Mn:0.5〜5wt%を含有し残部がCuおよび不可避的不
純物よりなるマンガン青銅粉を19.7〜149.5重量部と黒
鉛、二硫化モリブデンまたは鉛のような固形潤滑材の1
種または2種以上を0.5〜5.3重量部を添加混合した原料
粉を圧粉成形してから焼結し、次いで気孔率15〜28vol
%にサイジングすることより成る焼結合金材の製造法。
5. It is characterized by using 100 parts by weight of iron powder in which 20% to 50% by weight of copper is coated at a coating rate of 90% or more, based on the copper-coated iron powder, Zn: 30 to 40% by weight, and Sn: 0.3 to 1% by weight. , Al: tr ~ 5wt
%, Mn: 0.5 to 5 wt%, the balance being 19.7 to 149.5 parts by weight of manganese bronze powder consisting of Cu and inevitable impurities and one of solid lubricants such as graphite, molybdenum disulfide or lead.
The raw material powder obtained by adding and mixing 0.5 to 5.3 parts by weight of a seed or two or more kinds is compacted, sintered, and then has a porosity of 15 to 28 vol.
A method for producing a sintered alloy material by sizing to%.

6.原料粉を圧粉成形して得られた圧粉成形体を耐熱性容
器内に底面から離隔した状態で収容すると共に施蓋し、
800〜950℃の還元性雰囲気で焼結する請求項5に記載の
焼結合金材の製造法。
6. The powder compact obtained by compacting the raw material powder is housed in a heat-resistant container in a state separated from the bottom surface and covered,
The method for producing a sintered alloy material according to claim 5, wherein the sintering is performed in a reducing atmosphere at 800 to 950 ° C.

(作用) Fe:20〜64wt%、Cu:27〜59wt%、Zn:6〜24wt%、Sn:
0.06〜0.6wt%、Al:tr〜3wt%を含有すると共にMn:0.1
〜3wt%を含有し、しかも前記Feによる粉末粒子表面がC
uにより被覆率90%以上の実質的完全状態に被覆されて
いることにより、該Fe粉末粒子により強度を確保しなが
らFe粒子が製品面において露出することがなくなり、即
ちCuで製品面が有効且つ緻密に被覆されたものとなって
耐食性を大幅に向上し、又相手部材に対するなじみ性や
熱伝導性なども向上せしめられる。粉末粒子間の焼結に
ついてもFe粒子の介入がないので安定した焼結関係が形
成される。
(Action) Fe: 20 to 64 wt%, Cu: 27 to 59 wt%, Zn: 6 to 24 wt%, Sn:
0.06 to 0.6 wt%, Al: 3 wt% to 3 wt%, and Mn: 0.1
~ 3wt%, and the surface of the powder particles of Fe is C
By being coated in a substantially perfect state with a coverage of 90% or more by u, the Fe particles are not exposed on the product surface while ensuring the strength by the Fe powder particles. It becomes densely coated, so that the corrosion resistance is greatly improved, and the conformability to the mating member and the thermal conductivity are also improved. As for the sintering between powder particles, a stable sintering relationship is formed because there is no intervention of Fe particles.

Feが20wt%以下では焼結体としての強度が充分に得ら
れず、又他の成分を多量に必要とし高価となる。一方64
wt%を超えてFeを含有したものは摩擦係数を高め、相手
部材に対するなじみ性が確保されないと共に耐食性が急
激に劣化する。
If Fe is less than 20% by weight, sufficient strength as a sintered body cannot be obtained, and other components are required in a large amount, resulting in high cost. While 64
A steel containing more than wt% of Fe increases the coefficient of friction, does not ensure conformability to a mating member, and rapidly deteriorates corrosion resistance.

Cuが27wt%以上となることにより64wt%にも達するFe
粒子表面の完全被覆を図ると共になじみ性を確保し、又
59wt%を上限とすることでFe粒子その他を適当に高い配
合量で含有させて強度性を維持し、しかも低コスト性を
得しめる。
Fe reaches 64 wt% when Cu becomes 27 wt% or more
Complete coverage of the particle surface and ensure conformability,
By setting the upper limit to 59 wt%, Fe particles and the like can be contained in an appropriately high blending amount to maintain the strength and obtain low cost.

Znを6wt%以上とすることでCuやMnと相俟って耐食性
を確保し、又24wt%を上限とすることによりなじみ性を
適切に維持する。Mnが0.1wt%以上とすることによりそ
の脱酸作用から強度および耐食性を有効に高める。一方
3wt%を上限とすることによってなじみ性を維持し、摩
擦係数の上昇を抑制する。
When Zn is 6 wt% or more, corrosion resistance is secured in combination with Cu and Mn, and when the upper limit is 24 wt%, conformability is appropriately maintained. When Mn is 0.1 wt% or more, strength and corrosion resistance are effectively increased from its deoxidizing action. on the other hand
By setting the upper limit to 3 wt%, conformability is maintained and an increase in the coefficient of friction is suppressed.

Snが0.06%以上含有されることにより、Cu、Mnおよび
AlやZnなどの適量含有と相俟って銅系高力合金としての
マンガン青銅の特性を発揮することができる。Cuで実質
的完全状態に被覆されたFe粉末粒子を核とし、これに同
じく銅系高力合金であるマンガン青銅のような成分を介
在させる本発明の場合において、このSn分は0.6wt%を
超えて含有させてもその効果が飽和し、殊更にそれ以上
の特性も求められず、コスト高となる。即ち0.6wt%を
上限とすることにより鉄粉粒子を相当量用いた低コスト
性確保を得しめる。
By containing Sn at 0.06% or more, Cu, Mn and
The properties of manganese bronze as a copper-based high-strength alloy can be exhibited in combination with the proper content of Al and Zn. In the case of the present invention in which a core such as manganese bronze, which is also a copper-based high-strength alloy, is made into a nucleus of Fe powder particles coated in a substantially perfect state with Cu, the Sn content is 0.6 wt%. Even if it is contained in excess, the effect is saturated, and in particular, no further characteristics are required, resulting in an increase in cost. That is, by setting the upper limit to 0.6 wt%, it is possible to obtain low cost using a considerable amount of iron powder particles.

Alが0〜3wt%含有されることにより前記したような
銅系高力合金としてのマンガン青銅の成分組成を鉄粉粒
子間において確保する。3wt%を超えたAlの含有は却っ
て強度低下をもたらす傾向が顕われる。なおこのAlの下
限については例えばJIS H2205における表2に規定され
ているように5.0wt%まで含有したマンガン青銅粉を用
い、製品として3.0wt%まで含有せしめてよいことは上
記の如くであるが、実質的に痕跡程度であってもマンガ
ン青銅としての高力特性を求め得ることがあるので、殊
更に限定する必要がないものと言える。
By containing 0 to 3 wt% of Al, the component composition of manganese bronze as a copper-based high-strength alloy as described above is secured between the iron powder particles. The content of Al exceeding 3 wt% tends to lower the strength. Regarding the lower limit of Al, for example, as specified in Table 2 of JIS H2205, manganese bronze powder containing up to 5.0 wt% may be used, and as a product, it may be contained up to 3.0 wt% as described above. However, even in the case of substantially a trace, high strength characteristics as manganese bronze may be required, and it can be said that there is no particular limitation.

800〜950℃の焼結温度により前記したように銅被覆さ
れた鉄粉粒子とマンガン青銅としての銅系高力合金粉末
相互が適切に焼結せしめられる。
As described above, the copper-coated iron powder particles and the copper-based high-strength alloy powder as manganese bronze are appropriately sintered at a sintering temperature of 800 to 950 ° C.

圧粉成形体を耐熱性容器の底面から離隔した状態に収
容すると共に蓋を施して焼結することによりZn分を含有
した条件下においても該Zn分の気散損失を防止し、しか
も均斉な焼結状態を形成する。
The powder compact is housed in a state separated from the bottom surface of the heat-resistant container, covered with a lid, and sintered to prevent the loss of air diffusion of the Zn even under the condition containing Zn, and furthermore, the uniform Form a sintered state.

圧粉成形し焼結後、サイジングした気孔率15vol%以
上とすることにより軸受材などとする場合の含油量を適
切に得しめ、潤滑性能を高める。一方この気孔率が28vo
l%を超えないことにより強度性を確保すると共に含浸
油の流出、飛散を防止する。
After compacting and sintering, the porosity is adjusted to 15 vol% or more to obtain an appropriate oil content when used as a bearing material and enhance lubrication performance. On the other hand, the porosity is 28vo
By not exceeding l%, the strength is secured and the impregnating oil is prevented from flowing out and scattering.

黒鉛、二硫化モリブデンまたは鉛のような固体潤滑材
の1種または2種以上を0.5wt%以上含有させることに
より潤滑性を高め、摩擦係数を小とする。又5.0wt%を
超えないことにより製品の強度性を維持する。
Lubricity is increased and the coefficient of friction is reduced by containing 0.5 wt% or more of one or more solid lubricants such as graphite, molybdenum disulfide or lead. Also, the strength of the product is maintained by not exceeding 5.0 wt%.

Zn:30〜40wt%、Sn:0.3〜1wt%、Al:0〜5wt%、Mn:0.
5〜5wt%を含有し残部がCuおよび不可避的不純物よりな
るマンガン青銅粉を用いることによりCu、ZnおよびMnと
Sn、あるいはAlが合金体として同時に添加され、それら
の成分を各別に準備し順次混合する煩雑さを回避する。
又配合された各成分の偏析を適切に防止し、均等な混合
焼結状態を容易に形成する。又このようなマンガン青銅
は銅系合金であるから前記のように鉄粒子に被覆された
Cu層に対するなじみが良好で、焼結機構も安定したもの
として形成される。即ち鉄粉粒子が高力を有するマンガ
ン青銅によりなじみよく、強固安定に結合された組織を
構成する。
Zn: 30-40 wt%, Sn: 0.3-1 wt%, Al: 0-5 wt%, Mn: 0.
By using manganese bronze powder containing 5 to 5 wt% and the balance consisting of Cu and unavoidable impurities, Cu and Zn and Mn are removed.
Sn or Al is added at the same time as an alloy body, and the trouble of preparing these components separately and mixing them sequentially is avoided.
Further, segregation of each compounded component is appropriately prevented, and a uniform mixed and sintered state is easily formed. Also, since such manganese bronze is a copper-based alloy, it was coated on iron particles as described above.
It has good compatibility with the Cu layer and has a stable sintering mechanism. That is, the iron powder particles are familiar with manganese bronze having high strength, and constitute a structure that is firmly and stably bonded.

(実施例) 上記したような本発明によるものの具体的な実施態様
について説明すると、本発明は基本的にFe、Cu、Znと共
にMn、Sn、および適宜にAlを含有した焼結合金である
が、そのFe粉粒がCuで被覆率90%以上の実質的完全状態
に被覆されたものとして採用される。又他の成分も合金
として材料を準備してよいことは前記の通りで、Mn−Al
合金と黄銅の各粉末、マンガンと銅との合金である電気
抵抗合金や磁性合金と鉄およびZnの各粉末などを採用す
ることができる。然し好ましい材料としては純鉄粉末に
Cuを被覆したものとマンガン青銅粉末を用いることであ
る。
(Examples) To explain a specific embodiment of the present invention as described above, the present invention is basically a sintered alloy containing Mn, Sn, and optionally Al together with Fe, Cu, Zn. It is adopted that the Fe powder is coated with Cu in a substantially complete state with a coverage of 90% or more. As described above, other components may be prepared as alloys.
Each powder of an alloy and brass, an electric resistance alloy that is an alloy of manganese and copper, each powder of a magnetic alloy, iron and Zn, and the like can be used. However, the preferred material is pure iron powder.
The use of copper coated manganese bronze powder.

製品としてのFeは一般的に20〜64wt%であるが、好ま
しくは30〜60wt%であり、より好ましくは40〜55wt%で
ある。又Cuは一般的には上記のように27〜59wt%である
が、好ましくは25〜55wt%、より好ましくは30〜50wt%
とすべきである。Znの一般的範囲は6〜24wt%である
が、好ましくは8〜24wt%、より好ましくは10〜20wt%
である。Mnについての好ましい範囲は前記した一般的範
囲の中で0.1〜3wt%であり、より好ましくは0.5〜2wt%
である。Alについては3wt%まで含有することが許容さ
れるが、全く含有しないものであってもよい。
Fe as a product is generally 20 to 64% by weight, preferably 30 to 60% by weight, and more preferably 40 to 55% by weight. Cu is generally 27 to 59% by weight as described above, but is preferably 25 to 55% by weight, more preferably 30 to 50% by weight.
Should be. The general range for Zn is 6-24 wt%, but preferably 8-24 wt%, more preferably 10-20 wt%.
It is. A preferred range for Mn is 0.1 to 3 wt%, more preferably 0.5 to 2 wt% in the general range described above.
It is. Al may be contained up to 3 wt%, but may not be contained at all.

前記した鉄粉は上述したようなCu分の中の少くとも一
部を用いて被覆したものとして準備される。このような
鉄粉に対する銅の被覆はメッキ法の如きによって行わ
れ、そのような被覆量はメッキ時における通電量と時間
を適当に選ぶことにより適宜の程度に行い得る。このよ
うな銅の被覆量は重量比で20〜50%であることは前記の
通りであるが、より好ましい範囲としては25〜45%程度
である。このような銅被覆により鉄粉粒子の周面は完全
状態に銅皮膜で被包されることになり、又鉄粉粒子表面
に特にメッキ時においてそれなりの丸味をもった凹凸の
存するものとして得られるから圧粉成形が容易化され
る。
The above-mentioned iron powder is prepared as coated with at least a part of the above-mentioned Cu content. Such coating of iron powder with copper is performed by a plating method or the like, and such a coating amount can be performed to an appropriate degree by appropriately selecting the amount of electricity and time during plating. As described above, the coating amount of copper is 20 to 50% by weight, but a more preferable range is about 25 to 45%. With such copper coating, the peripheral surface of the iron powder particles is completely covered with the copper film, and the iron powder particles can be obtained as having moderately rounded irregularities particularly during plating. This facilitates green compaction.

なお原材たる鉄粉粒子の大きさについては特に制限さ
れないが、純鉄系焼結体製造のために従来一般的に採用
されている100メッシュ以下より更に拡大した粒子範囲
のものを採用することができる。即ち例えば150メッシ
ュ以下のように比較的細粒のものでも銅被覆によって増
径され粒径的に従来一般的範囲のものと同様に処理する
ことが可能であるし、上記のように圧粉成形が容易とな
ることから従来普通の粒径範囲を超えて大径のものであ
っても従来法同然の圧粉成形処理で同等ないしそれより
容易に成形することができる。
The size of the iron powder particles as the raw material is not particularly limited, but a particle range that is larger than 100 mesh or less, which is conventionally generally used for manufacturing a pure iron-based sintered body, should be used. Can be. That is, for example, even relatively fine particles such as 150 mesh or less can be treated in the same manner as those in the conventional general range in terms of particle size by increasing the diameter by copper coating. Therefore, even a powder having a large diameter exceeding the conventional particle size range can be formed to the same or more easily by a compacting process similar to the conventional method.

上記のような鉄粉粒子に対するCuの被覆は電解メッキ
の外に浸漬法や蒸着法その他の適宜の手法を採用するこ
とができ、何れにしても鉄粉粒子表面に一般的に被覆率
95%以上、少くとも90%以上、好ましくは98%以上の略
完全な被覆状態を形成する。
The coating of Cu on the iron powder particles as described above can employ an immersion method, a vapor deposition method, or other appropriate method in addition to electrolytic plating.
It forms a substantially complete coverage of 95% or more, at least 90% or more, preferably 98% or more.

本発明においては上記のように銅被覆された鉄粉粒子
間に銅系の高力合金であるマンガン青銅の成分組成を形
成するものであって、このような銅系高力合金であるマ
ンガン青銅は複数の素材粉末を用いて形成することも可
能であるが、好ましい手法としてはマンガン青銅の粉末
を用いることである。即ちこのようなマンガン青銅とし
ては例えばJIS H2205に規定されているように、Zn:30〜
40wt%、Sn:0.3〜1wt%、Al:0.5〜5wt%、Mn:0.5〜5wt
%であって、残部がCuのような公知のものを広く採用す
ることが可能であり、又後述する製造例のようにAlを全
く含有しないマンガ青銅粉でもよいもので、このような
成分組成のマンガン青銅を上記のような銅被覆鉄粉粒子
の間に位置せしめ(混合)、圧粉成形焼結し、あるいは
更にサイジングすることによって適切な銅系粒子間の焼
結が図られて安定且つ強固な焼結組織が得られ、機械的
強度の高い製品となる。
In the present invention, the component composition of manganese bronze, which is a copper-based high-strength alloy, is formed between iron powder particles coated with copper as described above, and manganese bronze, which is such a copper-based high-strength alloy Can be formed using a plurality of material powders, but a preferred method is to use manganese bronze powder. That is, as such manganese bronze, for example, as defined in JIS H2205, Zn: 30 ~
40wt%, Sn: 0.3-1wt%, Al: 0.5-5wt%, Mn: 0.5-5wt
%, With the balance being widely known, such as Cu, and manganese bronze powder containing no Al as in the production examples described below. The manganese bronze is positioned between the copper-coated iron powder particles as described above (mixed), compacted and sintered, or further sized so that appropriate sintering between the copper-based particles is achieved and stable and A strong sintered structure is obtained, and the product has high mechanical strength.

固体潤滑材としての黒鉛、二硫化モリブデンなどは粉
末として添加されることは当然であるが、黒鉛のような
固体潤滑材は銅被覆鉄粉およびマンガン青銅粉の何れに
対しても比重が小であって、このような黒鉛の如きを単
に混合しても他の原料粉に対し均一状態に分散させるこ
とが困難であり、しかも搬送荷役中およびプレスホッパ
ーへの入替え、圧粉成形時などにおいて黒鉛粉の浮上、
片寄りなどによる偏析が発生する。そこで斯様な黒鉛の
如き固体潤滑材に関しては比較的粗粉のものを採用し、
しかもその微粉分を分級して除去したものを用いると有
効であることが実験により確認された。即ち上記黒鉛粉
末として一般的に市販されているものが1〜30μm、あ
るいは1〜50μmの如きであるのに対し本発明者等が好
ましい固体潤滑材としての黒鉛は10〜150μm、特に20
〜100μmとされ、粗粉であると共に10μmまたは20μ
m以下の微粉分をカットしたものであり、それによって
均一分散を容易化し、また荷役その他の取扱時における
偏析発生を可及的に防止し得る。前記のような10μm未
満、あるいは20μm未満のような微粉分は液中での分級
処理で粉塵の発生がなく、しかも適切に分級し得る。
Naturally, graphite and molybdenum disulfide as solid lubricants are added as powders, but solid lubricants such as graphite have a small specific gravity with respect to both copper-coated iron powder and manganese bronze powder. Therefore, it is difficult to uniformly disperse such raw materials such as graphite in other raw material powders, and it is difficult to disperse the graphite during loading and unloading, changing to a press hopper, and compacting. Floating of powder,
Segregation occurs due to offset or the like. Therefore, for solid lubricants such as graphite, a relatively coarse powder is used,
In addition, it was confirmed by experiments that the use of a material obtained by classifying and removing the fine powder was effective. That is, the commercially available graphite powder is generally 1 to 30 μm, or 1 to 50 μm, whereas the preferred solid lubricant of the present inventors is 10 to 150 μm, particularly 20 μm.
~ 100μm, coarse powder and 10μm or 20μ
m or less, thereby facilitating uniform dispersion and preventing segregation during handling and other handling as much as possible. Fine particles having a particle size of less than 10 μm or less than 20 μm as described above do not generate dust in a classification treatment in a liquid, and can be appropriately classified.

なお本発明によるものは必要に応じ上記以外の金属ま
たは合金粉などを適宜に添加してよい。即ち例えばPb、
Ni、Siなどの若干を含有せしめても本発明の特質を失う
ものでなく、合金としてSn含有黄銅、Al含有黄銅、Pb含
有黄銅、Ni含有黄銅、Fe含有黄銅、Si含有黄銅などを用
いることができる。
In the present invention, a metal or alloy powder other than the above may be added as needed. That is, for example, Pb,
Even if a small amount of Ni, Si, etc. is contained, the characteristics of the present invention are not lost, and Sn-containing brass, Al-containing brass, Pb-containing brass, Ni-containing brass, Fe-containing brass, Si-containing brass, etc. are used as alloys. Can be.

圧粉成形は一般的に2〜3Ton/cm2程度の圧下で行わ
れ、その気孔率は22〜35vol%である。22vol%未満では
有効なサイジングを行い且つ含油などに適した気孔率を
もつ製品を得ることが困難となる。一方35vol%を超え
た気孔率を有する圧粉成形体は焼結取扱中などにおいて
損壊、欠損する可能性が高い。焼結は800〜950℃の還元
性雰囲気で行うが、前記のように含有されているZn分の
揮散脱亜鉛を防止するには耐熱性容器内に網目材などを
敷いて底面から離隔して収容し施蓋して焼結することが
好ましい。勿論炭素粉中に埋没して実施してもよい。
Powder compaction is generally performed under a pressure of about 2 to 3 Ton / cm 2 , and its porosity is 22 to 35 vol%. When the content is less than 22 vol%, it is difficult to perform effective sizing and obtain a product having a porosity suitable for oil impregnation and the like. On the other hand, a green compact having a porosity exceeding 35 vol% is highly likely to be damaged or broken during sintering. Sintering is performed in a reducing atmosphere at 800 to 950 ° C, but in order to prevent the volatilization and dezincification of Zn contained as described above, place a mesh material etc. in a heat-resistant container and separate from the bottom surface. It is preferred to house, cover and sinter. Of course, it may be buried in carbon powder.

焼結によってそれなりに変形し、即ちマンガン青銅を
用いるような本発明の場合においては歪み、変形、寸法
変化の如きもそれなりに顕われるからサイジングして所
定寸法の製品とする。又このサイジングによって気孔率
15〜28vol%の製品とすることにより、含油軸受を得る
に当って好ましい含油量を得しめ、しかも機械的強度な
ども適切な値を保持した焼結金属体が得られる。
In the case of the present invention in which manganese bronze is deformed as a result of sintering, distortion, deformation, and dimensional change are manifested as such, so that the product is sized to a predetermined size. In addition, the porosity
By using a product of 15 to 28 vol%, a preferable oil content for obtaining an oil-impregnated bearing can be obtained, and a sintered metal body having an appropriate value of mechanical strength or the like can be obtained.

本発明によるものの具体的な製造例について説明する
と以下の如くである。
A specific production example according to the present invention will be described below.

製造例1. 粒度が100メッシュ以下の鉄粉に40wt%のCuをメッキ
処理によって被覆したCu被覆鉄粉と、Cu:64.5wt%、Zn:
30wt%、Sn:0.5wt%、Mn:5wt%、を含有し100メッシュ
以下のマンガン青銅粉を準備し、これらを次の第1表の
ようなwt%に混合した。
Production Example 1. Cu-coated iron powder obtained by coating iron powder having a particle size of 100 mesh or less with 40 wt% of Cu by plating, Cu: 64.5 wt%, Zn:
Manganese bronze powder containing 30 wt%, Sn: 0.5 wt%, and Mn: 5 wt% and having a mesh size of 100 mesh or less was prepared, and these were mixed with the following wt% as shown in Table 1.

上記した第1表による〜の各原料粉は何れも充分
に混合されてから圧粉成形され、即ち外径が10mm、内径
4mmの環状軸受体として成形した。これらの圧粉成形体
は夫々各グループ毎に区分して底面に金属網を敷いた耐
熱性鉄箱に収容し、即ち被焼結体を容器底面から離隔さ
せた状態で収容せしめ、蓋を施してから焼結炉に装入
し、890℃のAXガスによる還元性雰囲気で45分間の焼結
処理を行った。このようにして得られた各焼結体は次い
でサイジングをなし、気孔率が一定の20vol%の製品と
した。このような製品について拡大鏡により検討したが
鉄粉粒子は何れも周面の98%以上の略完全状態に銅層に
よって被覆されており、露出部分を実質的に観察し得な
いものであった。
Each of the raw material powders (1) to (6) according to Table 1 above is sufficiently mixed and then compacted, that is, the outer diameter is 10 mm, and the inner diameter is 10 mm.
It was molded as a 4 mm annular bearing. Each of these compacts is divided into groups and stored in a heat-resistant iron box with a metal mesh laid on the bottom, that is, the sintering body is stored in a state separated from the bottom of the container, and a cover is provided. Then, it was charged into a sintering furnace, and subjected to sintering treatment in a reducing atmosphere at 890 ° C. with AX gas for 45 minutes. Each of the sintered bodies thus obtained was then subjected to sizing to obtain a product having a constant porosity of 20 vol%. Examination of such a product using a magnifying glass revealed that all of the iron powder particles were covered with a copper layer in an almost complete state of 98% or more of the peripheral surface, and the exposed portion could not be observed substantially. .

又このようにして得られた各焼結体についてその成分
組成を検討した結果は次の第2表の如くであった。
The composition of each of the sintered bodies thus obtained was examined. The results are shown in Table 2 below.

上記のようにして得た各製品に対し次いで浸漬処理を
なし、即ち−30mmHg程度の真空条件で気孔中の空気を除
去し且つタービン油を含浸させて含油軸受を得た。
Each product obtained as described above was then immersed, that is, the air in the pores was removed under a vacuum condition of about -30 mmHg and impregnated with turbine oil to obtain an oil-impregnated bearing.

これらの製品に対し、その特性試験を行った。即ち上
記したような各製品と、別に比較材として前記した従来
技術による純鉄系焼結軸受けおよび純鉄粉と黄銅粉と
を50:50の割合で混合し圧粉成形、焼結してから前記し
た各製品の同じ気孔率である20vol%にサイジングした
ものを準備し、これらの製品〜および比較材
について圧環強度、摩擦係数およびPV値1000kg/cm2・m/
minで40分(この条件で30分程度までは次第に昇温する
が、以後は殆んど昇温せず)連続回転したときの温度上
昇値を測定した結果は次の第3表の如くである。
These products were subjected to characteristic tests. That is, each product as described above, pure iron-based sintered bearing according to the prior art separately as a comparative material and pure iron powder and brass powder were mixed at a ratio of 50:50, compacted, and sintered. The same porosity of each of the above-mentioned products was prepared to have the same porosity of 20 vol%, and radial crushing strength, friction coefficient and PV value of these products and comparative materials were 1000 kg / cm 2 · m
The result of measurement of the temperature rise during continuous rotation for 40 minutes at min (the temperature gradually rises up to about 30 minutes under this condition, but hardly rises thereafter) is shown in Table 3 below. is there.

又上記したような本発明による各製品〜および比
較材について湿度80%、温度60℃の耐食性試験を行
い、錆発生の認められるまでの期間を測定した結果は次
の第4表の如くであった。
Table 4 shows the results of the corrosion resistance test of each of the products according to the present invention and the comparative material as described above at a humidity of 80% and a temperature of 60 ° C., and the measurement of the period until the occurrence of rust was observed. Was.

製造例2 前記した製造例1における第1表のの配合におい
て、外掛けで黒鉛粉末を2wt%含有せしめた外はすべて
製造例1におけると同じに実施して製品とした。
Manufacture example 2 In the composition of Table 1 in the manufacture example 1 described above, except that the graphite powder was contained at 2 wt% in the outer case, all were carried out in the same manner as in manufacture example 1 to obtain a product.

このものについての摩擦係数は0.068であって、より
優れた潤滑性を有することが確認され、又圧環強度は22
kg/mm2であって、好ましい強度を有しており、高温多湿
条件下の発錆試験も製造例1の場合と同じであることが
確認された。
The coefficient of friction for this product was 0.068, and it was confirmed that it had better lubricity.
kg / mm 2 , having a preferable strength, and it was confirmed that the rust test under the condition of high temperature and high humidity was the same as that of Production Example 1.

製造例3 製造例1におけると同じ銅被覆鉄粉100部に対し、Cu:
63.8%、Zn:29.7%、Mn:5%、Sn:0.5%、Al:1.0%のマ
ンガン青銅粉25部を混合した外はすべて製造例1におけ
ると同じに圧粉成形、焼結し、20vol%までサイジング
したものにタービン油を含浸させて含油軸受を得た。
Production Example 3 For 100 parts of the same copper-coated iron powder as in Production Example 1, Cu:
Except for mixing 25 parts of manganese bronze powder of 63.8%, Zn: 29.7%, Mn: 5%, Sn: 0.5%, and Al: 1.0%, all were compacted and sintered in the same manner as in Production Example 1, and 20vol %, And impregnated with turbine oil to obtain an oil-impregnated bearing.

このものについて特性試験を行った結果は圧環強度が
29.5kg/mm2、摩擦係数は0.075、連続回転温度上昇値は2
1.2℃であって、前記製造例1のものと同様であり、又
発錆の認められた日数120日以上であって、Alをそれな
りに含有している一般的マンガン青銅粉をそのまま用い
ても好ましい製品が得られるものであることが確認され
た。
The result of a characteristic test on this product showed that the radial crushing strength was
29.5 kg / mm 2, the friction coefficient 0.075, continuous rotation temperature rise value is 2
1.2 ° C., the same as that of Production Example 1 described above, and the number of days in which rust was observed was 120 days or more, and even if a general manganese bronze powder containing Al as such was used as it is. It was confirmed that a favorable product was obtained.

「発明の効果」 以上説明したような本発明によるときは鉄粉をCu被覆
したものを用いることにより軸体などの相手部材に対す
る好ましいなじみ性と卓越した耐食性を共に具備しなが
らそうした鉄粉粒子間に高力銅系合金たるマンガン青銅
分が安定強固に結合されることから強度においても優れ
た特性を有する焼結合金材を提供し得るものであり、又
その好ましい製造法を提供するものであって工業的にそ
の効果の大きい発明である。
[Effect of the Invention] According to the present invention as described above, the iron powder particles coated with Cu are used so that the iron powder particles have both favorable conformability to a mating member such as a shaft and excellent corrosion resistance while having excellent corrosion resistance. In addition, it is possible to provide a sintered alloy material having excellent properties in strength since manganese bronze as a high-strength copper alloy is stably and firmly bonded, and to provide a preferable production method thereof. Thus, the invention is industrially effective.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C22C 38/14 C22C 38/14 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 6 Identification code Agency reference number FI Technical display location C22C 38/14 C22C 38/14

Claims (6)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】Fe:20〜64wt%、Cu:27〜59wt%、Zn:6〜24
wt%、Sn:0.06〜0.6wt%、Al:tr〜3wt% を含有すると共に、 Mn:0.1〜3wt% を含有し、しかも前記Feによる鉄粉粒子表面に被覆率90
%以上のCuによる被覆状態とされたことを特徴とし、気
孔率15〜28vol%とされた焼結合金材。
(1) Fe: 20 to 64% by weight, Cu: 27 to 59% by weight, Zn: 6 to 24%
wt., Sn: 0.06 to 0.6 wt.%, Al: tr. to 3 wt.%, Mn: 0.1 to 3 wt.
A sintered alloy material having a porosity of 15 to 28 vol%, characterized by being coated with at least Cu.
【請求項2】Fe:20〜64wt%、Cu:24.2〜58.7wt%、Zn:
4.5〜23.8wt%、Sn:0.05〜0.6wt%、Al:tr〜2.98wt% を含有すると共に、 Mn:0.08〜2.98wt% を含有し、しかも黒鉛、二硫化モリブデン、鉛のような
固体潤滑材の1種または2種以上を0.5〜5wt%を含有
し、前記Feによる鉄粉粒子表面に被覆率90%以上のCuに
よる被覆状態とされたことを特徴とし、気孔率が15〜28
vol%とされた焼結合金材。
2. Fe: 20-64 wt%, Cu: 24.2-58.7 wt%, Zn:
4.5-23.8wt%, Sn: 0.05-0.6wt%, Al: tr-2.98wt%, Mn: 0.08-2.98wt%, and solid lubrication such as graphite, molybdenum disulfide, lead One or two or more of the materials contain 0.5 to 5% by weight, and the iron powder particles made of Fe are coated with Cu at a coverage of 90% or more, and have a porosity of 15 to 28.
Sintered alloy material with vol%.
【請求項3】20〜50wt%の銅を被覆率90%以上の被覆状
態とした鉄粉100重量部を用いることを特徴とし、この
銅被覆鉄粉に対し、Zn:30〜40wt%、Sn:0.3〜1wt%、A
l:tr〜5wt%、Mn:0.5〜5wt%を含有し残部がCuおよび不
可避的不純物よりなるマンガン青銅粉を25〜150重量部
添加混合した原料粉を圧粉成形してから焼結し、次いで
気孔率15〜28vol%にサイジングすることより成る焼結
合金材の製造法。
3. The method according to claim 1, wherein 100 to 100 parts by weight of iron powder coated with 20 to 50% by weight of copper and having a coating rate of 90% or more is used. : 0.3-1wt%, A
l: The raw material powder containing 25 to 150 parts by weight of manganese bronze powder containing tr to 5 wt%, Mn: 0.5 to 5 wt%, and the balance being Cu and unavoidable impurities, is sintered, and then sintered. Then, a method for producing a sintered alloy material, which comprises sizing to a porosity of 15 to 28 vol%.
【請求項4】原料粉を圧粉成形して得られた圧粉成形体
を耐熱性容器に収容すると共に施蓋し、800〜950℃の還
元性雰囲気で焼結する請求項3に記載の焼結合金材の製
造法。
4. The method according to claim 3, wherein the green compact obtained by compacting the raw material powder is accommodated in a heat-resistant container, covered, and sintered in a reducing atmosphere at 800 to 950 ° C. Manufacturing method of sintered alloy material.
【請求項5】20〜50wt%の銅を被覆率90%以上の被覆状
態とした鉄粉100重量部を用いることを特徴とし、この
銅被覆鉄粉に対し、Zn:30〜40wt%、Sn:0.3〜1wt%、A
l:tr〜5wt%、Mn:0.5〜5wt%を含有し残部がCuおよび不
可避的不純物よりなるマンガン青銅粉を19.7〜149.5重
量部と黒鉛、二硫化モリブデンまたは鉛のような固形潤
滑材の1種または2種以上を0.5〜5.3重量部を添加混合
した原料粉を圧粉成形してから焼結し、次いで気孔率15
〜28vol%にサイジングすることより成る焼結合金材の
製造法。
5. The method according to claim 1, wherein 100 parts by weight of iron powder coated with 20 to 50% by weight of copper and having a coating rate of 90% or more is used. Zn: 30 to 40% by weight, Sn : 0.3-1wt%, A
l: 19.7 to 149.5 parts by weight of manganese bronze powder containing tr to 5 wt% and Mn: 0.5 to 5 wt%, with the balance being Cu and inevitable impurities, and one of solid lubricants such as graphite, molybdenum disulfide or lead. The raw material powder obtained by adding and mixing 0.5 to 5.3 parts by weight of one or more kinds is compacted, sintered, and then porosity 15
A method for producing a sintered alloy material by sizing to ~ 28vol%.
【請求項6】原料粉を圧粉成形して得られた圧粉成形体
を耐熱性容器内に底面から離隔した状態で収容すると共
に施蓋し、800〜950℃の還元性雰囲気で焼結する請求項
5に記載の焼結合金材の製造法。
6. A green compact obtained by compacting raw material powder is housed in a heat-resistant container at a distance from the bottom surface and covered, and sintered in a reducing atmosphere at 800 to 950 ° C. The method for producing a sintered alloy material according to claim 5.
JP63110562A 1988-05-09 1988-05-09 Sintered alloy material and method for producing the same Expired - Fee Related JP2617334B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP63110562A JP2617334B2 (en) 1988-05-09 1988-05-09 Sintered alloy material and method for producing the same
GB8910565A GB2219601B (en) 1988-05-09 1989-05-08 Sintered alloy material and process for the preparation of the same
HK767/91A HK76791A (en) 1988-05-09 1991-10-03 Sintered alloy material and process for the preparation of the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63110562A JP2617334B2 (en) 1988-05-09 1988-05-09 Sintered alloy material and method for producing the same

Publications (2)

Publication Number Publication Date
JPH01283345A JPH01283345A (en) 1989-11-14
JP2617334B2 true JP2617334B2 (en) 1997-06-04

Family

ID=14538978

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63110562A Expired - Fee Related JP2617334B2 (en) 1988-05-09 1988-05-09 Sintered alloy material and method for producing the same

Country Status (3)

Country Link
JP (1) JP2617334B2 (en)
GB (1) GB2219601B (en)
HK (1) HK76791A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2356222B1 (en) * 2011-02-15 2012-05-31 Sinterizados Y Metalurgia De Solsona, S.A. PROCEDURE FOR THE MANUFACTURE OF SINTERED SLIDING BEARINGS.
JP6035906B2 (en) * 2012-06-29 2016-11-30 オムロン株式会社 Object detection actuator and object detection switch

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5651554A (en) * 1979-10-01 1981-05-09 Shiyooraito:Kk Machine parts obtained by powder metallurgical method
JPS5690954A (en) * 1979-12-22 1981-07-23 Tatsunosuke Kikuchi Sintered alloy
JPS5896850A (en) * 1981-12-04 1983-06-09 Hitachi Powdered Metals Co Ltd Low wear sintered sliding material containing oil
JPS6082646A (en) * 1983-10-11 1985-05-10 Tatsunosuke Kikuchi Sintered alloy and its manufacture
JPS60200927A (en) * 1984-03-27 1985-10-11 Tatsunosuke Kikuchi Production of sintered alloy
JPS61210155A (en) * 1985-03-15 1986-09-18 Hitachi Powdered Metals Co Ltd Iron-brass sintered sliding material

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2067221B (en) * 1979-12-22 1984-01-11 Tokyo Oilless Metal Ind Sintered alloys

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5651554A (en) * 1979-10-01 1981-05-09 Shiyooraito:Kk Machine parts obtained by powder metallurgical method
JPS5690954A (en) * 1979-12-22 1981-07-23 Tatsunosuke Kikuchi Sintered alloy
JPS5896850A (en) * 1981-12-04 1983-06-09 Hitachi Powdered Metals Co Ltd Low wear sintered sliding material containing oil
JPS6082646A (en) * 1983-10-11 1985-05-10 Tatsunosuke Kikuchi Sintered alloy and its manufacture
JPS60200927A (en) * 1984-03-27 1985-10-11 Tatsunosuke Kikuchi Production of sintered alloy
JPS61210155A (en) * 1985-03-15 1986-09-18 Hitachi Powdered Metals Co Ltd Iron-brass sintered sliding material

Also Published As

Publication number Publication date
JPH01283345A (en) 1989-11-14
GB8910565D0 (en) 1989-06-21
GB2219601A (en) 1989-12-13
HK76791A (en) 1991-10-11
GB2219601B (en) 1991-05-01

Similar Documents

Publication Publication Date Title
JP2652866B2 (en) Sintered material for oil-impregnated bearing and method for producing the same
JP5059022B2 (en) Iron-copper composite powder for powder metallurgy and method for producing the same
US20130251586A1 (en) Sintered bearing and preparation method thereof
JP2018025288A (en) Iron-copper based sintering oil-containing bearing and manufacturing method thereof
CN109692951B (en) Method for manufacturing powder metallurgy self-lubricating bearing
JPWO2013129226A1 (en) Sintered alloy with excellent wear resistance
JPH01275735A (en) Sintered alloy material and its manufacture
JP3613569B2 (en) Composite metal powder for sintered bearing and sintered oil-impregnated bearing
JP2539246B2 (en) Sintered alloy bearing material and manufacturing method thereof
WO2019059248A1 (en) Sintered oil-retaining bearing
JPH0995759A (en) Oil-impregnated sintered bearing and its production
JP2617334B2 (en) Sintered alloy material and method for producing the same
JP2003120674A (en) Sintered oil-containing bearing for electric motor and its manufacturing method
JPH01136944A (en) Sintered metallic material
JP2553374B2 (en) Sintered alloy material for oil-impregnated bearing and manufacturing method thereof
JP2631146B2 (en) Sintered metal body and method for producing the same
JPH01283346A (en) Sintered alloy material and its production
JP2009007433A (en) Copper-based oil-containing sintered sliding member and method for producing the same
GB2067221A (en) Sintered Alloys
JPS63282221A (en) Manufacture of composite sintered material
WO2018021501A1 (en) Iron-copper-based oil-impregnated sintered bearing and method for manufacturing same
JPS6253580B2 (en)
JP2517675B2 (en) Sintered copper alloy for high load sliding
JPS6346140B2 (en)
JPS6140027B2 (en)

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees