JP2517675B2 - Sintered copper alloy for high load sliding - Google Patents

Sintered copper alloy for high load sliding

Info

Publication number
JP2517675B2
JP2517675B2 JP1198013A JP19801389A JP2517675B2 JP 2517675 B2 JP2517675 B2 JP 2517675B2 JP 1198013 A JP1198013 A JP 1198013A JP 19801389 A JP19801389 A JP 19801389A JP 2517675 B2 JP2517675 B2 JP 2517675B2
Authority
JP
Japan
Prior art keywords
copper alloy
alloy
weight
sintered
high load
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1198013A
Other languages
Japanese (ja)
Other versions
JPH0364426A (en
Inventor
善三 石島
英雄 四方
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Hitachi Powdered Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Powdered Metals Co Ltd filed Critical Hitachi Powdered Metals Co Ltd
Priority to JP1198013A priority Critical patent/JP2517675B2/en
Publication of JPH0364426A publication Critical patent/JPH0364426A/en
Application granted granted Critical
Publication of JP2517675B2 publication Critical patent/JP2517675B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/06Sliding surface mainly made of metal
    • F16C33/12Structural composition; Use of special materials or surface treatments, e.g. for rust-proofing
    • F16C33/121Use of special materials

Landscapes

  • Sliding-Contact Bearings (AREA)
  • Powder Metallurgy (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は高負荷で摺動する軸受部品等に好適な焼結銅
合金に関するものである。
TECHNICAL FIELD The present invention relates to a sintered copper alloy suitable for a bearing component that slides under a high load.

〔従来の技術〕[Conventional technology]

滑り軸受等の摺動用焼結合金は、摺動特性がよく製造
しやすいこと等から、錫青銅系材料が古くから広い用途
に採用されている。更に、高面圧用には鉛、黒鉛、二硫
化モリブデン、等の固体潤滑剤を添加した材料がある。
Sintered alloys for sliding such as plain bearings have been widely used for a long time since tin bronze materials have been used since they have good sliding characteristics and are easy to manufacture. Further, for high surface pressure, there are materials to which solid lubricants such as lead, graphite and molybdenum disulfide are added.

ところで、一定の滑り速度で所定時間中に焼き付きを
起こさない最高面圧を主な銅系材料について比較する
と、黄銅、錫青銅、アルミ青銅の順に後者が高いことが
知られている。
By the way, when comparing the maximum surface pressures that do not cause seizure within a predetermined time at a constant sliding speed for the main copper-based materials, it is known that the latter is higher in the order of brass, tin bronze, and aluminum bronze.

例えば、相手材を0.4%Cの炭素鋼とし、滑り速度90m
/minで摺動したときの含油された各種焼結銅合金の耐焼
き付き限界面圧は、黄銅または錫青銅は約60kgf/cm2
アルミ青銅が約80kgf/cm2であり、より高負荷用の摺動
材料としてアルミ青銅が好ましい。
For example, the mating material is 0.4% C carbon steel and the sliding speed is 90m.
The seizure resistance limit surface pressure of various oil-impregnated sintered copper alloys when sliding at a speed of approx./min is about 60 kgf / cm 2 for brass or tin bronze,
Aluminum bronze is about 80 kgf / cm 2 , and aluminum bronze is preferable as a sliding material for higher loads.

アルミ青銅合金は耐蝕性にも優れ、溶製材料において
は、機械的性質を向上するために通常Ni,Fe,Mnを添加し
た実用アルミニウム青銅合金が知られている。
Aluminum bronze alloys are also excellent in corrosion resistance, and in the case of ingot materials, practical aluminum bronze alloys to which Ni, Fe, Mn are usually added in order to improve mechanical properties are known.

〔発明が解決しようとする課題〕[Problems to be Solved by the Invention]

前述したように焼結アルミ青銅合金は、比較的に高い
面圧でも耐摩耗性に優れているが、より高い100kgf/cm2
程度の面圧で摺動させると短時間で焼き付いてしまう。
As mentioned above, the sintered aluminum bronze alloy has excellent wear resistance even under relatively high surface pressure, but the higher 100 kgf / cm 2
If it is slid with a certain surface pressure, it will seize in a short time.

例えば焼結含油軸受でみられるように、始動時には摺
動面に潤滑油膜が形成されにくいために金属接触にな
り、アブレッシブ摩耗(引っかき摩耗)または凝着摩耗
に起こし、ついには焼き付きに至ると考えられる。
For example, as seen in sintered oil-impregnated bearings, it is difficult to form a lubricating oil film on the sliding surface at the time of starting, resulting in metal contact, causing abrasive wear (scratch wear) or adhesive wear, and eventually seizure. To be

この発明は、100kgf/cm2以上の面圧に耐える焼結アル
ミニウム青銅合金を得ることにある。
The present invention is to obtain a sintered aluminum bronze alloy capable of withstanding a surface pressure of 100 kgf / cm 2 or more.

〔課題を解決するための手段〕[Means for solving the problem]

本発明者らは、上記課題を解決するために研究を重ね
た結果、本発明に到達したもので、本発明は、 Al:6〜15重量%、Co:1〜10重量%を含有し、残部がCu
及び不可避不純物からなり、かつ組織が銅アルミニウム
合金基地中にCo相が点在していることを特徴とする高負
荷摺動用焼結銅合金、 Ni,Fe又はMnのうちの少なくとも1種を、合計で2重
量%以下含有する上記の高負荷摺動用焼結銅合金、及び 黒鉛又は窒化硼素のうちの少なくとも1種を、合計で
1〜5重量%含有する上記2種の高負荷摺動用焼結銅合
金、 を提供するものである。
The present inventors, as a result of repeated studies to solve the above problems, have reached the present invention, the present invention contains Al: 6-15 wt%, Co: 1-10 wt%, The balance is Cu
And a sintered copper alloy for high-load sliding, comprising at least one unavoidable impurity and having a Co phase interspersed in a copper-aluminum alloy matrix, at least one of Ni, Fe or Mn, The above-mentioned two types of high-load sliding sintered copper alloys containing at least 2% by weight in total and at least one of graphite and boron nitride in a total amount of 1 to 5% by weight. The present invention provides a copper alloy.

〔作用〕[Action]

以下、本発明における組成の限定利用を説明する。 The limited use of the composition in the present invention will be described below.

AlはCuと合金化する。Al含有量が6重量%より少ない
と機械的強度が低く、高面圧摺動の時に塑性流動し易
く、摺動面の気孔が閉鎖されて気孔に含浸されている潤
滑油の供給が困難になる。
Al alloys with Cu. If the Al content is less than 6% by weight, the mechanical strength is low, plastic flow easily occurs during high surface pressure sliding, and the pores on the sliding surface are closed, making it difficult to supply the lubricating oil impregnated in the pores. Become.

一方、15重量%を越えて添加するとγ相の析出が増
加し銅アルミニウム合金基地が脆化し、相手材を摩耗さ
せ易い傾向を示す。
On the other hand, when it is added in excess of 15% by weight, the precipitation of γ 2 phase increases, the copper-aluminum alloy matrix becomes brittle, and the mating material tends to be easily worn.

コバルトは銅アルミニウム合金系基地に完全に固溶さ
せずに点在させるとアブレッシブ摩耗を防ぐ作用をす
る。点在するコバルト相の大きさは特に限定されない
が、相手材を摩耗させにくくすることを考慮すると、粒
子径が数十μmよりは数μm程度の細かいほうが好まし
い。
Cobalt acts to prevent the abrasive wear when it is scattered in the copper-aluminum alloy base without being completely dissolved. The size of the cobalt phase scattered is not particularly limited, but in consideration of making the mating material less likely to be worn, it is preferable that the particle size be as small as several μm rather than several tens μm.

コバルト含有量が1重量%より少ないと耐アブレッシ
ブ摩耗性が不十分であり、10重量%を越えても費用の割
りに高価が伴わない。
If the cobalt content is less than 1% by weight, the abrasive wear resistance is insufficient, and even if it exceeds 10% by weight, the cost is not expensive.

Ni,Fe又はMnを含むアルミ青銅合金基地は、Cu−Al合
金基地より強靭で更に耐面圧性が向上する。
The aluminum bronze alloy base containing Ni, Fe or Mn is tougher than the Cu-Al alloy base and has further improved surface pressure resistance.

Ni,Fe及びMnは、それぞれAl及びCuと合金化して基地
を強化する。
Ni, Fe and Mn alloy with Al and Cu, respectively, to strengthen the matrix.

また、Ni,Fe及びMnは、α相領域を広げγ相の析出
を抑制して靭性を付与する性質があり、Mnは結晶粒を微
細化し、強度を向上させる。
Further, Ni, Fe and Mn have the property of expanding the α phase region and suppressing the precipitation of the γ 2 phase to impart toughness, and Mn makes the crystal grains finer and improves the strength.

添加方法は、Ni,Fe又はMnを含む銅合金粉か、又はア
ルミ青銅合金粉の形で行うが、産業上は市販の実用アル
ミ青銅合金であるCu−Al−Fe合金系又はCu−Al−Fe−Ni
−Mn合金系が好ましい。
The addition method is performed in the form of a copper alloy powder containing Ni, Fe or Mn, or an aluminum bronze alloy powder, which is an industrial commercial aluminum bronze alloy Cu-Al-Fe alloy system or Cu-Al-. Fe-Ni
The -Mn alloy system is preferred.

但し、これらNi,Fe及びMnの添加量が合計で10重量%
を越えるアルミ青銅合金粉は、硬さが高く粉末成形性が
悪いから、粉末成形性を考慮すると、これら三元素の添
加量が合計で10重量%以下のアルミ青銅合金を、例え
ば、50%Al−Cu合金粉及び銅粉と混合して用い、その混
合量も20重量%以下とするべきである。したがって、焼
結銅合金におけるNi,Fe,Mnの合計含有量を2重量%以下
とした。
However, the total amount of Ni, Fe and Mn added is 10% by weight.
Aluminum bronze alloy powders exceeding 10% have high hardness and poor powder formability, so considering the powder formability, aluminum bronze alloys with a total addition amount of these three elements of 10 wt% or less, for example, 50% Al -Used by mixing with Cu alloy powder and copper powder, and the mixed amount should be 20% by weight or less. Therefore, the total content of Ni, Fe, and Mn in the sintered copper alloy is set to 2% by weight or less.

黒鉛及び窒化硼素は固体潤滑剤として作用する。アル
ミニウム青銅合金の焼結は通常真空中で行われる。二硫
化モリブデンは加熱中に分解され易いのに対し、黒鉛及
び窒化硼素は加熱中に分解されることがない。黒鉛およ
び窒化硼素の添加量は、それぞれ又は両者の合計が1重
量%に満たないと潤滑性の向上が少なく、5重量%を越
えると材料の強度が低下してしまう。
Graphite and boron nitride act as solid lubricants. Sintering of aluminum bronze alloys is usually performed in vacuum. Molybdenum disulfide is easily decomposed during heating, whereas graphite and boron nitride are not decomposed during heating. If the addition amount of each of graphite and boron nitride is less than 1% by weight, the improvement of lubricity is small, and if it exceeds 5% by weight, the strength of the material decreases.

〔実施例〕〔Example〕

以下に、本発明の実施例の比較例と対比して説明す
る。
Below, it demonstrates in comparison with the comparative example of the Example of this invention.

下記の原料粉を準備した。 The following raw material powders were prepared.

(1)50%Al銅合金粉 粒度350メッシュ以下 (2)10%Al−4%Fe銅合金粉 粒度350メッシュ以下 (3)10%Al−3%Ni−4%Fe−1%Mn銅合金粉 粒度350メッシュ以下 (4)コバルト粉 粒度350メッシュ以下 (5)銅粉 粒度100メッシュ以下 (6)錫粉 粒度250メッシュ以下 (7)黒鉛粉 粒度100メッシュ以下 (8)窒化硼素粉 粒度350メッシュ以下 (9)二硫化モリブデン粉 粒度350メッシュ以下 これらの粉末を用い第1表に示す組成になるように混
合し、所定寸法の軸受形状に圧粉成形し、ついで真空中
で温度950℃にて焼結した後、通常のサイジングを施
し、タービン油を含油して試料とした。試料の寸法は内
径10mm、外径16mm、全長10mmである。
(1) 50% Al copper alloy powder, grain size 350 mesh or less (2) 10% Al-4% Fe copper alloy powder, grain size 350 mesh or less (3) 10% Al-3% Ni-4% Fe-1% Mn copper alloy Powder Particle size 350 mesh or less (4) Cobalt powder Particle size 350 mesh or less (5) Copper powder Particle size 100 mesh or less (6) Tin powder Particle size 250 mesh or less (7) Graphite powder Particle size 100 mesh or less (8) Boron nitride powder particle size 350 mesh (9) Molybdenum disulfide powder with a grain size of 350 mesh or less These powders are mixed so as to have the composition shown in Table 1, compacted into a bearing having a predetermined size, and then in vacuum at a temperature of 950 ° C. After sintering, normal sizing was performed and turbine oil was impregnated into a sample. The dimensions of the sample are 10 mm inside diameter, 16 mm outside diameter, and 10 mm total length.

なお、比較例である試料番号29の錫青銅は、アンモニ
ア分解ガス中で焼結したものである。
The tin bronze of sample No. 29, which is a comparative example, was sintered in an ammonia decomposition gas.

試料番号1〜28の焼結アルミ青銅合金基地の組織は、
α相を呈しており、試料番号11〜18にはκ相と考えられ
る析出物が認められる。
The structures of the sintered aluminum bronze alloy bases of sample numbers 1 to 28 are
Precipitates that are considered to be the κ phase are observed in Sample Nos. 11 to 18 that exhibit the α phase.

また、コバルトを添加した試料は基地中に灰青色状の
コバルト粒子が点在しており、試料番号19〜28には、粒
界付近に固体潤滑剤が認められる。
In addition, the cobalt-added sample has gray-blue cobalt particles scattered in the matrix, and sample Nos. 19 to 28 show solid lubricants near the grain boundaries.

なお、試料番号14〜18において、混合粉の圧縮性は試
料番号14から18に向かってしだいに悪くなり、試料番号
18では成形作業性が好ましくなかった。
In addition, in sample numbers 14 to 18, the compressibility of the mixed powder gradually deteriorates from sample number 14 to 18,
In No. 18, molding workability was not preferable.

次に各試料について軸受耐久試験を行った。S45C炭素
鋼を熱処理した回転軸を用い、滑り速度94m/minで、面
圧を増加させて行き、摩擦係数が急上昇する面圧を求
め、その結果を第1表に限界面圧として表わした。運転
時の通常の摩擦係数は0.02〜0.04である。
Next, a bearing durability test was conducted on each sample. Using a rotating shaft obtained by heat treatment of S45C carbon steel, the surface pressure at which the friction coefficient sharply rises was calculated by increasing the surface pressure at a sliding speed of 94 m / min. The results are shown in Table 1 as the limit surface pressure. The normal friction coefficient during operation is 0.02 to 0.04.

第1表のように、比較例の錫青銅、アルミニウム又は
コバルト添加量が過小又は過多なアルミ青銅に比べ、本
発明に係る合金、更に、Ni,Fe,Mn及び固体潤滑剤を含む
合金は高い面圧で焼き付かないことがわかる。
As shown in Table 1, the alloys according to the present invention and the alloys containing Ni, Fe, Mn and the solid lubricant are higher than the tin bronze of the comparative example and the aluminum bronze containing too little or too much aluminum or cobalt. You can see that the surface pressure does not cause seizure.

〔発明の効果〕 以上説明したように本発明の焼結合金は従来のアルミ
青銅や錫青銅に比べ耐荷重性に優れているものであるか
ら、始動時に高負荷がかかる内燃機関のスターター軸受
など、摺動部品の寿命向上をはかることができ、また、
高負荷摺動部品への利用拡大を可能にしたものである。
[Effects of the Invention] As described above, the sintered alloy of the present invention is more excellent in load bearing capacity than conventional aluminum bronze or tin bronze, and therefore, a starter bearing of an internal combustion engine to which a high load is applied at the time of starting, etc. , The life of sliding parts can be improved, and
It is possible to expand the use to high load sliding parts.

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】Al:6〜15重量% Co:1〜10重量% を含有し、残部がCu及び不可避不純物からなり、かつ組
織が銅アルミニウム合金基地中にCo相が点在しているこ
とを特徴とする高負荷摺動用焼結銅合金。
1. A composition comprising Al: 6 to 15% by weight Co: 1 to 10% by weight, the balance being Cu and inevitable impurities, and having a structure in which a Co phase is scattered in a copper-aluminum alloy matrix. Sintered copper alloy for high load sliding characterized by
【請求項2】Ni,Fe又はMnのうちの少なくとも1種を、
合計で2重量%以下含有する請求項1記載の高負荷摺動
用焼結銅合金。
2. At least one of Ni, Fe or Mn
The sintered copper alloy for high-load sliding according to claim 1, which contains 2% by weight or less in total.
【請求項3】黒鉛又は窒化硼素のうちの少なくとも1種
を、合計で1〜5重量%含有する請求項1または2記載
の高負荷摺動用焼結銅合金。
3. The sintered copper alloy for high load sliding according to claim 1, which contains at least one of graphite and boron nitride in a total amount of 1 to 5% by weight.
JP1198013A 1989-08-01 1989-08-01 Sintered copper alloy for high load sliding Expired - Fee Related JP2517675B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1198013A JP2517675B2 (en) 1989-08-01 1989-08-01 Sintered copper alloy for high load sliding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1198013A JP2517675B2 (en) 1989-08-01 1989-08-01 Sintered copper alloy for high load sliding

Publications (2)

Publication Number Publication Date
JPH0364426A JPH0364426A (en) 1991-03-19
JP2517675B2 true JP2517675B2 (en) 1996-07-24

Family

ID=16384060

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1198013A Expired - Fee Related JP2517675B2 (en) 1989-08-01 1989-08-01 Sintered copper alloy for high load sliding

Country Status (1)

Country Link
JP (1) JP2517675B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5976695A (en) * 1996-10-02 1999-11-02 Westaim Technologies, Inc. Thermally sprayable powder materials having an alloyed metal phase and a solid lubricant ceramic phase and abradable seal assemblies manufactured therefrom
JP4507766B2 (en) * 2004-08-27 2010-07-21 株式会社ダイヤメット Sintered Cu alloy bearing for recirculation exhaust gas flow control valve of EGR type internal combustion engine showing high strength and excellent wear resistance in high temperature environment

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5442657A (en) * 1977-09-09 1979-04-04 Hitachi Ltd Operating mechanism for switch

Also Published As

Publication number Publication date
JPH0364426A (en) 1991-03-19

Similar Documents

Publication Publication Date Title
JP5371182B2 (en) Cu-Ni-Sn based copper-based sintered alloy having excellent friction and wear resistance and bearing material made of the alloy
JP3782446B2 (en) High-strength, high-temperature, self-lubricating composite material and manufacturing method thereof
JP5783303B2 (en) Copper-based sintered sliding member
EP0202035B1 (en) Wear-resistant, sintered iron alloy and process for producing the same
EP2918693B1 (en) Sintered alloy superior in wear resistance
CN105452507A (en) Valve guide made from sintered alloy, and method for producing same
JPS5822359A (en) Iron base sintered alloy for structural member of fuel supply apparatus
JP6315241B2 (en) Wear-resistant copper-based sintered alloy
JPH0995759A (en) Oil-impregnated sintered bearing and its production
JPH07300656A (en) Sintered bearing alloy for high temperature use and its production
JPH079046B2 (en) Copper-based sintered body
JP2517675B2 (en) Sintered copper alloy for high load sliding
JP3298636B2 (en) Sliding material
JP3682556B2 (en) Heat and wear resistant sintered stainless steel
JPH06192784A (en) Wear resistant sintered sliding member
JP7216842B2 (en) Method for producing Cu-Ni-Al based sintered alloy
JPH07247488A (en) Self-lubricating composite material
JP2697171B2 (en) Copper-based sintered alloy with excellent wear resistance at high temperatures
JP2853574B2 (en) Free graphite-precipitated iron-based sintered material with excellent seizure resistance
JP3246213B2 (en) Free graphite-precipitated iron-based sintered material with excellent strength and wear resistance
JP3246211B2 (en) Abrasion-resistant free graphite-precipitated iron-based sintered material with excellent seizure resistance
JP3246212B2 (en) Abrasion-resistant free graphite-precipitated iron-based sintered material with excellent seizure resistance
JP2001152210A (en) Al-Bi SINETRED BEARING ALLOY AND ITS PRODUCING METHOD
JPS6133054B2 (en)
JP2770736B2 (en) Free graphite precipitated iron-based sintered material with excellent strength and wear resistance

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees