JPS61149910A - Production of spacer for carrying optical fiber - Google Patents

Production of spacer for carrying optical fiber

Info

Publication number
JPS61149910A
JPS61149910A JP59271885A JP27188584A JPS61149910A JP S61149910 A JPS61149910 A JP S61149910A JP 59271885 A JP59271885 A JP 59271885A JP 27188584 A JP27188584 A JP 27188584A JP S61149910 A JPS61149910 A JP S61149910A
Authority
JP
Japan
Prior art keywords
tensile strength
spacer
outer diameter
groove
spacer body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59271885A
Other languages
Japanese (ja)
Other versions
JPH0481763B2 (en
Inventor
Takeshi Kitagawa
健 北川
Shigehiro Matsuno
繁宏 松野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Exsymo Co Ltd
Original Assignee
Ube Nitto Kasei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Nitto Kasei Co Ltd filed Critical Ube Nitto Kasei Co Ltd
Priority to JP59271885A priority Critical patent/JPS61149910A/en
Publication of JPS61149910A publication Critical patent/JPS61149910A/en
Publication of JPH0481763B2 publication Critical patent/JPH0481763B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
    • G02B6/4479Manufacturing methods of optical cables
    • G02B6/4489Manufacturing methods of optical cables of central supporting members of lobe structure

Abstract

PURPOSE:To uniform the shape of a spacer body by coating a tensile strength wire or coated tensile strength wire with thermoplastic resin after setting the ratio of its apparent external diameter and the apparent external diameter of the groove part of the spacer body within a specific range. CONSTITUTION:A tension member 2 is composed of the tensile strength wire or coated tensile strength wire formed by coating the tensile strength wire with thermoplastic resin, the ratio of its apparent external diameter d0 and the apparent external diameter d3 of the groove part of the spacer body 9 is so set that 0.5<d0<0.98, and then the external periphery of this tension member 2 is coated with thermoplastic resin to form the spacer body 9. The apparent external diameter d0 of the tension member 2 is substituted with the apparent external diameter d1 of the tensile strength wire when the tensile strength wire itself is coated with the spacer body directly or with the external diameter d2 after coating when the coated tensile strength wire is used. Thus, the width, depth, etc., of the groove part of the spacer are uniformed in a sectional direction and a lengthwise direction.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、光ファイバケーブルの要素として用いられ、
複数本の光ファイバを保護担持するスペーサの製造方法
に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention is used as an element of an optical fiber cable,
The present invention relates to a method of manufacturing a spacer that protects and supports a plurality of optical fibers.

(従来技術とその欠点) 周知のように、電気通信に供せられる光ファイバを敷設
する際に、抗張力線の外周に熱可塑性樹脂により長手方
向に種々の溝形状を形成したスペーサが用いられており
、その溝内にそれぞれ光ファイバを担持させ集合化して
いる。従って、スペーサのfM形状の精度は光ファイバ
の伝送特性を左右することになり厳格な精度が要求され
ている。
(Prior Art and Its Disadvantages) As is well known, when installing optical fibers for telecommunications, spacers are used that are made of thermoplastic resin and have various groove shapes formed in the longitudinal direction around the outer periphery of the tensile strength wire. The optical fibers are held and aggregated in each groove. Therefore, the precision of the fM shape of the spacer affects the transmission characteristics of the optical fiber, and strict precision is required.

ところで、この種のスペーサの製造方法としては、抗張
力線の外周を、種々の口金形状のダイスを回転させなが
ら、あるいは固定されたダイスから熱可塑性樹脂を溶融
押出して被覆し、冷却固化させてスペーサを製造してい
る。
By the way, as a manufacturing method for this type of spacer, the outer periphery of the tensile strength wire is coated with thermoplastic resin by rotating a die with various mouth shapes or by melting and extruding it from a fixed die, and the spacer is made by cooling and solidifying the outer periphery of the tensile strength wire. is manufactured.

ここでダイスによってスペーサ本体に溝部が形の長手方
向に螺旋状の溝が形成される。
Here, a spiral groove is formed in the spacer body in the longitudinal direction of the groove shape using a die.

このような方法で製造される光ファイバ用スペーサの抗
張力線径、スペーサ本体のり1部の外径。
The tensile strength wire diameter of the optical fiber spacer manufactured by such a method, and the outer diameter of the glue part of the spacer body.

溝部の谷径およびこれらの数などは、光ファイバの集合
化の際に要求されるスペーサとしての仕様によって決定
され、種々の抗張力線とスペーサ本体の寸法形状のもの
が使用されている。
The diameter of the grooves and their number are determined by the specifications of the spacer required when aggregating optical fibers, and various tensile strength wires and spacer body sizes and shapes are used.

しかしながら、上述した製造方法には、次のような欠点
があった。
However, the above-described manufacturing method had the following drawbacks.

すなわち、光ファイバ担持用スペーサとして、要求され
る抗張力に対して決定される抗張力線径d、と、スペー
サ本体部分の溝部谷径d3との比(d+ / di )
が小なるときは、抗張力線の外周に一段で熱可塑性樹脂
を押出し被覆してスペーサ本体を形成すると、スペーサ
本体の溝部形状が不均一となったり、あるいは、スペー
サ本体が著しく変形したりして所望の寸法形状、精度を
得ることが難しく、たとえ得られたとしても極めて歩留
りが悪かった(第3図A参照)。
In other words, the ratio (d+/di) of the tensile strength wire diameter d determined for the required tensile strength as a spacer for supporting an optical fiber and the groove diameter d3 of the spacer main body.
If the outer periphery of the tensile strength line is extruded and coated with thermoplastic resin in one step to form the spacer body, the groove shape of the spacer body may become uneven or the spacer body may be significantly deformed. It was difficult to obtain the desired dimensions, shape, and precision, and even if they were obtained, the yield was extremely poor (see FIG. 3A).

また、上述した傾向は、熱可塑性樹脂に各種ポリエチレ
ン、ポリプロピレンなどの結晶性の樹脂を用いた場合に
顕著であった。
Moreover, the above-mentioned tendency was remarkable when crystalline resins such as various polyethylenes and polypropylenes were used as thermoplastic resins.

この原因は、結晶性熱可塑性樹脂がダイスから押出され
て、冷却固化されるに際して、結晶化によって急激に体
積収縮するが、この収縮の開始がスペーサのりブ部と溝
部の内周部分で異なり、その結果、冷却速度が遅く収縮
に最も時間がかかる溝部の内周部分が、冷却固化がかな
り進行したりプ部を引き込むようにな形で固化するため
と思われる。
The reason for this is that when the crystalline thermoplastic resin is extruded from a die and cooled and solidified, it rapidly shrinks in volume due to crystallization, but the start of this shrinkage is different between the spacer groove and the inner periphery of the groove. As a result, it is thought that the inner circumferential portion of the groove, where the cooling rate is slow and takes the longest time to shrink, undergoes considerable cooling and solidification, or solidifies in a shape that draws in the groove.

さらに、上述した方法のうち螺旋溝を形成するためにダ
イスを回転させると、応力の状態が直線満を形成すると
きと異なるため、均一な溝を形成することが一居難しか
った。
Furthermore, in the above-mentioned method, when the die is rotated to form a spiral groove, the state of stress is different from that when forming a straight line, making it difficult to form a uniform groove.

(発明の目的) 本発明は、上述した従来の欠点に鑑みてなされたもので
あって、その目的とするところは、中央に抗張力線を配
し、その外周に熱可塑性樹脂によりスペーサ本体を形成
してなる光ファイバ担持用スペーサの、溝部の幅、深さ
などを断面方向および長手方向に亘って均一にするため
の新規な製造方法を提供することにある。
(Object of the Invention) The present invention has been made in view of the above-mentioned conventional drawbacks, and its purpose is to arrange a tensile strength wire in the center and form a spacer body from thermoplastic resin on the outer periphery of the tensile strength wire. An object of the present invention is to provide a new manufacturing method for making the width, depth, etc. of the groove portion of an optical fiber supporting spacer made uniform over the cross-sectional direction and the longitudinal direction.

(発明の構成) 上記目的を達成するため、本発明は、中央に抗張力線を
配し、この抗張力線の外周に長手方向に延びる溝を備え
たスペーサ本体を結晶性の熱可塑性樹脂で形成した光フ
ァイバ担体用スペーサの製造方法において、前記抗張力
線もしくは抗張力線を熱可塑性樹脂によって被覆した被
覆抗張力線からなるテンションメンバーを、その見なし
外径dOと、前記スペーサ本体の溝部の見なし外径d3
との比が0.5< do / d3 < 0.98の関
係式を満足するように設定した後、このテンションメン
バーの外周にに前記結晶性の熱可塑性樹脂で被覆して前
記スペーサ本体を形成するこを特徴とする。
(Structure of the Invention) In order to achieve the above object, the present invention has a spacer body formed of a crystalline thermoplastic resin, which has a tensile strength line in the center and a groove extending in the longitudinal direction on the outer periphery of the tensile strength line. In the method for manufacturing a spacer for an optical fiber carrier, a tension member made of the tensile strength wire or a coated tensile strength wire obtained by coating the tensile strength wire with a thermoplastic resin is set to have an assumed outer diameter dO, and an assumed outer diameter d3 of the groove portion of the spacer body.
After setting the ratio to satisfy the relational expression of 0.5<do/d3<0.98, the outer periphery of the tension member is coated with the crystalline thermoplastic resin to form the spacer body. Characterized by Shiruko.

なお、ここで、テンションメンバーの見なし外径doは
、抗張力線自体に直接スペーサ本体を被覆するときは、
該抗張力線の見なし外径d、に、また熱可塑性樹脂で被
覆した被覆抗張力線を使用するときは、被覆された外径
d2に置き換えられることになるが、抗張力線が撚鋼線
の場合には、見なし外径d1は、複数本の撚り合わされ
た鋼線の外周の包絡径であって、スペーサ本体の溝部の
児なし外径d3はすべての溝部に内接する円の直径であ
って、形成しようとするスペーサ本体の目標値である。
In addition, here, the assumed outer diameter do of the tension member is, when the tensile strength wire itself is directly coated with the spacer body,
The assumed outer diameter d of the tensile strength wire is replaced by the coated outer diameter d2 when a coated tensile strength wire coated with a thermoplastic resin is used, but when the tensile strength wire is a twisted steel wire, The assumed outer diameter d1 is the envelope diameter of the outer periphery of a plurality of twisted steel wires, and the uncircumcised outer diameter d3 of the grooves of the spacer body is the diameter of the circle inscribed in all the grooves. This is the target value for the spacer body.

上記構成をより詳細に説明すると、上記抗張力線として
は、単調線、撚鋼線2強化プラスチック線状物およびそ
の撚線などが使用される。
To explain the above configuration in more detail, as the tensile strength wire, a monotonic wire, a twisted steel wire 2 reinforced plastic wire, a twisted wire thereof, etc. are used.

また、上記被覆抗張力線の被覆樹脂としては、直鎖状低
密度ポリエチレン(LLDPE)、高密度ポリエチレン
(HDPE)、接着性ポリエチレンなどの各種変性ポリ
エチレンおよび共重合体、ポリプロピレンのホモポリマ
ーおよび共重合体などが用いられ、上記スペーサ本体形
成樹脂どしては、前記樹脂と同じものでもよく、また、
前記被覆抗張力線の被覆樹脂と相互に相溶度が大きく、
R着接台が可能なものであってもよい。
In addition, as the coating resin for the above-mentioned coated tensile strength wire, various modified polyethylenes and copolymers such as linear low-density polyethylene (LLDPE), high-density polyethylene (HDPE), and adhesive polyethylene, and polypropylene homopolymers and copolymers are used. etc., and the spacer body forming resin may be the same as the above resin, and
has high mutual compatibility with the coating resin of the coated tensile strength wire;
It may be possible to use an R bonding stand.

(発明の作用) 上記構成からなる本発明の製造方法においては、抗張力
線自体もしくは被覆抗張力線からなるテンションメンバ
ーの外径dOと、スペーサ本体の溝部の見なし外径d3
との比(do/d3)が0,5より大きくかつ0.98
よりも小さく設定されているため、テンションメンバー
の見かけの外径が大きくなって、その外周に形成された
スペーサ本体を冷却する際に、スペーサのりブ部と溝部
の内周部分との間で冷却速度の遅れが殆どなくなり、溝
部の内周部分がリブ部を引込むことが防止され、この結
果としてスペーサ本体の溝部の変形を防止して所望の寸
法形状、精度を有するスペーサが得られる。
(Function of the invention) In the manufacturing method of the present invention having the above configuration, the outer diameter dO of the tension member made of the tensile strength wire itself or the coated tensile strength wire, and the assumed outer diameter d3 of the groove of the spacer body.
The ratio (do/d3) is greater than 0.5 and 0.98
Because it is set smaller than There is almost no delay in speed, the inner peripheral portion of the groove is prevented from pulling in the rib, and as a result, the groove of the spacer body is prevented from being deformed, and a spacer having desired dimensions and shape and accuracy can be obtained.

なお、被覆抗張力線を用いるときは、この被覆抗張力線
の被覆樹脂と、本体形成用の樹脂とを、相互に相溶度が
大きいものを用いれば、これらがグイで接触した際に相
互に融合し、双方の樹脂を融着しつつ接合でき、上述の
効果に加え、特に撚り構造の抗張力線の外周にスペーサ
本体を直接形成する場合と比べ、抗張力線の凹凸状の撚
構造の影響が排除され、より寸法形状が安定し、精度が
向上する。
In addition, when using a coated tensile strength wire, if the coating resin of the coated tensile strength wire and the resin for forming the main body are highly compatible with each other, they will fuse together when they come into contact with each other. However, both resins can be joined while being fused, and in addition to the above-mentioned effects, the influence of the uneven twisted structure of the tensile strength wires is eliminated, especially compared to the case where the spacer body is directly formed on the outer periphery of the tensile strength wires with a twisted structure. This results in more stable dimensions and improved precision.

上述した外径の比(do/d3)は、後述するように本
発明者らの実験によって確認・設定されたものであって
、do/(f3が0.5より小さいとスペーサの溝部の
内周部分が肉厚となって上記作用が得られず、一方、d
o/d3が0.98よりも大きいと溝部の内周部分が肉
薄になりすぎてリブ部の起立性や強度に問題が生ずるし
、テンションメンバーがダイ部を通過する際、ノズルの
透孔に擦過して引き取りテンションのむらが生ずるなど
の問題もおこる。
The above-mentioned outer diameter ratio (do/d3) was confirmed and set by the inventors' experiments as described later, and if do/(f3 is smaller than 0.5, the inner diameter of the spacer groove The above effect cannot be obtained because the peripheral part becomes thick, and on the other hand, d
If o/d3 is larger than 0.98, the inner peripheral part of the groove will become too thin, causing problems with the uprightness and strength of the rib part, and when the tension member passes through the die part, it will not fit into the through hole of the nozzle. Problems such as friction and uneven take-up tension also occur.

従って、外径の比(do / dz)が上記の範囲の下
限近傍では、テンションメンバーとしては抗張力線それ
自体およびこれに被覆したもののいずれも使用できるが
、上限近傍では抗張力線に被覆した被覆抗張力線を用い
ることが好ましい。
Therefore, when the outer diameter ratio (do/dz) is near the lower limit of the above range, either the tensile strength wire itself or a coating on it can be used as the tension member, but near the upper limit, the tensile strength of the coating on the tensile strength wire Preferably, a line is used.

(実 施 例) 以下、この発明の好適な実施について添附図面を参照に
して詳細に説明する。
(Embodiments) Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings.

第1図は、この発明の実施に使用される装置a類の側路
説明図であって、ボビン1に捲回されたテンションメン
バー2を、第2図に示すスペーサ本体9の目標とする断
面形状に相応するノズル4を有するクロスへラドダイ3
に挿通し、ノズル4を回転させながらテンションメンバ
ー2の外周に溶融した結晶性の熱可塑性樹脂を押出して
被覆し、しかる後空気もしくは水などの冷媒による冷却
槽5に導き冷却固化させた後、巻取ボビン6に巻付け、
第2図に示すように、テンションメンバー2の外周に長
手方向に延びる複数条の螺旋溝7と、これを隔成するリ
ブ8とを有するスペーサ本体9を形成する。ここで、上
記テンションメンバー2は、単線、撚線の抗張力線2a
自体、または、これらの抗張力線2aに樹脂被覆層2b
を形成した被覆抗張力線のいずれでもよく、樹脂被覆層
2bを形成する際には、上記ボビン1とクロスへラドダ
イ3との間に別のダイスを設け、樹脂被覆層2bとスペ
ーサ本体9の形成が連続的に行えるようにしでもよい。
FIG. 1 is an explanatory view of a type of device A used in carrying out the present invention, in which a tension member 2 wound around a bobbin 1 is placed in a targeted cross section of a spacer body 9 shown in FIG. A cross rad die 3 with a nozzle 4 corresponding to the shape
While rotating the nozzle 4, the outer periphery of the tension member 2 is extruded and coated with molten crystalline thermoplastic resin, and then introduced into a cooling tank 5 using a refrigerant such as air or water to cool and solidify. Wind it around the winding bobbin 6,
As shown in FIG. 2, a spacer body 9 is formed on the outer periphery of the tension member 2, having a plurality of spiral grooves 7 extending in the longitudinal direction and ribs 8 separating the grooves. Here, the tension member 2 is a single wire or a twisted wire tensile strength wire 2a.
Resin coating layer 2b on itself or on these tensile strength wires 2a
When forming the resin coating layer 2b, another die is provided between the bobbin 1 and the cross-layer die 3 to form the resin coating layer 2b and the spacer body 9. may be performed continuously.

また、ここで注意を要することは、テンションメンバー
2として抗張力線2aをそのまま用いる際にはその外径
dl sまた、テンションメンバー2に樹脂被覆層2b
を形成した被覆抗張力線を使用する際にはその外径d2
と、スペーサ本体9の溝部7の目標とする外径d3との
比(d+ / dzまたはdz / dz、これらの総
称をd0/d3と称する)が、0.5< do / d
z< 0.98の関係式を満足するようにテンションメ
ンバー2の外径dOを設定することである。
What should be noted here is that when using the tensile strength wire 2a as it is as the tension member 2, the outer diameter dl s of the tension member 2
When using a coated tensile strength wire formed with
and the target outer diameter d3 of the groove portion 7 of the spacer body 9 (d+/dz or dz/dz, collectively referred to as d0/d3) is 0.5<do/d.
The purpose is to set the outer diameter dO of the tension member 2 so as to satisfy the relational expression z<0.98.

・実施例1 抗張力線として直径0.38mmの鋼線を9本(中心部
に3本配置しその外側に6本配置したもの)撚り合わせ
た撚鋼線(見かけの外径d+ = 1.2mm)を使用
し、アセトンで脱脂処理後、クロスへラドダイに挿通し
てLLDPE (M I= 1.0)によって樹脂被覆
層2bを形成し、冷却固化後、被覆外径d2が2.8m
mの被覆抗張力線を得た。
・Example 1 Twisted steel wire (apparent outer diameter d+ = 1.2 mm) made by twisting nine steel wires with a diameter of 0.38 mm (three in the center and six on the outside) as a tensile strength wire. ), and after degreasing with acetone, insert the cloth into a rad die to form a resin coating layer 2b with LLDPE (M I = 1.0), and after cooling and solidifying, the coating outer diameter d2 is 2.8 m.
A coated tensile strength wire of m was obtained.

そして、この被覆抗張力線の外周にHDPE(M r 
= 0.2)によって、等間隔に6条のりブ8を、−そ
の外径d4の目標値が5.7IIIFaで、溝部7の外
径d3の目標値を3n++aとし、螺旋ピッチが150
m1Ilどなるようにしてスペーサ本体9を形成した。
Then, HDPE (Mr
= 0.2), six grooves 8 are arranged at equal intervals, - the target value of the outer diameter d4 is 5.7IIIFa, the target value of the outer diameter d3 of the groove part 7 is 3n++a, and the helical pitch is 150.
The spacer body 9 was formed in the following manner.

その結果、リブ8の山径は5.5〜5.65 mm、溝
部7の谷径は2.8〜2.9mmであった。
As a result, the peak diameter of the rib 8 was 5.5 to 5.65 mm, and the valley diameter of the groove 7 was 2.8 to 2.9 mm.

このスペーサ本体9と被覆抗張力線2との見かけの外径
比dz / d3は、0.93であって、溝幅の内外周
でのばらつき、および溝深さのばらつきは、約0.1程
度であって、はぼ同じ構成の比較例1と比べてばらつき
が小さく、且つ断面形状にも変形がなく良好な結果が得
られた。
The apparent outer diameter ratio dz/d3 between the spacer body 9 and the coated tensile strength wire 2 is 0.93, and the variation in groove width between the inner and outer circumferences and the variation in groove depth are about 0.1. Compared with Comparative Example 1 having almost the same configuration, the variation was smaller and the cross-sectional shape was not deformed, giving good results.

二2 テンションメンバー2として上記実施例1とおなしもの
を用い、樹脂被覆層2bに1−IDPEを使用し、その
外径d2が2.0+emとなるようにした。
22 The same as in Example 1 was used as the tension member 2, 1-IDPE was used for the resin coating layer 2b, and the outer diameter d2 was set to 2.0+em.

また、スペーサ本体9はHDPEで形成し、リブ8の山
径d4の目標値を5.6ia+mとし、同溝部7の外径
d3の目標値を3mmとし、螺旋ピッチは155III
Illとした。
The spacer body 9 is made of HDPE, the target value of the diameter d4 of the rib 8 is 5.6ia+m, the target value of the outer diameter d3 of the groove 7 is 3 mm, and the helical pitch is 155III.
Ill.

その結果リブ8の山径は5.8〜5.9mm、溝部7の
谷径は3.0〜3.1mll1となった。
As a result, the peak diameter of the rib 8 was 5.8 to 5.9 mm, and the valley diameter of the groove 7 was 3.0 to 3.1 ml1.

この場合、外径の比d2/(13は0.67となり、上
記実施例1よりも溝幅などのばらつきは大きいが、実用
上支障がない程度の結果が得られた。
In this case, the outer diameter ratio d2/(13 was 0.67, and although the variation in groove width etc. was larger than in Example 1, results were obtained that did not cause any practical problems.

・比較例1 テンションメンバー2としては上記実施例1と同じ撚鋼
線を用い、これを脱脂した後、直接これにHDPEでス
ペーサ本体9を形成した。
Comparative Example 1 The same twisted steel wire as in Example 1 was used as the tension member 2, and after degreasing it, the spacer body 9 was formed directly on it with HDPE.

スペーサ本体9の目標寸法は、リブ8の外径d4が5.
7111.溝部8の外径d3が3.0■、螺旋ピッチを
150111とした。
The target dimensions of the spacer body 9 are that the outer diameter d4 of the rib 8 is 5.
7111. The outer diameter d3 of the groove portion 8 was 3.0 mm, and the helical pitch was 150111.

その結果、リブ8の山径は5.5〜5.71111.溝
部7の谷径は2.9〜3.3ia+どなった。
As a result, the diameter of the rib 8 was 5.5 to 5.71111. The groove diameter of the groove 7 was 2.9 to 3.3 ia+.

この場合の外径の比(L / d3は、0.4となり、
外周溝幅は0.9〜1.51I11まで大きくばらつき
、特に溝深さは変形のため測定できなかった。
In this case, the outer diameter ratio (L/d3 is 0.4,
The outer circumferential groove width varied widely from 0.9 to 1.51I11, and in particular, the groove depth could not be measured due to deformation.

二重i1エ テンションメンバー2として、外径0.6IllI11
の鋼線で(1+6)本の撚鋼線(見かけの外径d+ =
1.81)を使用し、その外周にHDPEで外径d2が
41111Rとなるように樹脂被覆JI2bを形成した
As double i1 etension member 2, outer diameter 0.6IllI11
(1+6) twisted steel wires (apparent outer diameter d+ =
1.81), and a resin coating JI2b was formed on its outer periphery with HDPE so that the outer diameter d2 was 41111R.

スペーサ本体9はl−I D P Eを用い、等間隔に
5条のりブ8が形成されるように、その目標外径d4が
約9.Omn+、溝部7の目標外径が4.2111.螺
旋ピッチ4001となるように設定した。
The spacer main body 9 is made of l-IDP E, and its target outer diameter d4 is set to about 9.5 mm so that five ribs 8 are formed at equal intervals. Omn+, the target outer diameter of the groove 7 is 4.2111. The spiral pitch was set to 4001.

その結果、リブ8の山径は8.1〜8.811J溝部7
の谷径は4.15〜4.25111であッテ、外径比d
2/d3は約0.95となり、溝幅と溝深さは2.0〜
2.2の範囲内でばらつきが少く、また、形状の変形も
殆ど認められなかった。
As a result, the diameter of the rib 8 is 8.1 to 8.811J.
The valley diameter is 4.15 to 4.25111, and the outer diameter ratio d
2/d3 is approximately 0.95, and the groove width and groove depth are 2.0~
There was little variation within the range of 2.2, and almost no shape deformation was observed.

・比較例2 テンションメンバー2として見かけの外径d。・Comparative example 2 The apparent outer diameter d of the tension member 2.

が1.811mの撚鋼線を使用し、スペーサ本体9は、
HDPEを使用し、リブ8の目標外径d4が9.0mn
+、溝部7の目標外径d3が4.51、条数5でピッチ
400■の螺旋溝となるように設定した。
The spacer body 9 uses twisted steel wire with a length of 1.811 m.
HDPE is used, and the target outer diameter d4 of the rib 8 is 9.0 mm.
+, the target outer diameter d3 of the groove portion 7 was set to be 4.51, the number of grooves was 5, and the spiral groove was set to have a pitch of 400 cm.

その結果、リブ8の山径は8.7〜9.0mm、溝部7
の目標外径は測定不可能な状態であった。
As a result, the diameter of the rib 8 is 8.7 to 9.0 mm, and the groove 7 is
It was impossible to measure the target outer diameter.

外径比d+/d3は0.4となり、溝寸法にばらつきが
大きく、形状も大きな変形が認められた。
The outer diameter ratio d+/d3 was 0.4, and large variations in groove dimensions and large deformations in shape were observed.

・実施例4 テンションメンバー2として、外径1.6m1llの鋼
線で(1+6)本の見かけの外径d、が4,8e+Il
の撚鋼線をそのまま使用した。
・Example 4 As the tension member 2, the apparent outer diameter d of (1+6) pieces of steel wire with an outer diameter of 1.6 ml is 4.8e+Il
The twisted steel wire was used as is.

スペーサ本体9の形成樹脂はHDPE、目標外形寸法は
りブ8の外径d4を10m1、溝部7の外径dzを6i
n+ 1条数は6条とし螺旋ピッチは300mmに設定
した。
The forming resin of the spacer body 9 is HDPE, and the target external dimensions are as follows: The outer diameter d4 of the beam 8 is 10 m1, and the outer diameter dz of the groove 7 is 6i.
The number of n+1 threads was 6, and the helical pitch was set to 300 mm.

この結果、リブ8の山径は9.8〜10mm、溝部7の
谷径は5.8〜6.1mmであった。
As a result, the peak diameter of the rib 8 was 9.8 to 10 mm, and the valley diameter of the groove 7 was 5.8 to 6.1 mm.

この場合の外径比d+ / d3は0.8となるが、溝
の寸法のばらつきおよび形状変形の少いものが得られた
In this case, the outer diameter ratio d+/d3 was 0.8, but a groove with little variation in dimension and shape deformation was obtained.

・実施例5 テンションメンバー2として外径d、が2mmの単調線
を直接使用した。
- Example 5 As the tension member 2, a monotonic wire with an outer diameter d of 2 mm was directly used.

スペーサ本体9の形成樹脂はHDPE、リブ8の目標外
径d4が6.0mm、溝部7の目標外径d3が2.81
111.条数は4条で螺旋ピッチは200mmに設定し
た。
The forming resin of the spacer body 9 is HDPE, the target outer diameter d4 of the rib 8 is 6.0 mm, and the target outer diameter d3 of the groove portion 7 is 2.81 mm.
111. The number of threads was 4 and the helical pitch was set to 200 mm.

この実施例では外径比d+ / d3は0.71となり
、リブ8の山径は5.96〜6.07mm 、 1ll
s部7の谷径は2.76〜2.88 mmとなり、上記
実施例と同じように溝の寸法精度および形状に好結果が
得られた。
In this example, the outer diameter ratio d+/d3 is 0.71, and the diameter of the rib 8 is 5.96 to 6.07 mm, 1ll.
The diameter of the valley of the s portion 7 was 2.76 to 2.88 mm, and good results were obtained in the dimensional accuracy and shape of the groove as in the above embodiment.

・実施例6 テンションメンバー2として、見かけの外径d1が3,
5n+g+のガラス繊維強化合成樹脂(GFRP)を使
用し、その外周にLLDPEの樹脂被覆層2bを形成し
、外径d2が5.5mmとなるようにした。
・Example 6 The tension member 2 has an apparent outer diameter d1 of 3,
A glass fiber reinforced synthetic resin (GFRP) of 5n+g+ was used, and a resin coating layer 2b of LLDPE was formed on its outer periphery, so that the outer diameter d2 was 5.5 mm.

スペーサ本体9の形成樹脂はHDPE、リブ8の目標外
径d4が9,5flll、溝部7の目標外径d3が7n
v、条数は12条とし螺旋ピッチは30(hnnに設定
した。
The forming resin of the spacer body 9 is HDPE, the target outer diameter d4 of the rib 8 is 9.5flll, and the target outer diameter d3 of the groove portion 7 is 7n.
v, the number of threads was 12, and the helical pitch was set to 30 (hnn).

この場合の外径比dz / dxは0.19となるが、
形成されたりブ8の山径は9.69〜9,75nv 、
溝部7の谷径は6.68〜6.73mm 、溝の寸法の
バラツキおよび形状変形の少いものが得られた。
In this case, the outer diameter ratio dz/dx is 0.19, but
The diameter of the formed groove 8 is 9.69 to 9.75 nv,
The root diameter of the groove portion 7 was 6.68 to 6.73 mm, and a groove with little variation in dimension and shape deformation was obtained.

・実施例7 テンションメンバー2として、見かけの外径がd+が2
.0111111のガラス繊維強化合成樹脂(GFRP
)を使用し、その外周にLLDPEとHDPEの混合物
で樹脂被N層2bを形成し、外径d2が4.0IIl僧
となるようにした。
・Example 7 As the tension member 2, the apparent outer diameter is d+2
.. Glass fiber reinforced synthetic resin (GFRP) of 0111111
), and a resin-covered N layer 2b was formed on the outer periphery of a mixture of LLDPE and HDPE, so that the outer diameter d2 was 4.0 IIl.

スペーサ本体9の形成樹脂はHDPE、リブ8の目標外
径d4が9.5mm、溝部7の目標外径d3がy、om
m、条数は12条とし螺旋ピッチは250mmに設定し
た。
The forming resin of the spacer body 9 is HDPE, the target outer diameter d4 of the rib 8 is 9.5 mm, and the target outer diameter d3 of the groove portion 7 is y, om.
m, the number of threads was 12, and the helical pitch was set to 250 mm.

結果として、形成されたリブ8の山径は9.13〜9.
83III111溝部7の谷径は6.68〜7.05m
mであった。
As a result, the formed rib 8 has a mountain diameter of 9.13 to 9.13.
The valley diameter of 83III111 groove part 7 is 6.68 to 7.05 m.
It was m.

この場合の外径比d+ / d3は0.51となるが、
溝の寸法のバラツキおよび形状変形の少いものが得られ
た。
In this case, the outer diameter ratio d+/d3 is 0.51, but
A groove with little variation in dimension and shape deformation was obtained.

・比較例3 テンションメンバー2として、見かけの外径d1が2.
0mn+のガラス繊維強化合成樹脂(GFRP)を使用
し、その外周にLLDPEの樹脂被覆層2bを形成し、
外径d2が3.0imとなるようにした。
- Comparative Example 3 The tension member 2 has an apparent outer diameter d1 of 2.
Using 0mn+ glass fiber reinforced synthetic resin (GFRP), forming a resin coating layer 2b of LLDPE on its outer periphery,
The outer diameter d2 was set to 3.0 mm.

スペーサ本体9の形成樹脂は1−IDPE、リブ8の目
標外径d4が9.5n+11+、溝部7の目標外径d3
が約、 7.Omm、条数は12条とし螺旋ピッチは3
00mmに設定した。
The forming resin of the spacer body 9 is 1-IDPE, the target outer diameter d4 of the rib 8 is 9.5n+11+, and the target outer diameter d3 of the groove portion 7.
is about 7. Omm, the number of threads is 12 and the spiral pitch is 3.
It was set to 00mm.

この場合の外径比d+ / dxは0.43となり、形
成されたリブ8の山径は9.65〜9.85 mm、溝
部7の谷径は7.13〜7.28mmであったが、溝の
寸法のバラツキおよび形状のいずれも満足すべき結果が
得られなかった。
In this case, the outer diameter ratio d+/dx was 0.43, the peak diameter of the formed rib 8 was 9.65 to 9.85 mm, and the valley diameter of the groove 7 was 7.13 to 7.28 mm. However, satisfactory results were not obtained in terms of the variation in groove dimensions and the shape of the grooves.

二111L テンシ」ンメンバー2として、見かけの外径d1が2.
Omn+のガラス繊維強化合成樹脂(GFRP)を使用
し、その外周にHOPEの樹脂被覆層2bを形成し、外
径d2が3.Ommとなるようにした。
2111L Tension member 2 has an apparent outer diameter d1 of 2.
Omn+ glass fiber reinforced synthetic resin (GFRP) is used, a HOPE resin coating layer 2b is formed on the outer periphery, and the outer diameter d2 is 3. It was set to Omm.

スペーサ本体9の形成樹脂はトIDPE、リブ8の目標
外径d4が13a+m、溝部7の目標外径d3が6.5
mm、条数は6条とし螺旋ピッチは330mmに設定し
た。
The resin used to form the spacer body 9 is IDPE, the target outer diameter d4 of the rib 8 is 13a+m, and the target outer diameter d3 of the groove 7 is 6.5.
mm, the number of threads was 6, and the helical pitch was set to 330 mm.

この場合の外径比IL / dxは0.46となり、形
成されたりブ8の山径は13.0〜13.4mm、溝部
7の谷径は6.5〜13.4であったが、溝の寸法のば
らつきおよび形状のいずれも満足すべき結果が得られな
かった。
In this case, the outer diameter ratio IL/dx was 0.46, the peak diameter of the groove 8 was 13.0 to 13.4 mm, and the valley diameter of the groove 7 was 6.5 to 13.4. Satisfactory results were not obtained regarding either the variation in groove dimensions or the shape of the grooves.

上記実施例1〜7と比較例1〜4をまとめたものが以下
に示す表である。
The following table summarizes Examples 1 to 7 and Comparative Examples 1 to 4.

表からも明らかなように、テンションメンバー2の外径
(d+またはdz )とスペーサ本体9の溝部7の目標
外径d3との比do/diを、0.5から0.98の範
囲内に設定してスペーサ本体9を製造すると、溝の寸法
精度にばらつきが少く、且つ形状も変形が殆どなく安定
し、光ファイバの担持に適した所望のスペーサが製造で
きる。
As is clear from the table, the ratio do/di between the outer diameter (d+ or dz) of the tension member 2 and the target outer diameter d3 of the groove 7 of the spacer body 9 is set within the range of 0.5 to 0.98. When the spacer main body 9 is manufactured after setting, the dimensional accuracy of the grooves has little variation, the shape is stable with almost no deformation, and a desired spacer suitable for supporting an optical fiber can be manufactured.

なお、第3図Aは上記比較例2で製造したスペーサの約
10倍の断面拡大図であって、溝部7が大きく変形して
いた。
Note that FIG. 3A is an enlarged cross-sectional view of the spacer manufactured in Comparative Example 2, about 10 times larger, and the groove portion 7 was greatly deformed.

また、第3図Bは上記実施例3で製造したスペーサの約
10倍断面拡大図であって、溝部7は殆ど変形が認めら
れなかった。 また、上記実施例では、すべて螺旋溝を
形成するスペーサを例示したが、本発明は直線溝にも適
用でき、同じ作用効果が得られることは言うまでもない
Further, FIG. 3B is an approximately 10 times enlarged cross-sectional view of the spacer manufactured in Example 3, in which almost no deformation of the groove portion 7 was observed. Further, in the above embodiments, spacers each having a spiral groove are illustrated, but it goes without saying that the present invention can also be applied to a straight groove, and the same effects can be obtained.

(発明の効果) 以上、実施例で詳細に説明したように、本発明に係る光
ファイバ担持用スペーサの製造方法によれば、スペーサ
本体の形成樹脂の冷却固化時に生ずる収縮の速度が部分
的に異なることや、螺旋溝を施す際の応力の影響を排除
して、寸法精度に優れたスペーサが得られる。
(Effects of the Invention) As described above in detail in the Examples, according to the method for manufacturing an optical fiber supporting spacer according to the present invention, the speed of shrinkage that occurs when the resin forming the spacer body is cooled and solidified is partially reduced. A spacer with excellent dimensional accuracy can be obtained by eliminating the difference and the influence of stress when forming a spiral groove.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による光ファイバ担持用スペーサの製造
方法の一実施例を示す概略図、第2図は同方法で製造さ
れたスペーサの断面図(同図A)、斜視図(同図B)で
ある。 第3図(A)は従来方法で製造したスペーサの拡大断面
図、第3図(B)は本発明の方法で製造したスペーサの
拡大断面図である。 1・・・ボビン      2・・・テンションメンバ
ー3・・・クロスへラドダイ 4・・・ノズル5・・・
冷却槽      6・・・巻取ボビン7・・・螺旋溝
      8・・・・・・リ ブ9・・・スペーサ本
体 特許出願人     宇部日束化成株式会社代 理 人
      弁理士 −色 健輔第1図 第2図 篇3図
FIG. 1 is a schematic diagram showing an embodiment of the method for manufacturing an optical fiber supporting spacer according to the present invention, and FIG. 2 is a cross-sectional view (A in the same figure) and a perspective view (B ). FIG. 3(A) is an enlarged sectional view of a spacer manufactured by the conventional method, and FIG. 3(B) is an enlarged sectional view of a spacer manufactured by the method of the present invention. 1...Bobbin 2...Tension member 3...Rado die to cross 4...Nozzle 5...
Cooling tank 6... Winding bobbin 7... Spiral groove 8... Rib 9... Spacer body Patent applicant Ube Nizuka Kasei Co., Ltd. Representative Patent attorney - Kensuke Iro Figure 1 Figure 2, Figure 3

Claims (2)

【特許請求の範囲】[Claims] (1)中央に抗張力線を配し、該抗張力線の外周に長手
方向に延びる溝を備えたスペーサ本体を結晶性の熱可塑
性樹脂で形成した光ファイバ担持用スペーサの製造方法
において、該抗張力線若しくは該抗張力線を熱可塑性樹
脂によって被覆した被覆抗張力線からなるテンションメ
ンバーを、その見なし外径d_0と、該スペーサ本体の
溝部の見なし外径d_3との比が0.5<d_0/d_
3<0.98の関係式を満足するように設定した後、該
テンションメンバーの外周に該結晶性の熱可塑性樹脂で
被覆して該スペーサ本体を形成することを特徴とする光
ファイバ担持用スペーサの製造方法。
(1) In a method for manufacturing an optical fiber supporting spacer, the spacer body is formed of a crystalline thermoplastic resin and has a tensile strength line in the center and a groove extending in the longitudinal direction on the outer periphery of the tensile strength line. Alternatively, the tension member is made of a coated tensile strength wire obtained by coating the tensile strength wire with a thermoplastic resin, and the ratio of its assumed outer diameter d_0 to the assumed outer diameter d_3 of the groove of the spacer body is 0.5<d_0/d_
A spacer for supporting an optical fiber, characterized in that the outer periphery of the tension member is coated with the crystalline thermoplastic resin to form the spacer body after the relational expression 3<0.98 is satisfied. manufacturing method.
(2)上記被覆抗張力線の被覆樹脂とスペーサ本体に使
用される熱可塑性樹脂とは相互に相溶度が大きく融合す
る合成樹脂からなることを特徴とする特許請求の範囲第
1項記載の光ファイバ担持用スペーサの製造方法。
(2) The light according to claim 1, wherein the coating resin of the coated tensile strength wire and the thermoplastic resin used for the spacer body are made of synthetic resins that have high compatibility with each other and fuse together. A method for manufacturing a spacer for supporting fibers.
JP59271885A 1984-12-25 1984-12-25 Production of spacer for carrying optical fiber Granted JPS61149910A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59271885A JPS61149910A (en) 1984-12-25 1984-12-25 Production of spacer for carrying optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59271885A JPS61149910A (en) 1984-12-25 1984-12-25 Production of spacer for carrying optical fiber

Publications (2)

Publication Number Publication Date
JPS61149910A true JPS61149910A (en) 1986-07-08
JPH0481763B2 JPH0481763B2 (en) 1992-12-24

Family

ID=17506258

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59271885A Granted JPS61149910A (en) 1984-12-25 1984-12-25 Production of spacer for carrying optical fiber

Country Status (1)

Country Link
JP (1) JPS61149910A (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53111490A (en) * 1977-03-09 1978-09-29 Fujikura Ltd Production method of self-supporting cable
JPS58108404U (en) * 1982-01-16 1983-07-23 日本電信電話株式会社 Spacer type optical fiber cable
JPS58188607U (en) * 1982-06-10 1983-12-15 日本電信電話株式会社 fiber optic cable
JPS59114501U (en) * 1983-01-20 1984-08-02 日本電信電話株式会社 Spacer for optical fiber cable
JPS6168216A (en) * 1984-09-13 1986-04-08 Fanuc Ltd Nozzle touching mechanism
JPS6168216U (en) * 1984-10-11 1986-05-10

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53111490A (en) * 1977-03-09 1978-09-29 Fujikura Ltd Production method of self-supporting cable
JPS58108404U (en) * 1982-01-16 1983-07-23 日本電信電話株式会社 Spacer type optical fiber cable
JPS58188607U (en) * 1982-06-10 1983-12-15 日本電信電話株式会社 fiber optic cable
JPS59114501U (en) * 1983-01-20 1984-08-02 日本電信電話株式会社 Spacer for optical fiber cable
JPS6168216A (en) * 1984-09-13 1986-04-08 Fanuc Ltd Nozzle touching mechanism
JPS6168216U (en) * 1984-10-11 1986-05-10

Also Published As

Publication number Publication date
JPH0481763B2 (en) 1992-12-24

Similar Documents

Publication Publication Date Title
EP0091717B1 (en) Method of manufacturing an elongate article
KR100387154B1 (en) Spacer for optical fiber cable, manufacturing method of the same and optical fiber cable using the spacer
DE2755734A1 (en) MANUFACTURING PROCESS FOR A LIGHT GUIDE REMOTE INDICATION CABLE AND CABLE MANUFACTURED BY THIS PROCESS
US4984869A (en) Optical fibre cable and method of making same
JPS61149910A (en) Production of spacer for carrying optical fiber
JP3296873B2 (en) Slot for supporting optical fiber and method of manufacturing the same, optical fiber cable using the slot and method of manufacturing the same
JPS61179408A (en) Spacer for carrying optical fiber and its production
JPH0833503B2 (en) Polyethylene spacer for optical fiber cable
JPH1090568A (en) Spacer for optical fiber cable and its production and production apparatus therefor
JPH089685Y2 (en) Grooved spacer
JP3502240B2 (en) Method of manufacturing synthetic resin unit for optical fiber cable and method of manufacturing optical fiber cable
JP3007051B2 (en) Optical fiber cable and method of manufacturing the same
EP0822431A1 (en) Tension member for optical fiber cable, optical fiber cable using the tension member, and production of the tension member
JP3289042B2 (en) Method for manufacturing high-density optical fiber cable
JP3104926B2 (en) Manufacturing method of single groove spiral slot
JP3579092B2 (en) Spacer for optical fiber cable and method for manufacturing the same
JPH11125755A (en) Spacer for carrying optical fiber
JPH11190813A (en) Spacer for optical fiber cable and spacer manufacturing method
JPH04268522A (en) Production of coated tape optical fiber
JP2533124B2 (en) Method for manufacturing waterproof optical cable
JPH11305083A (en) Manufacture of unit type spacer for optical fiber cable
JPS58223640A (en) Preparation of pipe coating type optical fiber
JPH0753044Y2 (en) Spacer for supporting optical fiber having spiral grooves that are alternately inverted
JPH11311729A (en) Optical fiber cable
JPS58102908A (en) Optical cable

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term