JPS6343441Y2 - - Google Patents
Info
- Publication number
- JPS6343441Y2 JPS6343441Y2 JP1983006677U JP667783U JPS6343441Y2 JP S6343441 Y2 JPS6343441 Y2 JP S6343441Y2 JP 1983006677 U JP1983006677 U JP 1983006677U JP 667783 U JP667783 U JP 667783U JP S6343441 Y2 JPS6343441 Y2 JP S6343441Y2
- Authority
- JP
- Japan
- Prior art keywords
- tensile strength
- thermal expansion
- optical fiber
- spacer
- modulus
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000013307 optical fiber Substances 0.000 claims description 21
- 239000000463 material Substances 0.000 claims description 20
- 125000006850 spacer group Chemical group 0.000 claims description 15
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 4
- 229910052742 iron Inorganic materials 0.000 claims description 2
- 239000002184 metal Substances 0.000 claims 1
- 229910052751 metal Inorganic materials 0.000 claims 1
- 229910000831 Steel Inorganic materials 0.000 description 13
- 239000010959 steel Substances 0.000 description 13
- 229920000642 polymer Polymers 0.000 description 6
- 230000008602 contraction Effects 0.000 description 4
- 239000002861 polymer material Substances 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 239000000835 fiber Substances 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229910001374 Invar Inorganic materials 0.000 description 1
- 230000004308 accommodation Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 239000011152 fibreglass Substances 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229920005992 thermoplastic resin Polymers 0.000 description 1
Landscapes
- Insulated Conductors (AREA)
Description
【考案の詳細な説明】
本考案は、光フアイバケーブルにおいて、各種
外力に抗して、光フアイバを安全に収容、保護す
るための光フアイバケーブル用スペーサに関する
ものである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an optical fiber cable spacer for safely housing and protecting the optical fiber against various external forces.
光フアイバを多数収容する通信用光フアイバケ
ーブルは、従来の銅線対を集合したケーブルと異
なり、光フアイバの伝送特性、機械特性を劣化さ
せないよう、張力、側圧、曲げ力、温度変化によ
る伸縮力等の各種外力に対して、特別な構造設計
が必要である。特に、ケーブルへの張力に対し
て、抗張力体を配置するとともに、材料の熱伸縮
歪みによつて、光フアイバが破断しないようにす
ることが重要である。このような所要条件に対す
る光ケーブルの有力な構造として、スペーサに光
フアイバを緩く収容する構造があげられる。この
場合、スペーサの特性が極めて重要であることは
言うまでもない。 Optical fiber cables for communication, which accommodate a large number of optical fibers, differ from conventional cables made up of copper wire pairs.In order to prevent deterioration of the transmission characteristics and mechanical properties of the optical fibers, fiber optic cables for communications accommodate a large number of optical fibers. Special structural design is required for various external forces such as In particular, it is important to arrange a tensile strength member against the tension applied to the cable and to prevent the optical fiber from breaking due to thermal expansion/contraction strain of the material. An effective structure for optical cables that meets these requirements is a structure in which an optical fiber is loosely accommodated in a spacer. In this case, it goes without saying that the characteristics of the spacer are extremely important.
従来のスペーサは、第1図のような横断面構造
をしており、抗張力体12は鋼線が用いられ、ス
ペース形成体11としてはPE等の高分子材料が
用いられている。しかるに鋼線はヤング率は高い
が、熱膨脹係数が光フアイバに比べて約30倍と大
きいうえ、一方のPEも熱膨脹係数が鋼の15倍も
あるため、スペーサ全体の熱伸縮は大きくなる。
このため、フアイバ収容構造の設計が複雑にな
り、長期間信頼性を確保するため、熱伸縮歪みに
対して、安全率を大きく見積つて、過剰設計状態
にせざるを得ず、ケーブルの適用性が制限される
とともに、経済化が阻害されるという問題があ
る。 A conventional spacer has a cross-sectional structure as shown in FIG. 1, the tensile strength member 12 is made of steel wire, and the space forming member 11 is made of a polymeric material such as PE. However, although steel wire has a high Young's modulus, its coefficient of thermal expansion is about 30 times higher than that of optical fiber, and PE also has a coefficient of thermal expansion 15 times that of steel, so the thermal expansion and contraction of the entire spacer increases.
For this reason, the design of the fiber housing structure becomes complicated, and in order to ensure long-term reliability, it is necessary to overestimate the safety factor against thermal expansion and contraction distortion and over-design, which reduces the applicability of the cable. There is a problem that economicization is hindered as well as being restricted.
本考案は従来の欠点を除去し、周縁に光フアイ
バを緩く収容するための複数の溝スペースを有す
るスペース形成体の中央内部に抗張力体を密着配
設した光フアイバケーブル用スペーサにおいて、
前記抗張力体を高弾性率を有しかつ熱膨脹係数を
有する高分子材料の線材で、あるいは前記高分子
材料の線材と鉄を主成分とする金属材料の線材を
密着して形成し、前記抗張力体とスペーサ形成体
の両者の(ヤング率×断面積×熱膨脹係数)の値
の和を、両者の(ヤング率×断面積)の値の和で
除した値の絶対値が10-6以下となる設定したこと
を特徴とし、その目的は総合的に十分な抗張力特
性を持たせると共に熱膨脹係数を光フアイバと同
程度とするにある。 The present invention eliminates the conventional drawbacks and provides an optical fiber cable spacer in which a tensile strength member is closely disposed inside the center of a space forming body having a plurality of groove spaces on the periphery for loosely accommodating optical fibers.
The tensile strength body is formed of a wire made of a polymeric material having a high modulus of elasticity and a coefficient of thermal expansion, or a wire made of the polymeric material and a wire made of a metal material containing iron as a main component are formed in close contact with each other. The absolute value of the sum of the values of (Young's modulus x cross-sectional area x coefficient of thermal expansion) of both the spacer forming body divided by the sum of the values of (Young's modulus x cross-sectional area) of both is 10 -6 or less. The purpose is to have comprehensively sufficient tensile strength properties and to have a coefficient of thermal expansion comparable to that of optical fiber.
本考案を図面に基いて説明する。 The present invention will be explained based on the drawings.
第2図〜第5図は本考案の実施例の横断面図を
示す。 2 to 5 show cross-sectional views of embodiments of the present invention.
1はスペーサ、11はスペース形成体、13は
スペース、14,15,16は高分子線材の抗張
力体、17,18は鋼線の抗張力体である。まず
第2図は本考案の基本構成を示すものである。ス
ペース形成体11は、周縁に光フアイバを緩く収
容するための溝スペース13を有し、内部中心部
に抗張力体14を包含している。ここで、スペー
ス形成体は従来と同様に、PE等の高分子材料を
用いるのであるが、抗張力体は、高弾性率を有
し、かつ、負の熱膨脹係数を有する高分子材料の
線材を用いるのである。 1 is a spacer, 11 is a space forming body, 13 is a space, 14, 15, 16 is a tensile strength body made of polymer wire, and 17, 18 is a tensile strength body made of steel wire. First, FIG. 2 shows the basic configuration of the present invention. The space forming body 11 has a groove space 13 on its periphery for loosely accommodating the optical fiber, and includes a tensile strength body 14 in its inner center. Here, the space forming body uses a polymeric material such as PE as in the past, but the tensile strength body uses a wire made of a polymeric material that has a high modulus of elasticity and a negative coefficient of thermal expansion. It is.
2種の材料がこのように密着一体化されている
場合、各材料のヤング率、横断面積、熱膨脹係数
をそれぞれE1,S1,α1,E2,S2,α2とすると、
総合の熱膨脹係数αeは
αe=E1S1α1+E2S2α2/E1S1+E2S2となることが知
られてい
る。本考案はこの原理を利用し、2種の材料の熱
膨脹係数として、正負の値を組合せることによつ
て、αeを光フアイバと同程度の微小値に設定し
ようとするものである。すなわち、スペース形成
体11のE1S1α1に対して、高分子線材抗張力体
14のE2S2α2を適切に選定して、(E1S1α1+
E2S2α2)を所要の微小値に設定するのである。 When two materials are closely integrated in this way, if the Young's modulus, cross-sectional area, and thermal expansion coefficient of each material are E 1 , S 1 , α 1 , E 2 , S 2 , and α 2 , then
It is known that the overall coefficient of thermal expansion αe is αe=E 1 S 1 α 1 +E 2 S 2 α 2 /E 1 S 1 +E 2 S 2 . The present invention utilizes this principle and attempts to set αe to a minute value comparable to that of an optical fiber by combining positive and negative values of the thermal expansion coefficients of two types of materials. That is, by appropriately selecting E 2 S 2 α 2 of the polymer wire tensile strength member 14 with respect to E 1 S 1 α 1 of the space forming member 11, (E 1 S 1 α 1 +
E 2 S 2 α 2 ) is set to a required minute value.
この条件を満たす高分子材料としては、通常の
熱可塑樹脂を高倍率で延伸加工したものが適用で
きる。延伸された高分子材料は、高倍率になると
熱膨脹係数が負値となる場合が多く、従来より実
用されている中から、本考案に適する材料を選定
するのは容易である。 As a polymeric material that satisfies this condition, a material obtained by stretching a normal thermoplastic resin at a high magnification can be used. Stretched polymer materials often have a negative coefficient of thermal expansion at high magnifications, and it is easy to select materials suitable for the present invention from among materials that have been used in practice.
通常のPEのヤング率は約0.7GPa、熱膨脹係数
は約180×10-6であるので、延伸高分子材のヤン
グ率を50GPa、熱膨脹係数を−4×10-6とすれ
ば、延伸高分子材の断面積を、PEスペース形成
体の断面積の4/10に設定することによつて、スペ
ーサ全体の熱膨脹率を10-6以下に抑えることが可
能となる。 Normal PE has a Young's modulus of about 0.7 GPa and a thermal expansion coefficient of about 180×10 -6 , so if the Young's modulus of a stretched polymer material is 50 GPa and the thermal expansion coefficient is -4×10 -6 , then the stretched polymer material By setting the cross-sectional area of the material to 4/10 of the cross-sectional area of the PE space forming body, it is possible to suppress the coefficient of thermal expansion of the entire spacer to 10 -6 or less.
第3図〜第5図は、抗張力体として、鋼線材を
組合せて用いた場合の実施例を示している。この
ようにヤング率が約200GPaと高い鋼線材を組合
せて密着配置すれば、高分子抗張力体14の弾性
率を補い、抗張力設計を容易にすることができ
る。特に、鋼材として、熱膨脹率が1×10-6程度
であるニツケル鋼(インバー)等を用いると、熱
膨脹率に対する設計も併せて容易にすることがで
きるのである。 3 to 5 show examples in which steel wire rods are used in combination as the tensile strength member. By combining and closely arranging steel wire rods having a high Young's modulus of about 200 GPa in this way, the elastic modulus of the polymer tensile strength body 14 can be supplemented and tensile strength design can be facilitated. In particular, if a steel material such as nickel steel (Invar), which has a coefficient of thermal expansion of about 1×10 -6 , is used, the design for the coefficient of thermal expansion can also be made easier.
上記における鋼材は、他に、高分子抗張力体の
欠点を補う作用も持つている。高分子材料はクリ
ープ特性が顕著であり、張力が定常的に印加され
ている場合に、伸びきつてしまう可能性を有す
る。しかるに、第3図〜第5図の構成によれば、
クリープを殆ど示さない鋼材が有効に作用し、高
分子材料のクリープを防止するのである。なお、
前記構成において抗張力体を前記のように高分子
抗張力体と鋼線材とを組合わせ複合抗張力体とす
れば、総断面積は4/10より小さくできる。前記複
合抗張力体はスペース形成体の径が大きいとき適
用して作用効果を生ずる。 The above steel material also has the effect of compensating for the drawbacks of the polymer tensile strength material. Polymer materials have a remarkable creep property, and have the possibility of being stretched completely when tension is constantly applied. However, according to the configuration shown in FIGS. 3 to 5,
Steel materials that exhibit almost no creep function effectively to prevent creep in polymeric materials. In addition,
In the above configuration, if the tensile strength member is made into a composite tensile strength member by combining a polymer tensile strength member and a steel wire as described above, the total cross-sectional area can be made smaller than 4/10. The composite tensile strength member can be applied when the diameter of the space forming member is large to produce an effect.
以上説明したように、本考案の構成によれば、
光ケーブルのスペース形成体の熱伸縮をフアイバ
ガラスと同程度の微少量に抑えることができ、光
フアイバ心線の収容構造設計条件を大幅に緩和で
きる、ケーブル構造を簡素化でき、製造性を飛躍
的に向上できる、光フアイバケーブルの価格を低
減でき、適用性を拡大できる、などの作用効果を
生ずる。 As explained above, according to the configuration of the present invention,
Thermal expansion and contraction of the space forming body of the optical cable can be suppressed to a minute amount, comparable to that of fiber glass, and the design conditions for the optical fiber accommodation structure can be greatly eased. The cable structure can be simplified, dramatically improving manufacturability. This brings about effects such as improving performance, reducing the cost of optical fiber cables, and expanding applicability.
第1図は従来のスペーサの横断面図、第2図〜
第5図は本考案の実施例の横断面図、を示す。
1:スペーサ、11:スペース形成体、12:
鋼線抗張力体、13:スペース、14,15,1
6:高分子線材抗張力体、17,18:鋼線抗張
力体。
Figure 1 is a cross-sectional view of a conventional spacer, Figure 2~
FIG. 5 shows a cross-sectional view of an embodiment of the invention. 1: Spacer, 11: Space forming body, 12:
Steel wire tensile strength body, 13: Space, 14, 15, 1
6: Polymer wire tensile strength body, 17, 18: Steel wire tensile strength body.
Claims (1)
の溝スペースを有するスペース形成体の中央内
部に抗張力体を密着配設した光フアイバケーブ
ル用スペーサにおいて、前記抗張力体を高弾性
率を有しかつ負の熱膨脹係数を有する少く共1
つの抗張力体で構成したことを特徴とする光フ
アイバケーブル用スペーサ。 2 実用新案登録請求の範囲第1項記載の光フア
イバケーブル用スペーサにおいて、前記抗張力
体とスペース形成体の両者の(ヤング率×断面
積×熱膨脹係数)の値の和を、両者の(ヤング
率×断面積)の値の和で除した値の絶体値が
10-6以下となるよう設定したもの。 3 実用新案登録請求の範囲第1項記載の光フア
イバケーブル用スペーサにおいて、前記抗張力
体を、高弾性率を有しかつ負の熱膨脹係数を有
する高分子材料の線材と、鉄を主成分とする金
属材料の線材を密着して形成したもの。[Claims for Utility Model Registration] 1. A spacer for an optical fiber cable in which a tensile strength member is closely disposed inside the center of a space forming body having a plurality of groove spaces for loosely accommodating optical fibers at the periphery, wherein the tensile strength member is At least 1 with a high modulus of elasticity and a negative coefficient of thermal expansion
A spacer for optical fiber cable, characterized by being composed of two tensile strength members. 2 Utility Model Registration In the optical fiber cable spacer according to claim 1, the sum of the values of (Young's modulus x cross-sectional area x coefficient of thermal expansion) of both the tensile strength body and the space forming body is calculated as (Young's modulus of both). The absolute value of the value divided by the sum of the values of
10 -6 or less. 3 Utility Model Registration Scope of Claims 1. The spacer for optical fiber cables according to claim 1, wherein the tensile strength body is made of a wire made of a polymeric material having a high modulus of elasticity and a negative coefficient of thermal expansion, and iron as a main component. It is formed by closely adhering metal wire rods.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1983006677U JPS59114501U (en) | 1983-01-20 | 1983-01-20 | Spacer for optical fiber cable |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1983006677U JPS59114501U (en) | 1983-01-20 | 1983-01-20 | Spacer for optical fiber cable |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS59114501U JPS59114501U (en) | 1984-08-02 |
JPS6343441Y2 true JPS6343441Y2 (en) | 1988-11-14 |
Family
ID=30138224
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1983006677U Granted JPS59114501U (en) | 1983-01-20 | 1983-01-20 | Spacer for optical fiber cable |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS59114501U (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61149910A (en) * | 1984-12-25 | 1986-07-08 | Ube Nitto Kasei Kk | Production of spacer for carrying optical fiber |
JPS61179408A (en) * | 1985-02-05 | 1986-08-12 | Ube Nitto Kasei Kk | Spacer for carrying optical fiber and its production |
JPS61179407A (en) * | 1985-02-05 | 1986-08-12 | Ube Nitto Kasei Kk | Spacer for carrying optical fiber and its production |
JPS62198807A (en) * | 1986-02-27 | 1987-09-02 | Ube Nitto Kasei Kk | Space for holding optical fiber |
JP2006343536A (en) * | 2005-06-09 | 2006-12-21 | Ube Nitto Kasei Co Ltd | Spacer for plastic optical fiber cable |
JP6996395B2 (en) * | 2018-04-03 | 2022-01-17 | 住友電気工業株式会社 | Fiber optic cable |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS51148956U (en) * | 1975-05-22 | 1976-11-29 | ||
US4037922A (en) * | 1975-07-07 | 1977-07-26 | Corning Glass Works | Optical waveguide cable |
JPS5654207A (en) * | 1979-10-05 | 1981-05-14 | Hitachi Ltd | Concentrating method of oxygen |
JPS57181825A (en) * | 1981-04-03 | 1982-11-09 | Furukawa Electric Co Ltd:The | Manufacture of fiber-reinforced plastic filament |
-
1983
- 1983-01-20 JP JP1983006677U patent/JPS59114501U/en active Granted
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS51148956U (en) * | 1975-05-22 | 1976-11-29 | ||
US4037922A (en) * | 1975-07-07 | 1977-07-26 | Corning Glass Works | Optical waveguide cable |
JPS5654207A (en) * | 1979-10-05 | 1981-05-14 | Hitachi Ltd | Concentrating method of oxygen |
JPS57181825A (en) * | 1981-04-03 | 1982-11-09 | Furukawa Electric Co Ltd:The | Manufacture of fiber-reinforced plastic filament |
Also Published As
Publication number | Publication date |
---|---|
JPS59114501U (en) | 1984-08-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4076382A (en) | Optical cable with plastic multilayer sheath | |
CA2053596C (en) | Lightweight optical fiber cable | |
US4743085A (en) | Optical fiber cable having non-metallic sheath system | |
US5229851A (en) | Optical fiber cable with large number of ribbon units containing optical fibers and enclosed in tubes | |
JP3309993B2 (en) | Telecommunication cable | |
US4534618A (en) | Optical communication cable | |
US5291573A (en) | Optical fiber cable wound about overhead power transmission line | |
JPS6343441Y2 (en) | ||
US5999676A (en) | Aerial optical fiber cable | |
EP0200104B1 (en) | Composite overhead stranded conductor | |
JPH08106032A (en) | Optical fiber cable | |
US4865415A (en) | Composite fiber-optic overhead ground wire | |
CN1384379A (en) | Tape optical cable | |
CA1061148A (en) | Central core for optical fibre bundles__ | |
JPS6323690Y2 (en) | ||
JPS5836881B2 (en) | optical cable | |
JP2004012611A (en) | Non-metal optical fiber cable | |
JP2000206383A (en) | St type optical fiber cable, and manufacture thereof | |
CN219512854U (en) | Shock-resistant cable | |
WO2024218908A1 (en) | Optical fiber cable and cable with connector | |
JP3642496B2 (en) | Optical fiber support spacer | |
JPS6033519A (en) | Optical fiber unit | |
JPS6173112A (en) | Tape-shaped optical fiber unit | |
JPS61282806A (en) | Alternant reversed strand optical fiber cable | |
JPS60156025A (en) | Optical fiber cable |