JPS6347782B2 - - Google Patents
Info
- Publication number
- JPS6347782B2 JPS6347782B2 JP25377987A JP25377987A JPS6347782B2 JP S6347782 B2 JPS6347782 B2 JP S6347782B2 JP 25377987 A JP25377987 A JP 25377987A JP 25377987 A JP25377987 A JP 25377987A JP S6347782 B2 JPS6347782 B2 JP S6347782B2
- Authority
- JP
- Japan
- Prior art keywords
- powder
- sintering
- sintered
- brass
- iron
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000000843 powder Substances 0.000 claims description 29
- 229910001369 Brass Inorganic materials 0.000 claims description 24
- 239000010951 brass Substances 0.000 claims description 24
- 238000005245 sintering Methods 0.000 claims description 23
- 229910045601 alloy Inorganic materials 0.000 claims description 21
- 239000000956 alloy Substances 0.000 claims description 21
- 229910052802 copper Inorganic materials 0.000 claims description 18
- 229910052742 iron Inorganic materials 0.000 claims description 17
- 239000000203 mixture Substances 0.000 claims description 7
- 238000004519 manufacturing process Methods 0.000 claims description 6
- 229910052718 tin Inorganic materials 0.000 claims description 6
- 229910052725 zinc Inorganic materials 0.000 claims description 6
- 229910052782 aluminium Inorganic materials 0.000 claims description 3
- 229910052745 lead Inorganic materials 0.000 claims description 3
- 230000001590 oxidative effect Effects 0.000 claims description 2
- 238000007792 addition Methods 0.000 claims 1
- 238000010438 heat treatment Methods 0.000 claims 1
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 39
- 239000011701 zinc Substances 0.000 description 24
- 239000010949 copper Substances 0.000 description 20
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 14
- 239000000463 material Substances 0.000 description 12
- 238000005056 compaction Methods 0.000 description 8
- 239000011135 tin Substances 0.000 description 5
- 238000000034 method Methods 0.000 description 4
- 238000000465 moulding Methods 0.000 description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 3
- 238000005260 corrosion Methods 0.000 description 3
- 230000007797 corrosion Effects 0.000 description 3
- 230000008018 melting Effects 0.000 description 3
- 238000002844 melting Methods 0.000 description 3
- 239000011812 mixed powder Substances 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- 229910001339 C alloy Inorganic materials 0.000 description 2
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 2
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 2
- 239000000314 lubricant Substances 0.000 description 2
- 239000010687 lubricating oil Substances 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 230000008016 vaporization Effects 0.000 description 2
- 229910002549 Fe–Cu Inorganic materials 0.000 description 1
- 229910017112 Fe—C Inorganic materials 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- 229910020813 Sn-C Inorganic materials 0.000 description 1
- 229910018732 Sn—C Inorganic materials 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 238000005275 alloying Methods 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 230000008094 contradictory effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005496 eutectics Effects 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000009766 low-temperature sintering Methods 0.000 description 1
- 238000005461 lubrication Methods 0.000 description 1
- 239000002075 main ingredient Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- CWQXQMHSOZUFJS-UHFFFAOYSA-N molybdenum disulfide Chemical compound S=[Mo]=S CWQXQMHSOZUFJS-UHFFFAOYSA-N 0.000 description 1
- 229910052982 molybdenum disulfide Inorganic materials 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 238000005204 segregation Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000010723 turbine oil Substances 0.000 description 1
Landscapes
- Powder Metallurgy (AREA)
Description
【発明の詳細な説明】
本発明は焼結合金の製造法に係り、強度、靭性
に優れ、しかも摩擦係数その他の軸受機能におい
て卓越した特性を示す焼結合金を比較的低い成形
圧および焼結温度により工業的有利に製造し得る
方法を提供しようとするものである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing a sintered alloy, and the present invention relates to a method for producing a sintered alloy, which is produced by producing a sintered alloy that has excellent strength and toughness, as well as excellent properties in terms of coefficient of friction and other bearing functions, using relatively low molding pressure and sintering. The purpose is to provide a method that can be produced industrially advantageously depending on the temperature.
軸受材その他として用いられる焼結合金として
は従来から種々のものが知られているが、これを
大別すると銅系と鉄系とがあり、銅系にはCu−
Sn、Cu−Sn−C、Cu−Sn−Pb−C合金などが、
又鉄系にはFe−C、Fe−Pb−C、Fe−Cu、Fe
−Cu−C合金などが多様に提案され又実用化さ
れている。しかしこのような従来のものにおい
て、鉄系のものは銅系のものに比較して硬度が高
く、軸材などに対するなじみが必ずしも好ましい
ものとなし得ず、又耐食性などにおいても劣る
が、その機械的性質が優れ、したがつて薄肉化が
可能であると共に比較的安価であるなどのメリツ
トを有し、これらの特性に関しては銅系のものが
対称的な関係を有している。 Various sintered alloys have been known for use as bearing materials and other materials, but they can be roughly divided into copper-based and iron-based.
Sn, Cu-Sn-C, Cu-Sn-Pb-C alloys, etc.
In addition, iron-based materials include Fe-C, Fe-Pb-C, Fe-Cu, Fe
-Cu-C alloys and the like have been variously proposed and put into practical use. However, in such conventional products, iron-based products have higher hardness than copper-based products, do not necessarily conform well to shaft materials, etc., and are inferior in corrosion resistance. Copper-based materials have the advantage of having excellent physical properties, allowing for thin walls, and being relatively inexpensive. Copper-based materials have a symmetrical relationship with respect to these properties.
即ちこの種軸受などに用いられる焼結合金とし
ては上述したような軸材などに対するなじみ、耐
食性、機械的強度などの何れに関しても優れた性
能を有するものが好ましいことは当然であつて従
来から斯様な焼結合金を得べく種々に検討が重ね
られて来たところであるが、上記したような各特
性は技術的に相反するものと言うべく、それらを
有効に満足させる製品は未だ得られるに到つてお
らず、従つて一般的に銅系焼結合金は主として含
油軸受に利用すべきものとされ、機械部品は鉄系
焼結合金を採用すべきものとされている。 In other words, it is natural that the sintered alloy used in this type of bearing should be one that has excellent performance in terms of conformability to the shaft material, corrosion resistance, mechanical strength, etc., as described above, and has been conventionally used. Various studies have been conducted to obtain various sintered alloys, but since the above-mentioned characteristics are technically contradictory, a product that effectively satisfies them has not yet been obtained. Therefore, it is generally believed that copper-based sintered alloys should be used primarily for oil-impregnated bearings, and iron-based sintered alloys should be used for mechanical parts.
本発明は上記したような実情に鑑み検討を重ね
て創案されたものであつて、鉄粉に対し黄銅粉末
を30〜70%の範囲で混合したものを成形した圧粉
体を気化したZnガス雰囲気で820〜900℃で焼結
することを提案するもので、上記圧粉体には必要
に応じ黒鉛粉末、二硫化モリブデン又はモリブデ
ンのような固体潤滑剤を添加する。 The present invention was devised after repeated studies in view of the above-mentioned circumstances, and it uses Zn gas that is made by vaporizing a green compact made from a mixture of iron powder and brass powder in a range of 30 to 70%. It is proposed to sinter at 820 to 900°C in an atmosphere, and if necessary, a solid lubricant such as graphite powder, molybdenum disulfide, or molybdenum is added to the green compact.
即ち斯かる本発明について更に説明すると、本
発明者は上記したような技術構想に立脚して鉄、
銅及び錫の如きを用いた各種焼結合金について仔
細な検討をなした結果、その銅及び錫又は亜鉛を
単体として配合した場合とそれを合金とした黄銅
として利用した場合においては焼結時の挙動を異
にすることを発見した。蓋し本発明で採用する銅
を主体とした黄銅は一般的にCu:59〜88%、
Zn:10〜39%、Pb、Sn、Al、Feの何れか1種又
は2種以上を夫々1%以下の範囲で含有したもの
であつて、夫々の成分組成%が異ることによりそ
れなりの特性が得られるとしても、やはり銅単体
より融点が低い。即ちZn単体は420℃程度のよう
な低融点であつて前記Cu、Feの融点より甚だし
く異るからこのCu、FeとZnを混合したものは焼
結に当つてZn分が気散し、又Znの偏析などを発
生してZn含有量の高いβ相の如きを形成するも
のであるのに対し、そのCuとZnを一旦合金化さ
せて得られる黄銅粉末を用いることによりその
Fe粉との混合物においてはFe系焼結合金より相
当に低い温度で焼結せしめられ、且つその焼結時
に黄銅成分の一部が鉄と共晶して黄銅と鉄との合
金を作るものであり、従つて鉄系焼結合金と同等
ないしそれ以上の機械的強度を有し、しかも黄銅
質で被覆されて軸材等に対するなじみの好ましい
ものが比較的低い焼結温度で得られる。 That is, to further explain the present invention, based on the technical concept as described above, the present inventor has developed an iron,
As a result of detailed studies on various sintered alloys using copper and tin, we found that when copper, tin, or zinc are combined as a single substance, and when they are used as an alloy of brass, the difference during sintering. I discovered that they behave differently. The copper-based brass used in the present invention generally has a Cu content of 59 to 88%.
Zn: 10 to 39%, containing one or more of Pb, Sn, Al, and Fe within a range of 1% or less, and has a certain amount of difference depending on the percentage of each component. Even if these properties can be obtained, the melting point is still lower than that of copper alone. In other words, Zn alone has a low melting point of about 420°C, which is significantly different from the melting points of Cu and Fe, so in a mixture of Cu, Fe and Zn, the Zn component is diffused during sintering, and While Zn segregation occurs and forms a β phase with a high Zn content, this can be achieved by using brass powder obtained by once alloying Cu and Zn.
In a mixture with Fe powder, it is sintered at a considerably lower temperature than Fe-based sintered alloys, and during sintering, a part of the brass component is eutectic with iron to form an alloy of brass and iron. Therefore, it has a mechanical strength equivalent to or higher than that of iron-based sintered alloys, and is coated with brass material, so that it can be obtained at a relatively low sintering temperature.
Fe粉末と前記したCuを主体とした粉末との配
合割合については黄銅粉末を30〜70%程度の範囲
内で実施できる。これをより具体的に言うならば
黄銅粉末が30%未満の場合には単なる鉄系焼結体
に近いようなものとなつて黄銅との合金層も充分
に得られないことから上記したような本発明の特
性を適切に得難い。一方黄銅粉末が70%以上であ
るようなことは前記したようなFe粒子の中核的
作用が得難いこととなり、その機械的強度等は銅
系焼結合金に近いものとなる。 Regarding the blending ratio of the Fe powder and the above-mentioned Cu-based powder, the brass powder can be used in a range of about 30 to 70%. To put this more specifically, if the brass powder content is less than 30%, it becomes similar to a mere iron-based sintered body, and a sufficient alloy layer with brass cannot be obtained. It is difficult to properly obtain the characteristics of the present invention. On the other hand, if the brass powder content is 70% or more, it will be difficult to obtain the core action of the Fe particles as described above, and the mechanical strength etc. will be close to that of a copper-based sintered alloy.
上記のような鉄粉と黄銅粉末との混合物に対す
る圧粉成形は従来から一般的に知られている如何
なる圧粉成形技術によつても適切に行い得られ、
これを焼結することによつて上記したような特質
を有する製品を得ることができる。しかし本発明
においてはこのような圧粉成形→焼結を具体的に
比較的低い成形力で実施し、しかも機械的強度を
充分に得ることが可能である。蓋しこの種焼結合
金体においてその機械的強度を高めるにはその圧
粉成形時の加圧力増加と焼結温度の上昇を図るこ
とが必要であるが、斯かる圧粉成形時の高圧は該
圧粉成形機構の作業性を低下しそれなりの運転コ
ストアツプを来すだけでなしに成形金型の損耗を
高める。しかも高圧成形で成程機械的強度が高め
られたとしても他方においてはこの種焼結金属体
本来の特質である多孔性が大きく失われることと
なり、含油軸受などとする場合の含油量が低減す
る。勿論原料たる混合粉の必要量も大とならざる
を得ない。本発明によるものはこのような関係に
対しても好ましい解決を与えるものであつて、比
較的低い圧粉成形体においてもなお高強度の製品
を得しめることを可能とする。即ちこのため上記
したような圧粉成形体の還元性又は無酸化性雰囲
気における焼結に当つてZn又はZnOを圧粉体の
上層に配列し或いは別の容器に入れて共に加熱し
Znガス雰囲気での焼結処理をなすものであつて、
それにより蒸発したZnガス体は圧粉組織に吸収
されて合金化する。又このようにすることによつ
て前記した黄銅粉末中に含有されたZn分が焼結
時に気散することも適切に防止される。こうして
Zn分を吸収したものは比較的低密度であつても
その機械的強度が高められることとなり、このよ
うに比較的低密度の圧粉成形体はその圧粉成形が
平易且つ円滑に行われ金型の損耗を低減しうるこ
とは明かである。しかも気孔率も高められること
からこの種焼結合金の特性が充分に確保され、含
有量なども高められるし、所定寸法の製品を得る
ための原料粉の必要量も縮減される。 Powder compaction of the above-mentioned mixture of iron powder and brass powder can be suitably performed by any conventionally known compacting technique,
By sintering this, a product having the above characteristics can be obtained. However, in the present invention, it is possible to concretely carry out such powder compacting and then sintering with a relatively low compacting force, and to obtain sufficient mechanical strength. In order to increase the mechanical strength of this type of sintered alloy body, it is necessary to increase the pressure and sintering temperature during powder compaction. This not only reduces the workability of the powder compaction mechanism and increases operating costs, but also increases wear and tear on the molding die. Moreover, even if the mechanical strength is increased by high-pressure forming, the porosity, which is an inherent characteristic of this type of sintered metal body, will be largely lost, and the oil content will be reduced when used as an oil-impregnated bearing. . Of course, the required amount of mixed powder as a raw material must also be large. The present invention provides a preferable solution to this relationship, and makes it possible to obtain a product with high strength even with a comparatively low compaction. That is, for this reason, when sintering the powder compact as described above in a reducing or non-oxidizing atmosphere, Zn or ZnO may be arranged in the upper layer of the compact, or placed in a separate container and heated together.
It is a sintering process in a Zn gas atmosphere,
As a result, the evaporated Zn gas is absorbed into the compacted powder structure and alloyed. Also, by doing so, it is possible to appropriately prevent the Zn contained in the brass powder from being diffused during sintering. thus
Even if the Zn content is absorbed, its mechanical strength is increased even if it has a relatively low density.In this way, compacted compacts with a relatively low density can be compacted easily and smoothly, making them gold-plated. It is clear that mold wear can be reduced. Furthermore, since the porosity is increased, the properties of this type of sintered alloy are sufficiently ensured, the content is increased, and the amount of raw material powder required to obtain a product of a predetermined size is reduced.
焼結温度については一般的に1000℃以下であつ
て、前記したような鉄系のもの或いは銅系の焼結
合金を得る場合の焼結温度より全般的に低いもの
でもよい。上記のようにZn又はZnOを用いてZn
雰囲気を形成することも700℃以上であればよく、
成程上記したような範囲内でも黄銅粉の配合量如
何でそれなりに焼結温度を調整するとしても700
〜1000℃の範囲内で夫々の場合に即した温度が選
ばれる。これをより具体的に言うならば例えば黄
銅粉が30%で鉄粉が70%のような場合は900℃前
後であり、又黄銅粉が70%で鉄粉が30%程度とさ
れた混合粉の場合においては820℃程度を採用す
ることが好ましい。それらの間の中間的配合関係
の場合にはその程度に応じて焼結温度を調整し操
作する。 The sintering temperature is generally 1000° C. or lower, and may be generally lower than the sintering temperature used to obtain the above-mentioned iron-based or copper-based sintered alloys. Zn using Zn or ZnO as above
It is sufficient to form an atmosphere at a temperature of 700℃ or higher.
Even if the sintering temperature is adjusted appropriately depending on the amount of brass powder mixed within the above range, the sintering temperature is 700%.
A temperature suitable for each case is selected within the range of ~1000°C. To put this more specifically, for example, if the brass powder is 30% and the iron powder is 70%, the temperature is around 900℃, and the mixed powder is about 70% brass powder and 30% iron powder. In this case, it is preferable to adopt a temperature of about 820°C. In the case of an intermediate compositional relationship between them, the sintering temperature is adjusted and operated according to the degree.
黒鉛質その他の固形潤滑剤は3%以下で配合さ
れ、このものは圧粉成形を容易にすると共に得ら
れる製品の潤滑性能をより改善する。本発明によ
るものの具体的な実施例について説明すると以下
の如くである。 Graphite and other solid lubricants are blended in an amount of 3% or less, which facilitates compaction and further improves the lubrication performance of the resulting product. Specific embodiments of the present invention will be described below.
実施例 1
Cuを主体とした黄銅粉としてCu:60.5%、
Zn:38.5%で残部がPb、Sn、Al、Feを夫々0.5%
以下と不可避不純物より成る黄銅鋳物を溶融して
から噴霧処理し、得られた60〜350メツシユのも
のと150〜250メツシユの鉄粉を準備し、これらを
等量に配合したものを用いて外径10mm、内径4mm
で、高さが8mmの軸受材にこの条件下での標準的
圧粉成形圧として約2500Kg/cm2の加圧力で成形
し、密度約6.0g/cm3の成形体となし、これを850
℃の還元性雰囲気で焼結した。Example 1 Brass powder mainly containing Cu: 60.5%,
Zn: 38.5%, the balance is Pb, Sn, Al, Fe each 0.5%
Brass castings consisting of the following and unavoidable impurities are melted and sprayed, the obtained 60 to 350 mesh and 150 to 250 mesh of iron powder are prepared, and these are mixed in equal amounts and used for external production. Diameter 10mm, inner diameter 4mm
Then, a bearing material with a height of 8 mm was molded at a pressure of about 2500 kg/cm 2 , which is the standard compaction pressure under these conditions, to form a compact with a density of about 6.0 g/cm 3 .
Sintered in a reducing atmosphere at ℃.
一方上記と同じに配合した混合粉を上記より低
い圧粉成形圧である約2200Kg/cm2で成形し、密度
5.8g/cm3の成形体としたものを容器に入れ、
ZnOと共に850℃で加熱し、即ちZnガス雰囲気で
約30分間焼結して製品とした。 On the other hand, the mixed powder blended in the same manner as above was compacted at a compacting pressure of approximately 2200 kg/ cm2 , which is lower than the above, and the density
Place the 5.8g/ cm3 molded product in a container.
It was heated together with ZnO at 850°C, that is, sintered in a Zn gas atmosphere for about 30 minutes to produce a product.
実施例 2
実施例1と同じ黄銅粉及び鉄粉を用い、黄銅粉
50%、鉄粉48%、黒鉛粉末2%の割合で混合した
ものを実施例1におけると同じに標準的圧粉成形
圧で同じ寸法に圧粉成形した密度6.0g/cm3のも
のと、それより低い成形圧により密度5.8g/cm3
とした成形した。Example 2 Using the same brass powder and iron powder as in Example 1, brass powder
A mixture of 50% iron powder, 48% iron powder, and 2% graphite powder was compacted to the same dimensions using the same standard compaction pressure as in Example 1, with a density of 6.0 g/ cm3 ; Density 5.8g/cm 3 due to lower molding pressure
It was molded.
前者は単なる還元性雰囲気で焼結処理し、後者
は実施例1の後段におけると同じにZnガスを用
いた還元性雰囲気で830℃で焼結処理して目的の
製品とした。 The former was sintered in a simple reducing atmosphere, and the latter was sintered at 830° C. in a reducing atmosphere using Zn gas as in the latter part of Example 1 to obtain the desired product.
更に上記したような実施例1〜2のものについ
て夫々タービン油系の潤滑油を含浸させたものに
関しその軸受性能を試験測定した結果は何れも従
来の銅系軸受材と比較して荷重15Kg/mm2以上、
PV値1000以上において好ましい軸受性能を有す
ることが確認され、勿論鉄系のものより全領域に
亘つて好ましいことが知られたが、又このような
実施例のものについてその圧縮成形、気孔率(容
量%)を種々に調整したものについて機械的強度
(圧環強さ)、温度上昇および摩擦係数を検討し測
定した結果を要約して示すと添付図面の通りであ
る。蓋し本発明により比較的低い圧粉成形圧を採
用し気孔率としてそれなりに低い成形体であつて
もそれが高い成形圧で圧粉成形されたものにおけ
ると同程度ないしそれ以上の機械的強度を示すこ
とは添附図面におけるB図の図表に示す通りであ
つて、気孔率が3〜4%低いもので同等の圧環強
さを得ることができることを示している。しかも
このような本発明の亜鉛気化雰囲気での焼結処理
によるものは一般的に若干の温度上昇および摩擦
係数の低下傾向を示すことが明かであり、例えば
同じPV値での温度上昇が1〜5℃低く、摩擦係
数も夫々に低減されていることは、A図に示す通
りであつて銅系粉末を利用した焼結体としての特
性を更に改善しているものと言える。 Furthermore, the results of testing and measuring the bearing performance of Examples 1 and 2 impregnated with turbine oil-based lubricating oil show that the load of 15 kg/15 kg/min is higher than that of conventional copper-based bearing materials. mm2 or more,
It was confirmed that the bearing performance was favorable at a PV value of 1000 or more, and of course it was known to be better than iron-based bearings over the entire range. The attached drawing summarizes the results of examining and measuring the mechanical strength (radial crushing strength), temperature rise, and coefficient of friction for variously adjusted materials (volume %). According to the present invention, a comparatively low powder compaction pressure is used, and even if the porosity is relatively low, the mechanical strength is comparable to or higher than that of a compact compacted at a high compacting pressure. This is as shown in the diagram of Figure B in the attached drawings, and shows that the same radial crushing strength can be obtained with a 3 to 4% lower porosity. Moreover, it is clear that the sintering process in the zinc vaporizing atmosphere of the present invention generally shows a tendency for a slight increase in temperature and a decrease in the coefficient of friction; for example, at the same PV value, the temperature increase is The fact that the temperature is 5°C lower and the coefficient of friction is also reduced, as shown in Figure A, can be said to further improve the characteristics of a sintered body using copper-based powder.
以上説明したような本発明によるときはCuを
主体とし、これにZnその他の金属分を含有した
黄銅粉末を混合したものをプレス成形した成形体
を結焼させることにより軸材などに対するなじみ
が良好でしかもその機械的強度が高く、又耐食性
の優れたものを得ることができ、加うるに上記焼
結に当つてZnガス雰囲気を利用することにより
比較的低密度の圧粉成形体であつても好ましい強
度を得しめると共に前記黄銅粉末中のZn分が焼
結時において気散することを回避し、有利に目的
の焼結体を得しめ且し該焼結体に対する潤滑油の
含浸量を高めてその軸受性能をより向上し、更に
成形を容易とすると共に比較的低温の焼結処理で
有利に製品を得しめるなどの作用効果を有してお
り、工業的にその効果の大きい発明である。 According to the present invention as explained above, a molded body made by press-molding a mixture of copper as a main ingredient and brass powder containing Zn and other metals is sintered, so that it conforms well to the shaft material, etc. Moreover, it is possible to obtain a product with high mechanical strength and excellent corrosion resistance, and in addition, by using a Zn gas atmosphere during the above sintering, a compact with a relatively low density can be obtained. In addition to achieving preferable strength, the Zn content in the brass powder is prevented from evaporating during sintering, and the desired sintered body can be advantageously obtained, and the amount of lubricating oil impregnated into the sintered body can be reduced. This is an industrially highly effective invention, as it has the effect of further improving bearing performance, making it easier to form, and advantageously obtaining a product through relatively low-temperature sintering. be.
図面は本発明の技術的内容を示すものであつ
て、本発明によるものの気孔率と機械的強度及び
摩擦係数や温度上昇の関係を示した図表である。
又この図面で、白抜き測定点は単なる還元雰囲気
焼結の場合、ソリツドの測定点はZnガスを用い
た本発明による焼結の場合を示すものである。
The drawing shows the technical content of the present invention, and is a chart showing the relationship between the porosity, mechanical strength, friction coefficient, and temperature rise of the product according to the present invention.
Furthermore, in this drawing, the outlined measurement points indicate the case of simple reducing atmosphere sintering, and the solid measurement points indicate the case of sintering according to the present invention using Zn gas.
Claims (1)
〜70%の範囲内で添加混合したものをプレス成形
した圧粉体を気化したZnガス雰囲気で700〜1000
℃で焼結することを特徴とする焼結合金の製造
法。 2 ZnまたはZnOを圧粉体の上層に配装し、あ
るいは圧粉体と共に容器に入れて還元または無酸
化雰囲気中で700〜1000℃に加熱してZnガス雰囲
気を形成し且つ焼結する特許請求の範囲第1項に
記載の焼結合金の製造法。 3 Cu:59〜88%、Zn:10〜39%、Pb、Sn、
Al、Feの何れか1種または2種以上を1%以下
の範囲で含有した黄銅の粉末を用いる特許請求の
範囲第1項に記載の焼結合金の製造法。[Claims] 1 Brass powder containing Cu and Zn is
700 to 1000 in a vaporized Zn gas atmosphere of a press-molded compact with a mixture of additions within the range of ~70%.
A method for producing a sintered alloy characterized by sintering at °C. 2. A patent for disposing Zn or ZnO on the upper layer of a green compact or placing it in a container together with the green compact and heating it to 700 to 1000°C in a reducing or non-oxidizing atmosphere to form a Zn gas atmosphere and sintering. A method for producing a sintered alloy according to claim 1. 3 Cu: 59-88%, Zn: 10-39%, Pb, Sn,
The method for producing a sintered alloy according to claim 1, which uses brass powder containing one or more of Al and Fe in an amount of 1% or less.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP25377987A JPS63121627A (en) | 1987-10-09 | 1987-10-09 | Manufacture of sintered alloy |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP25377987A JPS63121627A (en) | 1987-10-09 | 1987-10-09 | Manufacture of sintered alloy |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP5711480A Division JPS56156703A (en) | 1979-12-22 | 1980-05-01 | Manufacture of sintered alloy |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS63121627A JPS63121627A (en) | 1988-05-25 |
JPS6347782B2 true JPS6347782B2 (en) | 1988-09-26 |
Family
ID=17256030
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP25377987A Granted JPS63121627A (en) | 1987-10-09 | 1987-10-09 | Manufacture of sintered alloy |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS63121627A (en) |
-
1987
- 1987-10-09 JP JP25377987A patent/JPS63121627A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS63121627A (en) | 1988-05-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6142987B2 (en) | Iron-based sintered sliding member | |
GB2216545A (en) | Sintered alloy for oil-retaining bearing and method for manufacturing the sintered alloy | |
JP2014177658A (en) | Iron-based sintered sliding member and production method thereof | |
JP3613569B2 (en) | Composite metal powder for sintered bearing and sintered oil-impregnated bearing | |
US3461069A (en) | Self-lubricating bearing compositions | |
GB2220421A (en) | Sintered alloy material and process for the preparation of the same | |
JP3401619B2 (en) | Method for producing at least wear layer of sintered part capable of high load | |
JPH0995759A (en) | Oil-impregnated sintered bearing and its production | |
JPH07166278A (en) | Coppery sliding material and production thereof | |
US4474732A (en) | Fully dense wear resistant alloy | |
US6676894B2 (en) | Copper-infiltrated iron powder article and method of forming same | |
JPH0140907B2 (en) | ||
JPS6347782B2 (en) | ||
GB2067221A (en) | Sintered Alloys | |
JP4177534B2 (en) | Alloy powder for copper-based high strength sintered parts | |
JPS6346139B2 (en) | ||
JPS6253580B2 (en) | ||
JPS6038442B2 (en) | Manufacturing method of aluminum alloy low density sintered parts | |
JP6384687B2 (en) | Manufacturing method of iron-based sintered sliding member | |
JPS6346138B2 (en) | ||
JPS59107006A (en) | Two-layered oil-impregnated bearing made of sintered fe material and its production | |
JPH045745B2 (en) | ||
JPH04191301A (en) | Iron-based powder mixed material for powder meatallurgy | |
JPH01283346A (en) | Sintered alloy material and its production | |
JP2631146B2 (en) | Sintered metal body and method for producing the same |