JPS6345753A - Negative active material for battery - Google Patents

Negative active material for battery

Info

Publication number
JPS6345753A
JPS6345753A JP61187871A JP18787186A JPS6345753A JP S6345753 A JPS6345753 A JP S6345753A JP 61187871 A JP61187871 A JP 61187871A JP 18787186 A JP18787186 A JP 18787186A JP S6345753 A JPS6345753 A JP S6345753A
Authority
JP
Japan
Prior art keywords
mercury
zinc
powder
indium
alloy powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61187871A
Other languages
Japanese (ja)
Inventor
Nobuyori Kasahara
笠原 暢順
Toyohide Uemura
植村 豊秀
Kesao Takizawa
滝沢 袈裟生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Original Assignee
Mitsui Mining and Smelting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Priority to JP61187871A priority Critical patent/JPS6345753A/en
Publication of JPS6345753A publication Critical patent/JPS6345753A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/42Alloys based on zinc
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To increase discharge performance of a battery by mixing solid mercury alloy containing at least one element selected from a group of lead, indium, thallium, cadmium, and bismuth, with nonamalgamated zinc powder or nonamalgamated zinc alloy powder. CONSTITUTION:Solid mercury alloy powder obtained by alloying at least one element selected from a group of lead, indium, thallium, cadmium, and bismuth with mercury by applying mechanical vibration or stirring in a dry process at normal temperature is mixed with nonamalgamated zinc powder or nonamalgamated zinc alloy powder in a specified ratio. Even if this mixture has the same mercury content as zinc alloy powder amalgamated in a wet process or in melting process, hydrogen evolution is remarkably retarded, and discharge performance is retained in a high level as a negative active material for a battery. The ratio of mercury to alloying ingredient is preferable to limit to about 50wt.% in terms of operation. However, when indium alone is used as the alloying ingredient, 60wt.% or more indium can be used. By this process, hydrogen gas evolution is remarkably retarded and discharge performance is retained in a high level.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、電池用負極活物質に関し、さらに評言すると
、水銀含有量が低減され、且つ水素ガス発生を抑制し、
しかも電池の放電性能を高い水準に維持し9うるように
工夫したものである。
[Detailed Description of the Invention] <Industrial Application Field> The present invention relates to a negative electrode active material for batteries, and more particularly, the present invention relates to a negative electrode active material for batteries, which has a reduced mercury content, suppresses hydrogen gas generation,
Moreover, it has been devised to maintain the discharge performance of the battery at a high level.

く背景技術〉 亜鉛を負極活物質として用いたアルカリ電池等において
は、水酸化カリウム水溶液等の強アルカリ性電解液を用
いるため、電池を密閉しなければならない。この電池の
密閉は電池の小型化を図る際には特に重要であるが、同
時に電池保存中の亜鉛の腐食により発生する水素ガスを
閉じ込めることになる。従って長期保存中に電池内部の
ガス圧が高まり、密閉が完全なほど爆発等の危険が伴な
う。
BACKGROUND TECHNOLOGY In alkaline batteries using zinc as a negative electrode active material, a strong alkaline electrolyte such as an aqueous potassium hydroxide solution is used, so the battery must be sealed tightly. This sealing of the battery is particularly important when attempting to miniaturize the battery, but it also traps hydrogen gas generated due to corrosion of zinc during battery storage. Therefore, during long-term storage, the gas pressure inside the battery increases, and the more completely the battery is sealed, the greater the risk of explosion.

その対策として、負極活物質である亜鉛の腐食を防止し
て、電池内部の水素ガス発生を少なくすることが研究さ
れ、水銀の水素過電圧を利用した氷化娃鉛を負極活物質
として用いろことが専ら行なわれている。このため、今
日市販されているアルカリ電池の負極活物質は′5′〜
10重量%程度の多量の水銀を含有した亜鉛粉末(以下
、高木化亜鉛粉末と称す)を用いておゆ、社会的ニーズ
として、より低木化の亜鉛粉末、あるいは無水化の亜鉛
粉末を負極活物質として用いた電池の開発が強く期待さ
れるようになってきた。
As a countermeasure, research has been conducted to prevent corrosion of zinc, which is an active material for the negative electrode, and to reduce the generation of hydrogen gas inside the battery. is carried out exclusively. For this reason, the negative electrode active materials of alkaline batteries commercially available today are
Zinc powder containing a large amount of mercury (about 10% by weight) (hereinafter referred to as high-density zinc powder) is used for negative electrode activation. There are strong expectations for the development of batteries using this material.

そこで、電池内の水銀含有量を低減させるべく、亜鉛に
各種金属を添加した亜鉛合金粉末に関する提案が種々な
されている。例えば、亜鉛に鉛やインジウム等を添加し
た亜鉛合金粉末等がある。これら亜鉛合金粉末を使うこ
とによって水銀量を低減させ、かつ電池内部の水素ガス
発生を従来の高木化亜鉛粉末と同等もしくはそれ以上に
抑制することができるが、まだ充分とは言えない。
Therefore, various proposals have been made regarding zinc alloy powders in which various metals are added to zinc in order to reduce the mercury content in batteries. For example, there are zinc alloy powders made by adding lead, indium, etc. to zinc. By using these zinc alloy powders, the amount of mercury can be reduced and hydrogen gas generation inside the battery can be suppressed to a level equal to or greater than that of conventional highly arborized zinc powders, but this is still not sufficient.

また、電池用亜鉛粉作成のプロセスとしては、通常、■
溶融亜鉛の1トマイズ粉末を分級し、湿式氷化する方法
、あるいは■溶融氷化した亜鉛のアトマイズ粉末を分級
する方法、の何れかが採用されるが、■の方法では湿式
氷化・乾燥する際に亜鉛粉末表面において酸化亜鉛(Z
nO)が生成してしまい、このZnOの生成量が大にな
るとガス発生など、電池性能の劣化につながるという問
題がある一方、■の方法では溶融氷化亜鉛よりの水銀揮
発により環境が汚染されるとともに添加水銀量に対する
水素ガス発生抑制作用が■の方法に較べて劣る傾向があ
るという問題がある。このように従来の亜鉛粉の氷化方
法は上述のような問題点を有するものの、これら以外の
適当な方法はほとんど研究されていないのが現状である
In addition, the process of making zinc powder for batteries usually involves ■
Either the method of classifying the atomized powder of molten zinc and wet freezing, or the method of classifying the atomized powder of molten zinc is adopted, but the method of ■ involves wet freezing and drying. When zinc oxide (Z
On the other hand, method (2) pollutes the environment due to mercury volatilization from melted frozen zinc. In addition, there is a problem that the effect of suppressing hydrogen gas generation relative to the amount of mercury added tends to be inferior to that of method (2). Although the conventional method of freezing zinc powder has the above-mentioned problems, the present situation is that suitable methods other than these have hardly been studied.

このような状況の中で本発明者の中の一部の者は先に電
池用負極活物質として無汞化亜鉛粉末と氷化亜鉛粉末と
を混合したものを提案している(特願昭60−1466
22号)。
Under these circumstances, some of the inventors of the present invention have previously proposed a mixture of non-oxidized zinc powder and frozen zinc powder as a negative electrode active material for batteries (Japanese Patent Application No. 60-1466
No. 22).

しかしながらここで用いている氷化亜鉛粉末ハ上述の■
の方法で得られたものであるので、上述のZnO生成の
問題を有したままである。
However, the frozen zinc powder used here is
Since it was obtained by the method described above, it still has the above-mentioned problem of ZnO production.

また、上述の■の湿式氷化方式によると水銀と亜鉛との
反応がおそいので、上記提案方法では氷化亜鉛粉末の水
銀含有量が3〜15重量%が操作上容易な範囲であるの
で、無汞化亜鉛粉末に対する氷化亜鉛粉末の混合割合も
15: 1〜1: 1と多くなってZnOにより影響が
さらに大となり、ZnOによる2次的なガス発生が見ら
れるようになるという問題がある。
In addition, according to the above-mentioned wet freezing method, the reaction between mercury and zinc is slow, so in the proposed method, the mercury content of the frozen zinc powder is within a range of 3 to 15% by weight, which is easy to operate. The mixing ratio of glazed zinc powder to non-viscous zinc powder increases to 15:1 to 1:1, and the influence of ZnO becomes even greater, causing the problem of secondary gas generation due to ZnO. be.

〈発明の目的〉 本発明は上述したような事情に鑑みなされたもので、水
銀含有量が少く、且つ水素ガス発生を抑制し、しかも電
池の放電性能を高い位置に維持しうる電池用負極活物質
を提供することを目的とする。
<Object of the Invention> The present invention was made in view of the above-mentioned circumstances, and provides a negative electrode active for batteries that has a low mercury content, suppresses hydrogen gas generation, and can maintain high discharge performance of the battery. The purpose is to provide the substance.

く目的を達成するための手段〉 本発明者らは、前記目的を達成するために鋭意研究を重
ねた結果、船、インジウム、タリウム、カドミウム及び
ビスマスよりなる群より選ばれる1種以上の元素と水銀
とを乾式常温下で機械的振動あるいは撹拌を与えて氷化
することにより得られる固体状の水銀合金粉末と、無汞
化亜鉛粉末あるいは無汞化亜鉛合金粉末とを特定量混合
した混合物は、従来の湿式あるいは溶融下で氷化した亜
鉛合金粉末と同等の水銀含有量であっても水素ガス発生
量を著しく抑制し、しかも放電性能を高い水準に維持し
うる電池用負極活物質となることを知見した。また、上
記固体状の水銀合金粉末は上述の機械式氷化以外に、水
銀と上記合金成分とを混合してその溶融温度まで加熱し
、溶融または半溶融状態で合金化することによっても得
られることを確認した。かかる知見に基づく本発明の構
成は、鉛、インジウム、タリウム、カドミウム及びビス
マスよりなる群より選ばれる1種以上の元素を含有する
固体状の水銀合金粉末と、無汞化亜鉛粉末あるいは無汞
化亜鉛合金粉末とを混合してなることを特徴とする。
Means for Achieving the Object> As a result of intensive research to achieve the above object, the present inventors have discovered that one or more elements selected from the group consisting of indium, thallium, cadmium, and bismuth. A mixture of a specific amount of solid mercury alloy powder obtained by freezing mercury by applying mechanical vibration or stirring at room temperature, and a non-visculating zinc powder or a non-visculating zinc alloy powder is a mixture. , it becomes a negative electrode active material for batteries that can significantly suppress the amount of hydrogen gas generated and maintain a high level of discharge performance even if the mercury content is equivalent to that of conventional wet or melted zinc alloy powder. I found out that. In addition to the above-mentioned mechanical freezing method, the solid mercury alloy powder can also be obtained by mixing mercury and the above-mentioned alloy components, heating the mixture to its melting temperature, and alloying it in a molten or semi-molten state. It was confirmed. The structure of the present invention based on this knowledge is based on a solid mercury alloy powder containing one or more elements selected from the group consisting of lead, indium, thallium, cadmium, and bismuth, and a non-grading zinc powder or a non-grading zinc powder. It is characterized by being mixed with zinc alloy powder.

以下に本発明の構成をさらに詳細に説明する。The configuration of the present invention will be explained in more detail below.

本発明において用いる固体状の水銀合金粉末は、船、イ
ンジウム、タリウム、カドミウム及びビスマスよりなる
群より選ばれる1種以上の元素と液体水銀とを所定の割
合で反応させて固体状の合金生成物としたものであり、
詳に評言すると、鉛、インジウム、タリウム、カドミウ
ム及びビスマスよりなる群より選ばれる1種以上の元素
と液体水銀とを所定の割合で非金属製の密閉容器にとり
、これに乾燥常温下で激しい機械的振動あるいは撹拌を
与えることにより水銀と上記合金成分とを反応させるか
、または上記合金成分と液体水銀とをセラミック製るつ
ぼにとり、これを低温で加熱溶融または半溶融し、冷却
後、粉砕することによって得られるものである。
The solid mercury alloy powder used in the present invention is a solid alloy product obtained by reacting liquid mercury with one or more elements selected from the group consisting of indium, thallium, cadmium, and bismuth at a predetermined ratio. and
To explain in detail, liquid mercury and one or more elements selected from the group consisting of lead, indium, thallium, cadmium, and bismuth are placed in a nonmetallic airtight container in a predetermined ratio, and then subjected to severe mechanical processing under dry conditions at room temperature. Either react the mercury with the alloy component by applying physical vibration or stirring, or place the alloy component and liquid mercury in a ceramic crucible, heat it to melt or semi-melt it at a low temperature, cool it, and then crush it. This is obtained by

ここで、機械的振動あるいは撹拌を与える装置としたは
バイブレータ、高速回転混合機などが利用できる。この
反応に要する時間は装置の種類あるいはその運転状態に
より異なるので特定できないが、両者の反応が終了して
液体水銀が認められなくなるまで行えばよい。例えば、
小型の高速振動ミキサーを用いて水filOgと鉛粉末
10gとを反応させた場合には約5分間で反応が終了し
た。なお、このような機械的振動あるいは撹拌によって
得られた反応生成物は、はぼ粉末状であるので、特に粉
砕等の必要はない。
Here, as a device for applying mechanical vibration or stirring, a vibrator, a high-speed rotating mixer, etc. can be used. The time required for this reaction cannot be specified as it varies depending on the type of apparatus or its operating conditions, but it may be carried out until both reactions are completed and liquid mercury is no longer observed. for example,
When water filOg and 10 g of lead powder were reacted using a small high-speed vibration mixer, the reaction was completed in about 5 minutes. Incidentally, since the reaction product obtained by such mechanical vibration or stirring is in the form of a powder, there is no particular need for pulverization or the like.

また、加熱溶融または半溶融により固体状の水銀合金粉
末を得る場合には、合金状態図より判かろように、特に
鉛、インジウムなどを合金成分として選んだ場合、その
溶融温度が水銀−亜鉛の場合よりも著しく低(なり(後
の実施例参照)、水銀の環境中への揮発が最小限に抑制
でき、且つ溶解操作も容易となる。
In addition, when obtaining a solid mercury alloy powder by heat melting or semi-melting, as can be seen from the alloy phase diagram, especially when lead, indium, etc. are selected as alloy components, the melting temperature is higher than that of mercury-zinc. This is significantly lower than in the case of mercury (see Examples below), the volatilization of mercury into the environment can be suppressed to a minimum, and the dissolution operation is also facilitated.

このようにして本発明の固体状の水銀合金粉末を得る場
合、反応生成物が固体となる範囲内であれば、任意の比
率としてよいが、水銀と合金成分との比率は、概ね水@
SO重量%前後、合金成分50重量%前後が操作上好ま
しい。ただし、合金成分としてインジウムを単独で用い
ろ場合には1: 1の比率では生成物が常温で液体とな
るので、この場合にはインジウムを60.ij量%以上
とする必要がある。
When obtaining the solid mercury alloy powder of the present invention in this way, any ratio may be used as long as the reaction product becomes a solid, but the ratio of mercury to alloy components is approximately the same as water@
Operationally, it is preferable that SO is around 50% by weight and the alloy component is around 50% by weight. However, if indium is used alone as an alloying component, the product will be liquid at room temperature at a ratio of 1:1, so in this case, indium will be used at 60%. It is necessary to set the amount of ij to % or more.

以上のようにして得られる固体状の水銀合金粉末に、無
汞化亜鉛粉末あるいは無汞化亜鉛合金粉末を適当量混合
することにより水素ガス発生抑制効果が極めて優れ、且
つ放電性能も良好な電池用魚種活物質を得ることができ
るが、このときの電池用負aIi活物質の平均水銀含有
量は3重量%以下であっても所期の目的が充分達成でき
、0.1〜1.5重量%と少量であっても水素ガス発生
が極めて低い範囲に抑制される。
By mixing an appropriate amount of non-transforming zinc powder or non-transforming zinc alloy powder into the solid mercury alloy powder obtained as described above, a battery with an extremely excellent hydrogen gas generation suppressing effect and good discharge performance can be produced. Even if the average mercury content of the negative aIi active material for batteries is 3% by weight or less, the intended purpose can be sufficiently achieved, and it can be obtained from 0.1 to 1% by weight. Even at a small amount of 5% by weight, hydrogen gas generation is suppressed to an extremely low level.

また、本発明では、後述の実施例に示すように、亜鉛中
に存在して亜鉛の水素過電圧を高めるような合金成分、
例えば鉛、インジウム、タリウム、ガリウムなどを含有
する無汞化亜鉛合金粉末を用いてもよく、この場合には
本発明の効果が水素過電圧の上昇によリ一層向上される
ことが確認された。
In addition, in the present invention, as shown in the examples below, alloy components that are present in zinc and increase the hydrogen overvoltage of zinc,
For example, it has been confirmed that a non-toxic zinc alloy powder containing lead, indium, thallium, gallium, etc. may be used, and in this case, the effect of the present invention is further improved by increasing the hydrogen overvoltage.

く作   用〉 本発明の作用は充分には解明されていないが、次のよう
に推定されろ。
Effects> Although the effects of the present invention have not been fully elucidated, they can be estimated as follows.

■ アルカリ電解液中で水銀−亜鉛合金粉末中の水銀が
無汞化亜鉛粉末または無汞化亜鉛合金粉末に移行し、そ
の表面に高濃度の水銀含有層が生成してこれが水素ガス
発生を113@する。
■ In an alkaline electrolyte, the mercury in the mercury-zinc alloy powder transfers to the non-transformed zinc powder or non-transformed zinc alloy powder, forming a highly concentrated mercury-containing layer on its surface, which causes hydrogen gas generation. @do.

■ 湿式氷化プロセスに起因するZnOの生成がないの
で水素ガス発生が低減できる。
■ Hydrogen gas generation can be reduced because ZnO is not produced due to the wet freezing process.

■ 無汞化亜鉛合金粉末を用いたときにはその添加成分
の水素過電圧向上効果と協働して相乗的に水素ガス発生
を抑制する。
■ When non-irradiated zinc alloy powder is used, hydrogen gas generation is suppressed synergistically by working with the hydrogen overvoltage improving effect of its additive components.

く実 施 例〉 以下、実施例及び比較例に基づいてさらに本発明を具体
的に説明する。
EXAMPLES The present invention will be further specifically described below based on Examples and Comparative Examples.

実施例1 水[50gと鉛粉末50gとを肉厚のガラス容器中で約
15分間混合・撹拌を激しく行い、表−1に示す組成の
固体状の水銀−鉛合金粉末を得た。。次にこの粉末と無
汞化亜鉛粉末とを1:49の重量比で混合して、平均水
銀含有率が1.O3i量%の混合粉末を得た。
Example 1 50 g of water and 50 g of lead powder were vigorously mixed and stirred for about 15 minutes in a thick-walled glass container to obtain solid mercury-lead alloy powder having the composition shown in Table 1. . Next, this powder and non-oxidized zinc powder were mixed at a weight ratio of 1:49, so that the average mercury content was 1. A mixed powder containing O3i amount % was obtained.

この混合粉末の粒度は48〜150メツシユとした。な
お、この粒度は以下の実施例及び比較例においても同様
である。
The particle size of this mixed powder was 48 to 150 mesh. Note that this particle size is the same in the following examples and comparative examples.

この混合亜鉛合金粉末を使って水素ガス発生試験を行な
い、その結果を表−1に示す。
A hydrogen gas generation test was conducted using this mixed zinc alloy powder, and the results are shown in Table 1.

なお、水素ガス発生試験は、電解液として濃度40重量
%の水酸化カリウム水溶液に酸化亜鉛を飽和させたもの
を5ml用い、混合亜鉛合金粉末10gを用いて45℃
で50日間のガス発生量(rrt’/g)を測定した。
The hydrogen gas generation test was conducted using 5 ml of a potassium hydroxide aqueous solution with a concentration of 40% by weight saturated with zinc oxide as the electrolytic solution, and 10 g of mixed zinc alloy powder at 45°C.
The amount of gas generated (rrt'/g) for 50 days was measured.

また、これらの混合亜鉛合金粉末を使って負極活物質と
し、市販のアルカリ・マンガン電池と同じ構造を有する
電池を試作し、放電負荷10Ω、20℃の放電条件によ
し、終止電圧0.9■までの放電持続時間を測定した。
In addition, using these mixed zinc alloy powders as a negative electrode active material, we prototyped a battery with the same structure as a commercially available alkaline manganese battery, and under discharge conditions of 20°C and a discharge load of 10Ω, the final voltage was 0.9■ The discharge duration was measured.

結果を表−1に示す。The results are shown in Table-1.

実施例2〜10 実施例1と同様の方法により表−1に示す組成の各種水
銀合金粉末を作成した。次にこれらの粉末とfM末化亜
鉛粉末とを1:49の重量比で混合して平均水銀含有率
が1.0重量%の混合粉末を得た。
Examples 2 to 10 Various mercury alloy powders having the compositions shown in Table 1 were prepared in the same manner as in Example 1. Next, these powders and fM powdered zinc powder were mixed at a weight ratio of 1:49 to obtain a mixed powder having an average mercury content of 1.0% by weight.

これら混合粉末を使って実施例1と同様の方法で水素ガ
ス発生試験と電池性能試験を行い、その結果を表−1に
示した。
Using these mixed powders, a hydrogen gas generation test and a battery performance test were conducted in the same manner as in Example 1, and the results are shown in Table 1.

実施例11 実施例1と同様にして、表−1に示す組成の水銀−給金
金粉を作成した。次にこの粉末と無汞化亜鉛合金粉末(
鉛0.05重量%、インジウム0.02重量%、残部亜
鉛)とを1:499の重量比で混合し、平均水銀含有率
0.1重量%の混合粉末を得た。
Example 11 Mercury-feeding gold powder having the composition shown in Table 1 was prepared in the same manner as in Example 1. Next, this powder and non-oxidized zinc alloy powder (
(0.05% by weight of lead, 0.02% by weight of indium, and the balance being zinc) were mixed at a weight ratio of 1:499 to obtain a mixed powder with an average mercury content of 0.1% by weight.

これを用いて実施例1と同様の方法で水素ガス発生試験
と電池性能試験とを行ない、その結果を表−1に示した
Using this, a hydrogen gas generation test and a battery performance test were conducted in the same manner as in Example 1, and the results are shown in Table 1.

実施例12 水銀50gと鉛粉末50gとを石英るつぼにとり、16
0℃の温度にて約1時間保った後、これを徐冷して固体
状の水銀−鉛合金を得た。次いでこれを微粉砕した後、
無汞化亜鉛粉末と1:49の重量比で混合して平均水銀
含有率1.0重量%の混合粉末を得た。
Example 12 50 g of mercury and 50 g of lead powder were placed in a quartz crucible,
After being kept at a temperature of 0° C. for about 1 hour, this was slowly cooled to obtain a solid mercury-lead alloy. Next, after pulverizing this,
It was mixed with anodized zinc powder at a weight ratio of 1:49 to obtain a mixed powder with an average mercury content of 1.0% by weight.

これを用いて実施例1と同様の方法で水素ガス発生試験
と電池性能試験とを行ない、その結果を表−1に示した
Using this, a hydrogen gas generation test and a battery performance test were conducted in the same manner as in Example 1, and the results are shown in Table 1.

実施例13〜21 実施例12と同様の方法で表−1に示す組成の固体状の
水銀合金粉末を得た。これと無汞化亜鉛粉末とを1:4
9の重量比で混合して平均含有率1.0重量%の混合粉
末を得た。
Examples 13 to 21 Solid mercury alloy powders having the compositions shown in Table 1 were obtained in the same manner as in Example 12. This and untreated zinc powder were mixed at 1:4.
A mixed powder having an average content of 1.0% by weight was obtained by mixing at a weight ratio of 9.9% by weight.

これらを用いて実施例1と同様の方法で水素ガス発生試
験と電池性能試験とを行ない、その結果を表−1に示し
た。
Using these, a hydrogen gas generation test and a battery performance test were conducted in the same manner as in Example 1, and the results are shown in Table 1.

実施例22 実施例12と同様にして得た水銀−給金金粉を用い、こ
れに無汞化亜鉛合金粉末(鉛0.05重量%、インジウ
ム0.02重量%、残部亜鉛)とを1: 499の重量
比で混合し、平均水銀含有率0.1重量%の混合粉末を
得た。
Example 22 Using mercury-feeding gold powder obtained in the same manner as in Example 12, a 1:1 ratio of non-irradiated zinc alloy powder (lead 0.05% by weight, indium 0.02% by weight, balance zinc) was added to it. They were mixed at a weight ratio of 499 to obtain a mixed powder with an average mercury content of 0.1% by weight.

これを用いて実施例1と同様の方法で水素ガス発生試験
と電池性能試験とを行ない、その結果を表−1に示した
Using this, a hydrogen gas generation test and a battery performance test were conducted in the same manner as in Example 1, and the results are shown in Table 1.

比較例1 湿式氷化法により作成した水銀含有率6,0重量%の氷
化亜鉛粉末を実施例1と同様の方法で水素ガス発生試験
と電池性能試験を行ない、その結果を表−2に示した。
Comparative Example 1 A hydrogen gas generation test and a battery performance test were conducted on frozen zinc powder with a mercury content of 6.0% by weight prepared by the wet freezing method in the same manner as in Example 1, and the results are shown in Table 2. Indicated.

比較例2 湿式氷化法により作成した水銀含有率1.0重量%の氷
化亜鉛粉末を実施例1と8様の方法で水素ガス発生試験
と電池性能試験を行ない、その結果を表−2に示した。
Comparative Example 2 A hydrogen gas generation test and a battery performance test were conducted on frozen zinc powder with a mercury content of 1.0% by weight prepared by the wet freezing method in the same manner as in Examples 1 and 8, and the results are shown in Table 2. It was shown to.

比較例3 湿式氷化法によね作成した水銀含有率0.1重量%の氷
化亜鉛粉末を実施例1と同様の方法で水素ガス発生試験
と電池性能試験を行ない、その結果を表−2に示した。
Comparative Example 3 A hydrogen gas generation test and a battery performance test were conducted on frozen zinc powder with a mercury content of 0.1% by weight prepared by the wet freezing method in the same manner as in Example 1, and the results are shown in Table 2. It was shown to.

表−2 表−11表−2に示すように、固体状の水銀合金粉末と
無水化亜鉛粉末あるいは無汞化亜鉛合金粉末との混合物
を負極活物質に用いた実施例1〜22は、湿式氷化亜鉛
粉末を用いた比較例1〜3と較べて、水素ガス発生抑制
効果が優れるとともに放電性能が高水準に保たれている
Table 2 Table 11 As shown in Table 2, Examples 1 to 22 in which a mixture of solid mercury alloy powder and anhydrous zinc powder or anhydrous zinc alloy powder were used as the negative electrode active material were wet-type. Compared to Comparative Examples 1 to 3 using frozen zinc powder, the hydrogen gas generation suppressing effect is excellent and the discharge performance is maintained at a high level.

〈発明の効果〉 以上、実施例とともに具体的に説明したように、本発明
にかかる電池用負極活物質は、水銀含有率を低減させて
も水素ガス発生を著しく抑制するとともに放電性能を高
水準に保つことができる。また、本発明の電池用負極活
物質に使用する固体状の水銀合金粉末の製造は、機械的
振動や窺拌のエネルギーにより可能であるので、従来の
ように加熱しなり水銀入り水溶液を取扱たりする必要が
ないので、水銀による環境汚染防止に極めて有効である
<Effects of the Invention> As specifically explained above in conjunction with Examples, the negative electrode active material for batteries according to the present invention significantly suppresses hydrogen gas generation even when the mercury content is reduced, and maintains discharge performance at a high level. can be kept. In addition, since the solid mercury alloy powder used in the negative electrode active material for batteries of the present invention can be produced using the energy of mechanical vibration or stirring, it is possible to produce the solid mercury alloy powder using the energy of mechanical vibration or agitation. It is extremely effective in preventing environmental pollution caused by mercury.

さらにこの固体状の水銀合金粉末を溶融方式により製造
する場合にも、その溶融温度が例えば水銀−亜鉛合金の
場合と較べて低いので、合金化が極めて容品である。
Further, even when this solid mercury alloy powder is produced by a melting method, the melting temperature is lower than that of, for example, a mercury-zinc alloy, so alloying is extremely convenient.

特  許  出  願 人 三井金W4鉱業株式会社 代    理    人Patent applicant Mitsui Kin W4 Mining Co., Ltd. People

Claims (1)

【特許請求の範囲】 1)鉛、インジウム、タリウム、カドミウム及びビスマ
スよりなる群より選ばれる1種以上の元素を含有する固
体状の水銀合金粉末と、無汞化亜鉛粉末あるいは無汞化
亜鉛合金粉末とを混合してなることを特徴とする電池用
負極活物質。 2)固体状の水銀合金粉末が、乾燥雰囲気下での機械的
振動あるいは撹拌による合金化によるもの、または加熱
溶融合金化によるものである特許請求の範囲第1項記載
の電池用負極活物質。
[Scope of Claims] 1) Solid mercury alloy powder containing one or more elements selected from the group consisting of lead, indium, thallium, cadmium, and bismuth, and non-transparent zinc powder or non-transparent zinc alloy. A negative electrode active material for batteries characterized by being made by mixing with powder. 2) The negative electrode active material for a battery according to claim 1, wherein the solid mercury alloy powder is obtained by alloying by mechanical vibration or stirring in a dry atmosphere, or by heat-melting alloying.
JP61187871A 1986-08-12 1986-08-12 Negative active material for battery Pending JPS6345753A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61187871A JPS6345753A (en) 1986-08-12 1986-08-12 Negative active material for battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61187871A JPS6345753A (en) 1986-08-12 1986-08-12 Negative active material for battery

Publications (1)

Publication Number Publication Date
JPS6345753A true JPS6345753A (en) 1988-02-26

Family

ID=16213672

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61187871A Pending JPS6345753A (en) 1986-08-12 1986-08-12 Negative active material for battery

Country Status (1)

Country Link
JP (1) JPS6345753A (en)

Similar Documents

Publication Publication Date Title
JP2926417B2 (en) Alkaline battery
JPH0222984B2 (en)
JPS6345753A (en) Negative active material for battery
JPS6164076A (en) Electrochemical battery
JPH0562683A (en) Alkaline battery
JPS6345752A (en) Nagative active material for battery
JPS5971259A (en) Alkaline storage battery and its manufacturing method
JP2754864B2 (en) Manufacturing method of zinc alkaline battery
JPS6394560A (en) Negative electrode active material for cell
JPH0317182B2 (en)
JPS60243969A (en) Manufacture of anode active material for battery
JP3149783B2 (en) Processing method of hydrogen storage alloy powder
JPS6345751A (en) Negative active material for battery
JP2563106B2 (en) Alkaline battery
JPS62105372A (en) Manufacture of granulated zinc alloy for alkaline battery
JPH0459374B2 (en)
JPS58225565A (en) Alkaline battery
JPH02306540A (en) Manufacture of negative electrode active substance for alkaline storage battery
JP2805486B2 (en) Alkaline battery and its negative electrode active material
JPH01279564A (en) Manufacture of amalgamated zinc alloy powder
JPH0513072A (en) Alkaline battery
JPH02304868A (en) Alkaline battery and its negative active material
JPS63190104A (en) Production of amalgamated zinc alloy powder for alkali storage battery
JPS6074352A (en) Zinc negative electrode for alkaline battery
JPS6251160A (en) Alkaline battery