JPS6344110A - Apparatus for inspecting surface roughness - Google Patents

Apparatus for inspecting surface roughness

Info

Publication number
JPS6344110A
JPS6344110A JP18898586A JP18898586A JPS6344110A JP S6344110 A JPS6344110 A JP S6344110A JP 18898586 A JP18898586 A JP 18898586A JP 18898586 A JP18898586 A JP 18898586A JP S6344110 A JPS6344110 A JP S6344110A
Authority
JP
Japan
Prior art keywords
signal
surface roughness
inspected
speckle pattern
speckle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18898586A
Other languages
Japanese (ja)
Inventor
Yasukazu Fujimoto
靖一 藤本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koyo Seiko Co Ltd
Original Assignee
Koyo Seiko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koyo Seiko Co Ltd filed Critical Koyo Seiko Co Ltd
Priority to JP18898586A priority Critical patent/JPS6344110A/en
Publication of JPS6344110A publication Critical patent/JPS6344110A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Abstract

PURPOSE:To simply adapt the title apparatus to the quality control of a processing line and, especially, to suitably detect surface roughness, by discriminating a signal with specific frequency, which is determined by a speckle pattern and a scanning speed, from the signal inputted from a photoelectric converter. CONSTITUTION:A cylindrical roll 25 being an article to be inspected is placed on drive rollers 32 to be rotated and scanned at a constant speed with coherent beam from a laser beam source 21 driven by a scanning device. The reflected beam from the surface of said roll is formed into an image on a photoelectric converter 27 to form a speckle pattern. When the surface of the roll 25 is scanned at a constant speed by the coherent beam, a signal with specific frequency determined by a scanning speed and a speckle diameter is obtained from the converter 28. The output from the converter 28 is inputted to a discrimination device 31 and a signal with the frequency corresponding to the size of a speckle is calculated. The size of the speckle pattern is calculated on the basis of said signal and surface roughness is discriminated.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 この発明は、軸受の円筒コロ等の被検査物の表面粗さを
検査する表面粗さ検査装置に関する。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a surface roughness inspection device for inspecting the surface roughness of an object to be inspected, such as a cylindrical roller of a bearing.

〈従来の技術〉 従来、レーザー光を利用した表面粗さ検査装置としては
二光線干渉方式のものがある。この表面粗さ検査装置は
、レーザー光源からのレーザー光を半透過鏡により被検
査物と標や反射面との方向に二分解し、その標準面と被
検査物とから反射されたレーザー光によって生じる干渉
縞により被検査物の表面粗さを非接触で検査できるよう
にしている。
<Prior Art> Conventionally, there is a two-beam interference type surface roughness inspection device using laser light. This surface roughness inspection device uses a semi-transmissive mirror to split the laser beam from the laser light source into two directions: the object to be inspected and the target or reflective surface, and the laser beam reflected from the standard surface and the object to be inspected The resulting interference fringes allow for non-contact inspection of the surface roughness of the object to be inspected.

〈発明が解決しようとする問題点〉 しかしながら、上記従来の三光線干1歩方式の表面粗さ
検査装置では、標準反射面を必要とし、また被検査物の
精度の高い位置決めを必要とするf二め、たとえば円筒
コロの加工ラインに適用ずろことができないという問題
があっfこ。なよj、円筒コロの粗さ測定においては、
その絶対値の測定よ;)も加工工具の摩耗などによる相
対値の変化の検出が望まれることが多い。
<Problems to be Solved by the Invention> However, the conventional three-ray one-step method surface roughness inspection device requires a standard reflective surface and requires highly accurate positioning of the object to be inspected. Second, there is the problem that it cannot be applied to a machining line for cylindrical rollers, for example. Nayoj, when measuring the roughness of cylindrical rollers,
In addition to measuring its absolute value;), it is often desirable to detect changes in relative values due to wear of processing tools, etc.

そこで、この発明の目的は、標準反射面を必要と什ず、
また被検査物の精度の高い位置決めを必要とせず、加工
ラインの品質管理に簡弔に適用することができ、特に表
面粗さの相対値の変化の検出に好適な表面粗さ検査装置
を提供することにある。
Therefore, the purpose of this invention is to eliminate the need for a standard reflective surface,
In addition, we provide a surface roughness inspection device that does not require highly accurate positioning of the inspected object, can be easily applied to quality control on processing lines, and is especially suitable for detecting changes in relative values of surface roughness. It's about doing.

く問題点を解決するための手段〉 この発明の表面粗さ検査装置は、コヒーレント光の光源
と、駆動ローラに載置して回転させられる置注状の被検
査物の表面に上記コヒーレント光を一定の速度で走査す
る走査装置と、上記被検査物の表面から反射されたコヒ
ーレント光の反射光を光電変換する光電変換装置と、上
記光電変換装置から人力された信号からスペックルパタ
ーンおよび走査速度により定まる特定周波数の信号を識
別して、この特定周波数の信号に基づいて上記被検査物
の表面粗さを判別ずろ判別装置とを備えたことを特徴と
している。
Means for Solving the Problems> The surface roughness inspection apparatus of the present invention includes a coherent light source and a surface of an object to be inspected that is placed on a drive roller and rotated. A scanning device that scans at a constant speed, a photoelectric conversion device that photoelectrically converts coherent light reflected from the surface of the object to be inspected, and a speckle pattern and scanning speed are generated from signals manually input from the photoelectric conversion device. The present invention is characterized by comprising a deviation discriminating device that identifies a signal of a specific frequency determined by the above, and discriminates the surface roughness of the object to be inspected based on the signal of the specific frequency.

く作 用〉 円筒状の検査物は駆動ローラに載置して回転さU′ろれ
ろ。走査装置によってコヒーレント光の光源からのコヒ
ーレント光は一定の速度で検査物の表面を走査−tt−
る。被検査物の表面から反射された反射光は光電変換装
置」二に結像される。この光電変換装置上にはスペック
ルパターンすなわち明暗模様が形成される。このスペッ
クルパターンは検査物の反射面の粗さの相関長円の面か
らの反射光が互いに干渉し合うことによって生じ、この
スペックルパターンの大きさは、検査物の表面粗さ、コ
ヒーレント光の波面曲率および被検査物と各装置間の距
離で定まり、波面曲率および非検査物と各装置間の距離
が一定であるから光電変換装置の受光面でのスペックル
径の大きさは粗さに依存する。
Function: The cylindrical test object is placed on the drive roller and rotated. A scanning device scans the surface of the object to be inspected with coherent light from a coherent light source at a constant speed -tt-
Ru. The light reflected from the surface of the object to be inspected is imaged on a photoelectric conversion device. A speckle pattern, that is, a bright and dark pattern is formed on this photoelectric conversion device. This speckle pattern is caused by the interference of the reflected light from the elliptical surface with the roughness of the reflective surface of the object to be inspected, and the size of this speckle pattern depends on the surface roughness of the object to be inspected and the coherent light It is determined by the wavefront curvature and the distance between the inspected object and each device.Since the wavefront curvature and the distance between the non-inspected object and each device are constant, the size of the speckle diameter on the light receiving surface of the photoelectric conversion device is determined by the roughness. Depends on.

したがって、コヒーレント光で被検査物の表面を一定の
速度で走査しているから、光電変換装置からは走査速度
およびスペックル径によって定まる特定周波数の信号が
得られる。この光電変換装置からの出力を判別装置に入
力して、スペックルの大きさに対応した周波数の信号を
求め、この信号によりスペックルパターンの大きさを求
め、表面粗さが判別される。特に表面粗さの相対値の変
化は判別装置の出力の変化によ−て簡単に分かる。
Therefore, since the surface of the object to be inspected is scanned with coherent light at a constant speed, a signal of a specific frequency determined by the scanning speed and the speckle diameter is obtained from the photoelectric conversion device. The output from this photoelectric conversion device is input to a discrimination device to obtain a signal with a frequency corresponding to the size of the speckles, and the size of the speckle pattern is determined using this signal to determine the surface roughness. In particular, changes in the relative value of surface roughness can be easily recognized by changes in the output of the discriminator.

〈実施例〉 以下、この発明を図示の実施例により詳細に説明ずろ。<Example> The present invention will now be described in detail with reference to illustrated embodiments.

第1因において、25は駆動ローラ32.32上に載置
されて回転させられる検査物であるコロである。20は
コロ25の円筒面を照射する投光装置で、この投光装置
20はレーザー21と走査装置としての@動ミラー22
と集光レンズ23からなる。ま1こ、26はフレネルレ
ンズ、27はスペックルパターンに関係ずろ周波数成分
を強調するス゛ノット状格子、28は光電変換装置とし
ての)し電子増倍で、31は判別装置であり、二の判別
装置31は第3図に示すようにローパスフィルタ311
とハ(パスフィルタ313と整流平滑回路312.31
・1ど演算増幅器315とからfヱる。
In the first factor, 25 is a roller that is an object to be inspected that is placed on the driving rollers 32 and 32 and rotated. Reference numeral 20 denotes a light projecting device that illuminates the cylindrical surface of the roller 25, and this projecting device 20 includes a laser 21 and a moving mirror 22 as a scanning device.
and a condensing lens 23. 1, 26 is a Fresnel lens, 27 is a snout-shaped grating that emphasizes frequency components related to the speckle pattern, 28 is an electron multiplier (as a photoelectric conversion device), and 31 is a discrimination device, which is used for the second discrimination. The device 31 includes a low-pass filter 311 as shown in FIG.
and C (pass filter 313 and rectification smoothing circuit 312.31
・F is generated from the first operational amplifier 315.

また、第2図はコロ25の両・端面の表面粗さを検査す
る走査装置の部分を示し、20°、20′はコロの両端
面にレーザー光を照射する投光装置で、第1図に示す投
光装置20と同じ構成をしている。
In addition, Figure 2 shows the part of the scanning device that inspects the surface roughness of both end faces of the roller 25, and 20° and 20' are the projecting devices that irradiate laser light onto both end faces of the roller. It has the same configuration as the light projecting device 20 shown in FIG.

ま、:、26°;よフレネルレンズ、27′はスリット
状烙子、28゛は光電子増幅器、33°は増幅器、3ビ
は判別装置であり、これらは第1図に示すものと同じ構
成をしている。
26° is a Fresnel lens, 27' is a slit-shaped grille, 28' is a photoelectronic amplifier, 33° is an amplifier, and 3B is a discriminator, which have the same configuration as shown in Figure 1. are doing.

上記構成において、第1図に示すように、レーザー2I
から出射されたレーザー光は振動ミラー22によって、
集光レンズ23を通過し、コロ25の円筒面251上を
中心軸に沿って端から端まで走査させられる。このコロ
25の円筒面251からの反射光はフレネルレンズ26
を通り、さらにスリット状格子27でスペックルパター
ンに関連した光信号の周波数成分か強調されて、光7ト
)を増幅管28に入力される。光電子増幅管28からは
、振動ミラー22による走査にに二じてコσ’25の円
筒面251の表面粗さを表す第・1図に示すようなスペ
ックルパターンの明暗を表す信号か増幅器33に入力さ
れ、増幅されて判別装J731に入力じれる。判別装置
31においては、第3図に示すように、増幅器33から
の信号がローパスフィルタ31・Iとバイパスフィルタ
313にモr9ぞれ通されて、ローパスフィルタ311
によ−)で拉変の大きいスペックルバター〉を表4゛信
号か通過させられ、バイパスフィルタ313によって粒
度の小さいスペックルパターンを表す信号が通過させら
れる。
In the above configuration, as shown in FIG.
The laser beam emitted from the vibrating mirror 22
The light passes through the condenser lens 23 and is scanned over the cylindrical surface 251 of the roller 25 from end to end along the central axis. The reflected light from the cylindrical surface 251 of this roller 25 is reflected by the Fresnel lens 25.
The frequency components of the optical signal related to the speckle pattern are further emphasized by a slit-like grating 27, and the light 7) is input to an amplifier tube 28. From the photoelectron amplifier tube 28, a signal representing the brightness of a speckle pattern as shown in FIG. The signal is input to the discriminator J731 after being amplified. In the discrimination device 31, as shown in FIG. 3, the signal from the amplifier 33 is passed through a low-pass filter 31.
The speckle butter with large ablation is passed through the signal shown in Table 4, and the bypass filter 313 allows the signal representing the speckle pattern with small particle size to pass through.

第5図は、ローパスフィルタ311とバイパスフィルタ
313との特性を表す線図であり、foは特徴周波数を
表す。ローパスフィルタ311およびバイパスフィルタ
313から出力された各信号はそれぞれ整流平滑回路3
12,314によって整流され、平滑化されて演算増幅
器の半端子と一端子に入力される。したがって、演算増
幅器315からは低周波信号(粒度の大きいスペックル
パターンを表す)と高周波信号(粒度の小さいスペック
ルパターンを表す)とのレベルの差を表す信号が出力さ
れる。したがって、演算増幅器315の出力は表面粗さ
の粗い部分と徂くない部分との割合を表すことになり、
この演算増幅器315の出力によってコロ25の円筒面
251の表面粗さの相対値の変化が直ちに検出される。
FIG. 5 is a diagram showing the characteristics of the low-pass filter 311 and the bypass filter 313, and fo represents the characteristic frequency. Each signal output from the low-pass filter 311 and the bypass filter 313 is transmitted to the rectifying and smoothing circuit 3.
12, 314, and is then rectified and smoothed and input to the half terminal and one terminal of the operational amplifier. Therefore, the operational amplifier 315 outputs a signal representing the difference in level between the low frequency signal (representing a speckle pattern with large grain size) and the high frequency signal (representing a speckle pattern with small grain size). Therefore, the output of the operational amplifier 315 represents the ratio of the rough portion to the rough portion of the surface roughness,
A change in the relative value of the surface roughness of the cylindrical surface 251 of the roller 25 is immediately detected by the output of the operational amplifier 315.

このように表面粗さの相対値の変化が直ちに検出できる
ので、加工工具の曜耗などが直ちに解り、加工ラインに
おいて表面粗さをオンライン計測するのに適する。
Since changes in the relative value of surface roughness can be detected immediately in this way, wear and tear on the machining tool can be immediately determined, making it suitable for online measurement of surface roughness in a machining line.

なお、駆動ローラ32を回転することによてコロ25を
回転させてコロ25の円筒面25+全体について上述の
検査を行う。
Note that the roller 25 is rotated by rotating the drive roller 32, and the above-mentioned inspection is performed on the entire cylindrical surface 25+ of the roller 25.

第2図はコロ25の両端面252.253を走査して表
面粗さを測定するもので、両端面252゜253を走査
する点のみが第1図と異なり、池は同様であるので説明
を省略する。
In Figure 2, the surface roughness is measured by scanning both end faces 252 and 253 of the roller 25.The only difference from Figure 1 is that both end faces 252 and 253 are scanned, and the pond is the same, so we will explain it below. Omitted.

上記実施例では、判別装置3!をローパスフィルタ31
1およびバイパスフィルタ313、整流平滑回路3i2
.314および演算増幅回路315より構成したが、た
とえば判別装置をF −Vコンバータより構成して、第
6図に示すように高周波に対して出力電圧を高くとるよ
うにして、スペックルパターンの粒度(細かければ周波
数が高くなる)あるいは粒塵成分をF−Vコンバータの
出力により検出するようにしてもよい。
In the above embodiment, the discrimination device 3! The low pass filter 31
1 and bypass filter 313, rectifier smoothing circuit 3i2
.. 314 and an operational amplifier circuit 315, for example, the discriminating device is constructed from an F-V converter, and the output voltage is set high for high frequencies as shown in FIG. (The finer the frequency, the higher the frequency.) Alternatively, the particulate dust component may be detected by the output of the F-V converter.

〈発明の効果〉 以上より明らかなように、この発明の表面粗さ検出装置
は、被検査物の表面を走査装置によってコヒーレント光
で一定速度で走査して、被検査物の表面から反射された
コヒーレント光を光電変換装置で光電変換し、この光電
変換装置から判別装置に信号を人力して、スペックルパ
ターンおよび走査速度により定まる特定周波数の信号を
識別して、この特定周波数の信号に基づいて被検査物の
表面粗さを検出しているので、標準反射面を必要とせず
、被検査物の精度の高い位置決めを必要とけず、加工ラ
インにおいての簡単な装置で粗さ測定を精度高くでき、
特に表面粗さの相対値の変化を検出するのに適する。
<Effects of the Invention> As is clear from the above, the surface roughness detection device of the present invention scans the surface of an object to be inspected with coherent light at a constant speed using a scanning device, and detects the reflected light from the surface of the object to be inspected. Coherent light is photoelectrically converted by a photoelectric conversion device, and a signal is manually sent from the photoelectric conversion device to a discrimination device to identify a signal with a specific frequency determined by the speckle pattern and scanning speed. Since the surface roughness of the object to be inspected is detected, there is no need for a standard reflective surface, there is no need for highly accurate positioning of the object to be inspected, and roughness measurement can be performed with high accuracy using a simple device on the processing line. ,
It is particularly suitable for detecting changes in relative values of surface roughness.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例の円筒コロの円筒面を検査
する光学系統図、第2図は上記実施例の円筒コロの両端
面を検査ずろ光学系統図、第3図は判別装置のブロック
図、第71図はスペックルパターンを示す図、第5図は
ローパスフィルタとノ\イパスフィルタとの特性を表す
線図、第6図は出力電圧と周波数との関係を示す図であ
る。 20・・・投光装置、21・・・光源、25・・被検査
物、28・・・光電変換装置、31・・・判別装置、3
2・・・駆動ローラ。 特 許 出 願 人  光洋精工株式会社代 理 人 
弁理士  青山 葆 ほか2名第4図 第5図
FIG. 1 is an optical system diagram for inspecting the cylindrical surface of a cylindrical roller according to an embodiment of the present invention, FIG. 2 is an optical system diagram for inspecting both end surfaces of the cylindrical roller according to the above embodiment, and FIG. 71 is a block diagram showing a speckle pattern, FIG. 5 is a diagram showing the characteristics of a low-pass filter and a low-pass filter, and FIG. 6 is a diagram showing the relationship between output voltage and frequency. 20... Light projecting device, 21... Light source, 25... Inspection object, 28... Photoelectric conversion device, 31... Discrimination device, 3
2... Drive roller. Patent applicant: Koyo Seiko Co., Ltd. Agent
Patent attorney Aoyama Aoyama and 2 others Figure 4 Figure 5

Claims (1)

【特許請求の範囲】[Claims] (1)コヒーレント光の光源と、駆動ローラに載置して
回転させられる円柱状の被検査物の表面に上記コヒーレ
ント光を一定の速度で走査する走査装置と、上記被検査
物の表面から反射されたコヒーレント光の反射光を光電
変換する光電変換装置と、上記光電変換装置から入力さ
れた信号からスペックルパターンおよび走査速度により
定まる特定周波数の信号を識別して、この特定周波数の
信号に基づいて上記被検査物の表面粗さを判別する判別
装置とを備えたことを特徴とする表面粗さ検査装置。
(1) A light source of coherent light, a scanning device that scans the surface of the cylindrical test object placed on a drive roller and rotated with the coherent light at a constant speed, and reflection from the surface of the test object. A photoelectric conversion device that photoelectrically converts the reflected light of the coherent light, and a signal of a specific frequency determined by the speckle pattern and scanning speed is identified from the signal input from the photoelectric conversion device, and based on the signal of this specific frequency, A surface roughness inspection device comprising: a discrimination device for discriminating the surface roughness of the object to be inspected.
JP18898586A 1986-08-12 1986-08-12 Apparatus for inspecting surface roughness Pending JPS6344110A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18898586A JPS6344110A (en) 1986-08-12 1986-08-12 Apparatus for inspecting surface roughness

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18898586A JPS6344110A (en) 1986-08-12 1986-08-12 Apparatus for inspecting surface roughness

Publications (1)

Publication Number Publication Date
JPS6344110A true JPS6344110A (en) 1988-02-25

Family

ID=16233369

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18898586A Pending JPS6344110A (en) 1986-08-12 1986-08-12 Apparatus for inspecting surface roughness

Country Status (1)

Country Link
JP (1) JPS6344110A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007333729A (en) * 2006-05-05 2007-12-27 Asml Netherlands Bv Inspection method and device using it
JP2011220816A (en) * 2010-04-09 2011-11-04 Niigata Univ Method for measuring shape of cylindrical surface

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007333729A (en) * 2006-05-05 2007-12-27 Asml Netherlands Bv Inspection method and device using it
JP2011220816A (en) * 2010-04-09 2011-11-04 Niigata Univ Method for measuring shape of cylindrical surface

Similar Documents

Publication Publication Date Title
US4743771A (en) Z-axis height measurement system
US5883714A (en) Method and apparatus for detecting defects on a disk using interferometric analysis on reflected light
JPH03267745A (en) Surface property detecting method
US4920273A (en) Z-axis measurement system
JPS6036013B2 (en) Metal surface defect inspection method
KR920004087B1 (en) Wiring pattern detection method and apparatus
JPS6312943A (en) Method and device for analyzing surface
JPS6344110A (en) Apparatus for inspecting surface roughness
JPH08304050A (en) Magnetic film defect inspection device for magnetic disk
JPS6129453B2 (en)
JPH0694642A (en) Method and equipment for inspecting surface defect
JPS6344151A (en) Appearance inspector
JPH09105618A (en) Method and apparatus for inspection of defect on smooth surface of object as well as method and apparatus for measurement of roughness on surface of object
JPS6021792Y2 (en) Defect detection device
JPS6069539A (en) Inspecting device for surface defect
WO2020051780A1 (en) Image sensor surface defect detection method and detection system
JP3213866B2 (en) Work surface smoothness inspection method
RU2035721C1 (en) Method of checking transparency of flat light-translucent materials
JPS59208446A (en) Laser type surface inspecting device
JPH0326447Y2 (en)
JPS62235511A (en) Surface condition inspecting apparatus
JPH0961373A (en) Method for inspecting surface defect, and device therefor
JPS6344152A (en) Appearance inspector
JPS62118243A (en) Surface defect inspecting instrument
JPH0536727B2 (en)