JPS6021792Y2 - Defect detection device - Google Patents

Defect detection device

Info

Publication number
JPS6021792Y2
JPS6021792Y2 JP16991381U JP16991381U JPS6021792Y2 JP S6021792 Y2 JPS6021792 Y2 JP S6021792Y2 JP 16991381 U JP16991381 U JP 16991381U JP 16991381 U JP16991381 U JP 16991381U JP S6021792 Y2 JPS6021792 Y2 JP S6021792Y2
Authority
JP
Japan
Prior art keywords
output
signal
light
signal detector
reflected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP16991381U
Other languages
Japanese (ja)
Other versions
JPS57104349U (en
Inventor
達雄 中間
健二 桂
Original Assignee
株式会社安川電機
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社安川電機 filed Critical 株式会社安川電機
Priority to JP16991381U priority Critical patent/JPS6021792Y2/en
Publication of JPS57104349U publication Critical patent/JPS57104349U/ja
Application granted granted Critical
Publication of JPS6021792Y2 publication Critical patent/JPS6021792Y2/en
Expired legal-status Critical Current

Links

Landscapes

  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Description

【考案の詳細な説明】 本考案は、透明シート状体の欠陥を可干渉性のレーザ光
で検出する装置の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improvement in an apparatus for detecting defects in a transparent sheet-like body using coherent laser light.

光源にレーザを使用した欠陥検出装置で、ガラス板など
の透明体の欠点を検出するさい、レーザ光は単色性がよ
く、しかも可干渉性の光源であるため、透明体の表面に
おける多重反射による干渉は避けられない。
When detecting defects in transparent objects such as glass plates using a defect detection device that uses a laser as a light source, laser light has good monochromaticity and is a coherent light source, so it is difficult to detect defects due to multiple reflections on the surface of the transparent object. Interference is inevitable.

この干渉による信号レベルは、被検査物からの反射光に
よる欠点信号レベルと較べて無視できないほぼ大きく、
欠点検出のための検出感度が確保できない。
The signal level due to this interference is almost non-negligible compared to the defective signal level due to reflected light from the object to be inspected.
Detection sensitivity for defect detection cannot be secured.

この干渉を避ける方策として、光源をレーザ光から他の
非可干渉性の光に変える手段も考えられるが、欠陥検出
装置の光源として、レーザ光の細かくて平行で、しかも
安定した出力が容易にえられるという利点は捨てがたい
ものがある。
One possible way to avoid this interference is to change the light source from a laser beam to another type of incoherent light, but it is easy to use a fine, parallel, and stable output of a laser beam as a light source for a defect detection device. The benefits of being able to receive a loan are something that is hard to give up.

また、ノイズ信号と欠陥信号を区別するものとしてはた
とえば特開昭50−144488などのように、被検査
物からの反射光と透過光とをそれぞれ異なる光電変換器
で光電変換したのち、これらの光電変換器の各出力を乗
算するようにしたものが提案されているが、このように
乗算器を用いた検出装置では、欠点信号の波形を拡大さ
せるとともに、ノイズの波形も拡大される′ため、少な
くとも一方のノイズレベルがゼロでなければ打ち消すこ
とができず、とくに欠点信号のシグナル/ノイズ比が小
さいときは、ノイズとの差がそれほど大きくならない。
In addition, to distinguish between noise signals and defect signals, for example, as in Japanese Patent Application Laid-Open No. 50-144488, reflected light and transmitted light from an object to be inspected are photoelectrically converted using different photoelectric converters, and then these signals are converted into A detection device that multiplies each output of a photoelectric converter has been proposed, but in a detection device using a multiplier in this way, the waveform of the defective signal is expanded and the waveform of the noise is also expanded. , it cannot be canceled unless the noise level of at least one of them is zero, and especially when the signal/noise ratio of the defective signal is small, the difference from the noise does not become that large.

したがって可干渉性の光源を使う場合のように干渉によ
るノイズレベルが大きい装置では不向きであった。
Therefore, it is not suitable for devices where the noise level due to interference is high, such as when using a coherent light source.

本考案は、レーザ光を光源として用いた欠陥検出装置に
おいて、相補的なノイズを相殺して干渉信号レベルだけ
を低下させ、欠点信号を拡大させて検出レベルを確保さ
せるもので、反射信号と透過信号の一方の交流分の振幅
を他方の振幅に応じて調整し、両方の信号出力を加算す
ることにより、可干渉性のレーザ光を用いた場合に問題
となっている高レベルのノイズを巧みに除去し、欠点信
号を確実に検出できるようにしである。
In a defect detection device that uses laser light as a light source, this invention cancels out complementary noise to lower only the interference signal level, expands the defect signal, and secures the detection level by combining the reflected signal and the transmitted signal. By adjusting the amplitude of one alternating current component of the signal according to the amplitude of the other and adding the outputs of both signals, the high level of noise that is a problem when using coherent laser light can be effectively eliminated. This is to ensure that defective signals can be detected.

第1図は、透明体あるいは半透明体に光を照射して欠陥
を検出する欠陥検出器の説明図で、発光器1から回転多
面鏡2を介して照射されるレーザ光3がガラス板4に角
度θで照射すると、透明体であればその大部分はガラス
板4を透過して、透過光3tが透過光受光器(透過信号
検出器)5に入射し、一部はガラス板4で反射され、反
射光3rとして反射光受光器(反射信号検出器)6に入
射する。
FIG. 1 is an explanatory diagram of a defect detector that detects defects by irradiating light onto a transparent or semi-transparent object. If the object is transparent, most of it will pass through the glass plate 4, the transmitted light 3t will enter the transmitted light receiver (transmitted signal detector) 5, and some of it will be transmitted through the glass plate 4. It is reflected and enters a reflected light receiver (reflected signal detector) 6 as reflected light 3r.

しかし、透過光3tと反射光3rは、それぞれガラス板
4内の多重反射などで干渉を生じ、1次・2次・・・・
・・の干渉による成分に分けることができるから R=Rm+’!’Ri (i=Ot 1.2””)R=
Tm+”Ti (i=0.1.2””)ま ただし、R・・・・・・反射する光3rの全出力Rm・
・・・・・反射する光3rの平均の出力Ri・・・・・
・反射する光3rの干渉による出力の変動分 子・・・・・・透過する光3tの全出力 Tm・・・・・・透過する光3tの平均の出力Ti・・
・・・・透過する光3tの干渉による出力の変動分 になる。
However, the transmitted light 3t and the reflected light 3r interfere with each other due to multiple reflections within the glass plate 4, resulting in primary, secondary, etc.
Since it can be divided into components due to the interference of..., R=Rm+'! 'Ri (i=Ot 1.2"")R=
Tm+"Ti (i=0.1.2"") However, R...The total output of the reflected light 3r Rm・
...Average output Ri of reflected light 3r...
- Fluctuation of output due to interference of reflected light 3r Molecule...Total output Tm of transmitted light 3t...Average output Ti of transmitted light 3t...
...This is the variation in output due to interference of the transmitted light 3t.

ところで、5tokesの関係式により、光が光学的に
疎な物質から、密な物質への境界面で反射すれば、その
とき半波長の位相差を生ずる。
By the way, according to the 5tokes relational expression, when light is reflected at the interface between an optically sparse substance and a dense substance, a phase difference of half a wavelength is generated.

したがって、反射変動分Riと透過変動分子iは一方が
増加すれば一方が減少する。
Therefore, if one of the reflection variation Ri and the transmission variation numerator i increases, the other decreases.

ここで、反射全出力Rと透過全出力Tを加え合わせると A11R十T=A−Rm十Tm Σ 十、 (A −Ri+Ti) ・・・・・・
(1式)反射変動分Riと透過変動分子iは符号が逆な
ので、A −Ri+Ti=0となるよう常数Aを決める
ことができる。
Here, if we add the total reflected power R and the total transmitted power T, we get A11R+T=A-Rm+Tm Σ+, (A-Ri+Ti)...
(Formula 1) Since the reflection fluctuation amount Ri and the transmission fluctuation numerator i have opposite signs, the constant A can be determined so that A −Ri+Ti=0.

この常数Aの決め方は、反射全出力Rと透過全出力Tの
干渉振幅を、あらかじめ測定しておいて、その干渉振幅
の比で求めることができる。
This constant A can be determined by measuring the interference amplitude of the reflected total output R and the transmitted total output T in advance, and then calculating the ratio of the interference amplitudes.

ただし、干渉振幅はガラス板4への入射角θ、ガラス板
4の厚さ、ガラス板の材質によりそれぞれ異なる。
However, the interference amplitude differs depending on the angle of incidence θ on the glass plate 4, the thickness of the glass plate 4, and the material of the glass plate.

被検査物からの反射全出力Rと透過全出力Tの出力信号
を別々の受光器(信号検出器)で測定すると、これら信
号には、干渉による信号も、欠点の信号も含まれている
When the output signals of the total reflected power R and the transmitted total power T from the object to be inspected are measured with separate light receivers (signal detectors), these signals include signals due to interference and signals due to defects.

干渉による信号は、反射の信号との透過の信号では逆位
相で出力されるが、欠点による信号は、同じ場所で、同
じ時間に、同じ符号で出力されている。
Signals due to interference are output in opposite phases to reflected signals and transmitted signals, but signals due to defects are output at the same place, at the same time, and with the same sign.

欠点のある部分では、光は散乱されたり、吸収されたり
して、出力は減少するが、欠点部分の反射光Rf、透過
光Tfは、 Rf= (1−Q) Rm−1’Ri Tf= (1−a)Tm+’FTi ま ただし、αは欠点部分の正常部分に対する出力減少分で
ある。
At the defective part, light is scattered or absorbed and the output decreases, but the reflected light Rf and transmitted light Tf at the defective part are as follows: Rf= (1-Q) Rm-1'Ri Tf= (1-a) Tm+'FTi Also, α is the decrease in output of the defective part relative to the normal part.

それゆえ、欠点部分で干渉を消した欠点部だけの出力は
、 A−Rf十Tf= (1−af (A 11Rm十T
m)十ギ(A−Ri+Ti) = (1−α)(A −
Rm+Tm) m1ll16 (2式)%式% ここに、(1式)および(2式)により、正常部・欠点
部の光出力の表現ができる。
Therefore, the output of only the defective part where interference is canceled by the defective part is A-Rf+Tf= (1-af (A 11Rm+T
m) Jugi (A-Ri+Ti) = (1-α)(A-
Rm+Tm) m1ll16 (Equation 2)%Equation%Here, the light output of the normal area and defective area can be expressed by (Equation 1) and (Equation 2).

第2図・第3図は、本考案の一実施例のブロックダイア
グラムとその各部波形図を表わす。
FIGS. 2 and 3 show a block diagram and waveform diagrams of each part of an embodiment of the present invention.

5は透過光受光器(透過信号検出器)、6は反射光受光
器(反射信号検出器)、7は増幅器(増幅度が変えられ
る)、8は加算器、9は自動利得調整器(AGC)、1
0は出力端である。
5 is a transmitted light receiver (transmitted signal detector), 6 is a reflected light receiver (reflected signal detector), 7 is an amplifier (amplification degree can be changed), 8 is an adder, and 9 is an automatic gain adjuster (AGC). ), 1
0 is the output end.

波形21は透過光受光器5の信号波形であり、干渉信号
のレベルに応じて増幅器7で増幅し波形22とし、反射
光受光器6の信号波形23と、加算器8で加え合わせ、
AGC9で波形24として、端子10から出力させてい
る。
A waveform 21 is a signal waveform of the transmitted light receiver 5, which is amplified by an amplifier 7 according to the level of the interference signal to form a waveform 22, which is added to a signal waveform 23 of the reflected light receiver 6 by an adder 8.
The AGC 9 outputs the waveform 24 from the terminal 10.

実際には、反射光と透過光の直流レベルの違いもあるの
で、反射光と透過光の交流部分のみレベルを比較して、
干渉信号レベルが同じになるように、常数Aを決めて、
干渉骨をうち消し、欠点信号のみをとり出すようにしで
ある。
In reality, there is a difference in the DC level between the reflected light and transmitted light, so compare the levels of only the AC part of the reflected light and transmitted light.
Determine the constant A so that the interference signal level is the same,
This is to cancel out the interfering bones and extract only the defective signal.

被検査物4が透明ガラスの実施例では、透過する光3t
の量は反射する光3rに比べて十分に大きい。
In an embodiment in which the object 4 to be inspected is transparent glass, the transmitted light 3t
The amount of light 3r is sufficiently large compared to the reflected light 3r.

このため、透過光受光器5の信号出力は大きく、その波
形21は高い直流レベルをもっているが、干渉による交
流成分は比較的小さく、これに対し反射光受光器6の信
号出力は小さくその波形22は低い直流レベルである干
渉による交流成分は大きくなる。
Therefore, the signal output of the transmitted light receiver 5 is large and its waveform 21 has a high DC level, but the AC component due to interference is relatively small, and in contrast, the signal output of the reflected light receiver 6 is small and its waveform 22 is a low DC level, but the AC component due to interference becomes large.

したがって、反射光と透過光の交流部分のみのレベルを
比較して、常数Aを決め、透過光の出力信号を、増幅器
7で干渉信号レベルが同じになるように増幅した信号波
形23と、前記反射光受光器の信号波形22を加算器8
で加え合わせ、AGC9で波形24として端子10から
出力させる。
Therefore, the constant A is determined by comparing the levels of only the alternating current parts of the reflected light and the transmitted light, and the output signal of the transmitted light is amplified by the amplifier 7 so that the interference signal level is the same, and the signal waveform 23 is obtained. The signal waveform 22 of the reflected light receiver is added to the adder 8.
are added together, and the AGC 9 outputs the waveform 24 from the terminal 10.

反射光受光器6の出力信号波形22と増幅された透過光
受光器5の出力信号波形23は第4図に示すようにノイ
ズ信号riとtiはほぼ等しい振幅に調整され、位相が
逆になっているが欠点による信号if −tfは同位相
であるため、その加算された波形24ではノイズ信号r
i−tiは打ち消されるが欠点信号if * tfは加
え合わされて容易に判別することができる。
As shown in FIG. 4, the output signal waveform 22 of the reflected light receiver 6 and the output signal waveform 23 of the amplified transmitted light receiver 5 are such that the noise signals ri and ti are adjusted to approximately equal amplitudes and have opposite phases. However, since the signal if -tf due to the defect is in the same phase, the added waveform 24 has a noise signal r
Although i-ti is canceled, the defect signal if*tf is added and can be easily determined.

第5図・第6図は、本考案の他の実施例のブロックダイ
アグラムおよびその波形図を示す。
5 and 6 show a block diagram and a waveform diagram of another embodiment of the present invention.

透過光受光器5で受光した信号波形201を、フィルタ
11を経て波形202とし、増幅して波形203とした
のち、反射光受光器6で受光した信号波形204と加算
して、出力信号205をうる。
A signal waveform 201 received by the transmitted light receiver 5 is passed through the filter 11 to form a waveform 202, amplified to form a waveform 203, and then added to a signal waveform 204 received by the reflected light receiver 6 to obtain an output signal 205. sell.

つまり、透過光受光器の交流部分だけをあらかじめとり
出し、交流増幅して干渉を打ち消すよう加え合わせるも
のである。
In other words, only the alternating current portion of the transmitted light receiver is taken out in advance, and the alternating current is amplified and added to cancel the interference.

このときの欠点信号の出力レベルRf’は Rf’= 十aRm+ ! Ri +”+ A @Rf’+Tf =−aeA−Rm+(1−a)Tm = (1a)(A−Rm+Tm)−A−Rmであるから
、交流増幅のみのときも、直流分も加えたときも、欠点
信号の変化の大きさは変わらない。
The output level Rf' of the defect signal at this time is Rf'= 0aRm+! Ri +”+ A @Rf'+Tf = -aeA-Rm+(1-a)Tm = (1a) (A-Rm+Tm)-A-Rm, so both when only AC amplification is used and when DC component is also added. However, the magnitude of change in the defect signal remains the same.

ガラス板の干渉では、反射光と透過光の干渉は、本来、
全く逆位相であるが、一般には、信号処理の段階などで
僅かにずれることがあり、そのときには、干渉を打ち消
すためには、反射光または透過光の経路に移相器などを
入れてもよい。
In the interference of a glass plate, the interference between reflected light and transmitted light is originally
The phases are completely opposite, but in general there may be a slight shift during the signal processing stage, etc. In such cases, a phase shifter etc. may be inserted in the path of the reflected light or transmitted light to cancel the interference. .

本考案は、ガラス板のみならず、アクリル板、各種フィ
ルム等の透明または半透明体なシート状物に採用できる
The present invention can be applied not only to glass plates but also to transparent or translucent sheet-like materials such as acrylic plates and various films.

なお増幅器にかえて振幅減衰器を設けるようにしてもよ
い。
Note that an amplitude attenuator may be provided instead of the amplifier.

このように本考案は、透過光と反射光に含まれている干
渉信号の位相が相補的であるのを利用して、一方の交流
分の振幅を他方の交流分の振幅に応じて振幅調整し、こ
れを加え合わせるようにしであるから、欠点信号が増大
されて干渉信号のみを打ち消し、レーザ単色での欠点検
における干渉の影響をなくすとともに、欠点検出の感度
を向上させうる効果がある。
In this way, the present invention utilizes the fact that the phases of the interference signals contained in transmitted light and reflected light are complementary, and adjusts the amplitude of one AC component according to the amplitude of the other AC component. However, since these signals are added together, the defect signal is increased and only the interference signal is canceled out, which has the effect of eliminating the influence of interference in single-color laser defect detection and improving the sensitivity of defect detection.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は光による欠陥検出装置の説明図、第2図は本考
案の実施例のブロックダイアグラム、第3図および第4
図はその波形図、第5図、第6図は他の実施例を示すブ
ロックダイアグラムと波形図である。 1は発光器、2は回転多角面鏡、3はレーザ光、4は被
検査物、5は透過光受光器、6は反射光受光器、7は振
幅調整器、8は加算器、9は自動利得調整器、10は出
力端、11はフィルタ、ri、 tiは干渉信号、if
、 tfjよ欠点信号である。
Fig. 1 is an explanatory diagram of an optical defect detection device, Fig. 2 is a block diagram of an embodiment of the present invention, Figs.
The figure is a waveform diagram thereof, and FIGS. 5 and 6 are block diagrams and waveform diagrams showing other embodiments. 1 is a light emitter, 2 is a rotating polygonal mirror, 3 is a laser beam, 4 is an object to be inspected, 5 is a transmitted light receiver, 6 is a reflected light receiver, 7 is an amplitude adjuster, 8 is an adder, 9 is a Automatic gain adjuster, 10 is the output end, 11 is the filter, ri, ti are the interference signals, if
, tfj is a defective signal.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 透明または半透明なシート状被検査物を可干渉性のレー
ザ光で光学的に走査する光学的走査装置と、この光学的
走査装置からの走査光が前記被検査物から反射されて生
ずる表面反射光を検出する反射信号検出器と、前記走査
が前記被検査物を透過して生ずる透過光を検出する透過
信号検出器とをそれぞれ備え、前記反射信号検出器から
の信号と前記透過信号検出器からの信号を組みあわせて
前記シート状被検査物の欠陥検出装置において、前記反
射信号検出器の出力と透過信号検出器の出力との一方に
、交流分の振幅を他方の交流分の振幅に応じて調整する
振幅調整器を設け、この振幅調整器の出力と他方の信号
検出器検出器の出力とを加算する加算器をそなえたこと
を特徴とする欠陥検出装置。
An optical scanning device that optically scans a transparent or translucent sheet-like object to be inspected with a coherent laser beam, and a surface reflection that occurs when the scanning light from this optical scanning device is reflected from the object to be inspected. A reflected signal detector that detects light and a transmitted signal detector that detects transmitted light generated when the scanning passes through the inspected object, the signal from the reflected signal detector and the transmitted signal detector In the defect detection device for the sheet-like inspected object, the amplitude of the alternating current component is converted into the amplitude of the other alternating current component by combining the signals from the output from the reflected signal detector and the output from the transmitted signal detector. 1. A defect detection device comprising: an amplitude adjuster that adjusts accordingly; and an adder that adds the output of the amplitude adjuster and the output of the other signal detector.
JP16991381U 1981-11-12 1981-11-12 Defect detection device Expired JPS6021792Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16991381U JPS6021792Y2 (en) 1981-11-12 1981-11-12 Defect detection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16991381U JPS6021792Y2 (en) 1981-11-12 1981-11-12 Defect detection device

Publications (2)

Publication Number Publication Date
JPS57104349U JPS57104349U (en) 1982-06-26
JPS6021792Y2 true JPS6021792Y2 (en) 1985-06-28

Family

ID=29961878

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16991381U Expired JPS6021792Y2 (en) 1981-11-12 1981-11-12 Defect detection device

Country Status (1)

Country Link
JP (1) JPS6021792Y2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7142295B2 (en) * 2003-03-05 2006-11-28 Corning Incorporated Inspection of transparent substrates for defects

Also Published As

Publication number Publication date
JPS57104349U (en) 1982-06-26

Similar Documents

Publication Publication Date Title
US5192870A (en) Optical submicron aerosol particle detector
JP4988223B2 (en) Defect inspection apparatus and method
JPH0650903A (en) Apparatus and method for detecting surface particle
JPS6036013B2 (en) Metal surface defect inspection method
JPS6021792Y2 (en) Defect detection device
JPH08304050A (en) Magnetic film defect inspection device for magnetic disk
JPH0467889B2 (en)
JPS62291547A (en) Method for measuring concentration of substance
JPS63143830A (en) Haze-defect detecting method
US7433053B2 (en) Laser inspection using diffractive elements for enhancement and suppression of surface features
JPH0518889A (en) Method and device for inspecting foreign matter
JPS6129453B2 (en)
JPS5973710A (en) Surface defect inspecting device for transparent disk
EP0590891B1 (en) Method and apparatus for estimating a mixing proportion of different powdery contents
JP2000258128A (en) Device and method for inspecting film thickness
JP2873450B2 (en) Defect inspection device using light
JP2004069571A (en) Surface inspection apparatus
JPS5979122A (en) Laser power measuring device
JPH09318603A (en) Device for detecting defect by laser and ultrasonic wave
RU2035721C1 (en) Method of checking transparency of flat light-translucent materials
JP2966060B2 (en) Speckle speed detector
JPH01260348A (en) Surface inspector for glass disc
Pollak et al. Recent advances in the photodensitometric evaluation of thin-media chromatograms
JPH06294777A (en) Measuring method for ultrasonic vibration
JPS60257136A (en) Film thickness measuring device for photoresist