JPS61179408A - Spacer for carrying optical fiber and its production - Google Patents

Spacer for carrying optical fiber and its production

Info

Publication number
JPS61179408A
JPS61179408A JP60019262A JP1926285A JPS61179408A JP S61179408 A JPS61179408 A JP S61179408A JP 60019262 A JP60019262 A JP 60019262A JP 1926285 A JP1926285 A JP 1926285A JP S61179408 A JPS61179408 A JP S61179408A
Authority
JP
Japan
Prior art keywords
spacer
thermoplastic resin
primary coating
optical fiber
coating layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60019262A
Other languages
Japanese (ja)
Other versions
JPH0431364B2 (en
Inventor
Takeshi Kitagawa
健 北川
Shigehiro Matsuno
繁宏 松野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Exsymo Co Ltd
Original Assignee
Ube Nitto Kasei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Nitto Kasei Co Ltd filed Critical Ube Nitto Kasei Co Ltd
Priority to JP60019262A priority Critical patent/JPS61179408A/en
Publication of JPS61179408A publication Critical patent/JPS61179408A/en
Publication of JPH0431364B2 publication Critical patent/JPH0431364B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
    • G02B6/4401Optical cables
    • G02B6/4407Optical cables with internal fluted support member
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
    • G02B6/4479Manufacturing methods of optical cables
    • G02B6/4489Manufacturing methods of optical cables of central supporting members of lobe structure

Abstract

PURPOSE:To improve the reliability of a spacer by a simple process for production by forming a primary coating layer for enclosing tensile wires of an adhesive thermoplastic resin and a spacer body part of a thermoplastic resin having large compatibility with the adhesive thermplastic resin. CONSTITUTION:While the tensile wires 1 are inserted into the 1st cross head die 3, the molten adhesive thermoplastic resin is supplied to the outside periphery thereof to form the primary coating 4 to 0.1-0.5mm thickness, by which a core strand 5 is obtd. The core strand 5 is inserted into the 2nd cross head die 6 having the shape resembling to the sectional shape of the spacer and the thermoplastic resin having the large compatibility with the adhesive thermoplastic resin is supplied in the molten state to the outside periphery of the layer 4 so that the spacer body 8 formed with the spiral optical fiber contg. grooves having projections 7 on the outside periphery is obtd. The simple process for producing the spacer for carrying the optical fibers which has the large joining strength between the spacer body and the tensile wires, obviates the change with environmental temp. decreases the transmission loss of the optical fibers and has high reliability is thus obtd.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、光ファイバを敷設可能な光ファイバケーブル
の形態にする際に用いられる光ファイバケーブル要素と
しての光ファイバ担持用スペーサおよびその製造方法に
関する。
Detailed Description of the Invention (Field of Industrial Application) The present invention relates to a spacer for supporting an optical fiber as an optical fiber cable element used when forming an optical fiber into a form of an optical fiber cable that can be laid, and a method for manufacturing the same. Regarding.

(従来技術とその問題点) この種のスペーサとしては、単調線、撚鋼線などを抗張
力線とし、その外周に熱可塑性樹脂でスペーサ本体を被
覆形成し、スペーサ本体の外周縁に長手方向に連続した
複数の螺旋溝を設けたものが知られており、また、その
製造方法として、抗張力線をクロスヘッドダイに挿通し
、種々の形状のダイを回転しながら熱可塑性樹脂を該ダ
イから溶融押出しして被覆し、冷却固化させる方法など
が公知である。
(Prior art and its problems) This type of spacer uses a monotonic wire, twisted steel wire, etc. as a tensile strength wire, and the outer periphery of the spacer body is coated with a thermoplastic resin. A device with a plurality of continuous spiral grooves is known, and its manufacturing method involves inserting a tensile strength wire into a crosshead die and melting the thermoplastic resin from the die while rotating a die of various shapes. Methods such as extrusion, coating, cooling and solidification are well known.

このような従来の光ファイバ担持用スペーサにおいては
、抗張力線としては単調線あるいは撚鋼線、スペーサ本
体形成用の被覆樹脂としては、耐圧縮性、耐候性、耐熱
性などの諸物性と樹脂価格のバランスから高密度ポリエ
チレン(以下HD P]三と略ザ)が一般的に使用され
ている。
In such conventional spacers for supporting optical fibers, the tensile strength wire is a monotonic wire or twisted steel wire, and the coating resin for forming the spacer body has various physical properties such as compression resistance, weather resistance, and heat resistance, and resin price. High-density polyethylene (hereinafter referred to as HDP) is generally used because of its balance.

しかし、上記の鋼線と、その外周に被覆形成されたH 
D P Eによるスペーサ本体との長手方向の接合力は
、抗張力線が単調線である場合には、主としてHDPE
樹脂の固化時の径方向収縮力などによるものであり、ま
た、抗張力線が撚鋼線の場合には、前記接合力に加え、
撚鋼線の撚構造に基づく凹凸と、この凹凸部に押出し被
覆された熱可塑性樹脂によるいわゆるアンカー接着によ
る係止力に基づく接合力が得られる。しかしながら、上
述した程度の接合力では、種々の環境温度変化に抗し得
る程十分な接合力とは言えず、以下に示す問題があった
However, the above steel wire and the H coated on its outer periphery
When the tensile strength line is a monotonic line, the bonding force in the longitudinal direction with the spacer body due to DPE is mainly due to HDPE.
This is due to the radial shrinkage force when the resin solidifies, and if the tensile strength wire is a twisted steel wire, in addition to the above bonding force,
A bonding force is obtained based on the unevenness based on the twisted structure of the twisted steel wire and the locking force due to so-called anchor adhesion caused by the thermoplastic resin extruded and coated on the uneven portion. However, the bonding force of the above-mentioned level cannot be said to be sufficient bonding force to withstand various environmental temperature changes, and there are problems as described below.

すなわち、抗張力線の線膨張係数と熱可塑性樹脂による
スペーサ本体の線膨張係数が異なり、環fFjA度の変
化に対応して線膨張係数の大きなスペーサ本体部が、抗
張力線より大きく延び縮みするため、スペーサの溝内に
配置した光ファイバにマイクロベンディングロスを生ぜ
しめ、伝送損失を増加せしめる危惧があった。
That is, the linear expansion coefficient of the tensile strength line and the linear expansion coefficient of the spacer body made of the thermoplastic resin are different, and the spacer body with a larger linear expansion coefficient expands and contracts more than the tensile strength line in response to a change in the ring fFjA degree. There was a fear that microbending loss would occur in the optical fiber placed in the groove of the spacer, increasing transmission loss.

(発明の目的) 本発明は上述した従来の問題点に鑑みでなされたもので
あって、その目的とするところは、環境温度に対する変
化が少く、光ファイバの伝送損失増加などの悪影響を及
ぼす可能性の小さい、信頼性の高い光ファイバ担持用ス
ペーサおよびその製造方法を提供するところにある。
(Objective of the Invention) The present invention was made in view of the above-mentioned conventional problems, and its purpose is to minimize changes in environmental temperature, which may cause adverse effects such as increased transmission loss in optical fibers. An object of the present invention is to provide a spacer for supporting an optical fiber that has low resistance and high reliability, and a method for manufacturing the same.

(問題点を解決するための手段) 上記目的を達成するため、本発明は光ファイバ担持用ス
ペーサとして、鋼線などからなる抗張力線と、この抗張
力線を囲繞する一次被覆層と、一次被覆層の外周にあっ
て長手方向に延びる光ファイバ収納溝が形成されたスペ
ーサ本体部とを具え、前記一次被覆層を接着性熱可塑性
樹脂で形成する一方、前記スペーサ本体部を前記接着性
熱可塑性樹脂との相溶度が大きい熱可塑性樹脂で形成し
、一次被覆層の外周とスペーサ本体部の内周とを融合接
着してなることを特徴とし、その製造方法として、抗張
力線をクロスヘッドダイに挿通しながら、その外周に溶
融した接着性熱可塑性樹脂を供給して0.1〜0.5m
m厚の一次被覆層を形成した後、この−法被i層の外周
に前記接着性熱可塑性樹脂と相溶度が大きい熱可塑性樹
脂を溶融状態で供給し、外周に長手方向に連続する光フ
ァイバ収納溝を有ツるスペーサ本体部を形成するように
して被覆することを特徴とする。
(Means for Solving the Problems) In order to achieve the above object, the present invention provides an optical fiber supporting spacer that includes a tensile strength wire made of steel wire or the like, a primary coating layer surrounding the tensile strength wire, and a primary coating layer. a spacer main body in which an optical fiber storage groove extending in the longitudinal direction is formed on the outer periphery of the spacer, and the primary coating layer is formed of an adhesive thermoplastic resin, while the spacer main body is formed of the adhesive thermoplastic resin. The outer periphery of the primary coating layer and the inner periphery of the spacer body are fused and bonded to each other, and the manufacturing method is to attach a tensile strength wire to a crosshead die. While inserting it, supply molten adhesive thermoplastic resin to the outer periphery to extend the length of 0.1 to 0.5 m.
After forming a primary coating layer with a thickness of m, a thermoplastic resin having high compatibility with the adhesive thermoplastic resin is supplied in a molten state to the outer periphery of the first coating layer, and a continuous light beam is applied to the outer periphery in the longitudinal direction. The present invention is characterized in that the spacer body is coated to form a spacer body having a fiber storage groove.

より詳細に説明すると、上記抗張力線としては、光フ?
イバケーブルの要素として要求される抗張力に応じて選
択された!li鋼線もしくは撚鋼線が用いられ、単調線
の場合は、φ0.95〜2.6mmのもの、特にφ 1
.2〜2.On+mのものが多く使用されている。これ
をアセトン等の有機溶剤で脱脂し、必要に応じて加熱し
てクロスヘッドダイに挿通する。
To explain in more detail, the above tensile strength line is optical fiber?
Selected according to the required tensile strength as an element of Iba cable! Li steel wire or twisted steel wire is used, and in the case of monotonous wire, φ0.95 to 2.6 mm, especially φ 1
.. 2-2. On+m types are often used. This is degreased with an organic solvent such as acetone, heated if necessary, and inserted into a crosshead die.

上記一次被覆層としては、鋼線との接着性を有するエポ
キシ変性、カルボン酸含有、マイレン酸変性などのポリ
オレフィン系接着性樹脂、エチレン−酢酸ビニル共重合
体、エチレン−エチルアクリレート共重合体、各種脂肪
酸のポリアミド共重合樹脂および塩素化ポリオレフィン
などが用いられる。
The above-mentioned primary coating layer may include epoxy-modified, carboxylic acid-containing, or maleic acid-modified polyolefin adhesive resins that have adhesive properties with steel wires, ethylene-vinyl acetate copolymers, ethylene-ethyl acrylate copolymers, and various other materials. Polyamide copolymer resins of fatty acids and chlorinated polyolefins are used.

施される一次被覆層の被覆厚みとしては、0.1〜0.
5mm程度が好ましい。被覆厚みを大きくすると、接着
性樹脂は概ねゴム的性状を示すためスペーサの耐圧縮性
を低下させる結果となる。
The coating thickness of the primary coating layer to be applied is 0.1 to 0.
Approximately 5 mm is preferable. When the coating thickness is increased, the adhesive resin generally exhibits rubber-like properties, resulting in a decrease in the compression resistance of the spacer.

また、−次被覆の工程で、鋼線をアセトンなどの溶剤に
よって脱脂した後、鋼線を加熱して150〜200℃と
なし、クロスヘッドダイに挿通して、接着性樹脂によっ
て環状に押出し被覆し、しかる後冷却固化し、さらに必
要に応じて整形ダイスに挿通して被覆外表部を整形すれ
ば外径精度を高めることができる。
In addition, in the second coating process, after degreasing the steel wire with a solvent such as acetone, the steel wire is heated to 150 to 200°C, inserted into a crosshead die, and extruded and coated in an annular shape with an adhesive resin. However, if the coating is then cooled and solidified, and if necessary, the outer surface of the coating is shaped by passing it through a shaping die, the outer diameter accuracy can be improved.

なお、−次被覆として塩素化ポリオレフィンを用いると
きには、溶剤によって溶解された液状の塩素化ポリオレ
フィン中に鋼線を挿通して、該液状の塩素化ポリオレフ
ィンを塗布し、しかる後溶剤を乾燥除去して一次被覆層
を形成する。
In addition, when using a chlorinated polyolefin as a secondary coating, a steel wire is inserted into the liquid chlorinated polyolefin dissolved in a solvent, the liquid chlorinated polyolefin is applied, and the solvent is then dried and removed. Form a primary coating layer.

一方、スペーサ本体形成樹脂としては、−次被rfi層
の接着性樹脂と相溶度が大ぎく、該一次被覆層と融着接
合が可能な樹脂、例えば−次被覆に接着性ポリエチレン
を使用する場合は、低密度PE(LDPE)直鎖状低密
度PE (LLDPE)、高密度PE (HDPE)な
どポリエチレン系の樹脂、およびポリアミド系樹脂、−
次被覆に接着性ポリプロピレン系の樹脂を用いる場合は
、ポリプロピレンのホモポリマもしくはその共重合体な
ど一次被覆樹脂とスペーサ本体形成樹脂とは同種もしく
は同系の樹脂など相互に相溶度の大きな樹脂を使用する
ことによって両者の界面を溶融接着する。
On the other hand, as the spacer body forming resin, a resin that has a high compatibility with the adhesive resin of the second RFI layer and can be fused and bonded to the primary coating layer, for example, adhesive polyethylene is used for the second coating. In the case of polyethylene resins such as low density PE (LDPE), linear low density PE (LLDPE), high density PE (HDPE), and polyamide resins, -
When using adhesive polypropylene resin for the next coating, use resins with high compatibility with each other, such as polypropylene homopolymer or its copolymer, for the primary coating resin and the spacer body forming resin, such as resins of the same type or type. By doing so, the interface between the two is melted and bonded.

(作 用) 抗張力線としての単鋼線もしくは撚鋼線の外周と、接着
性樹脂による一次被覆層の内周とは、両者の接着力によ
り接着し、さらに該一次被覆層の外周とスペーサ本体内
周とは、相互に相溶度の大なる樹脂を使用することによ
って融着接合しているので、その結果として抗張力線と
スペーサ本体との接合力は強固なものとなり、スペーサ
本体部の見掛けの熱膨張係数が抗張ツノ線の熱膨張係数
に近似する。
(Function) The outer periphery of the single steel wire or twisted steel wire as the tensile strength wire and the inner periphery of the primary coating layer made of adhesive resin are bonded together by the adhesive force between the two, and the outer periphery of the primary coating layer and the spacer body are bonded together. Since the inner periphery is fused and bonded using resins with high mutual compatibility, the bonding force between the tensile strength wire and the spacer body is strong, and the appearance of the spacer body is The thermal expansion coefficient of the tensile horn wire approximates that of the tensile horn wire.

このため光ファイバケーブルの要素として使用するに際
し環境温度変化による、本来的に熱膨張係数の大なるス
ペーサ本体部の熱挙動の影響が軽減される。
Therefore, when used as an element of an optical fiber cable, the influence of the thermal behavior of the spacer main body, which inherently has a large coefficient of thermal expansion, due to environmental temperature changes is reduced.

(実施例1) 抗張力線1として外径0.95mmの単鋼線の表面をア
セトンで洗浄して脱脂した後、180℃の乾熱炉2中に
挿通し、しかる復、第1のクロスヘッドダイ3に挿通し
て接着性ポリエチレン(日本石油化学社製:商品名Nポ
リマーA1050)によって−次被覆4を施し、外径1
 、6mmの中芯素線5を得た。
(Example 1) After cleaning the surface of a single steel wire with an outer diameter of 0.95 mm as the tensile strength wire 1 with acetone and degreasing it, it is inserted into a dry heat oven 2 at 180°C, and then the first crosshead It is inserted into the die 3 and coated with adhesive polyethylene (manufactured by Nippon Petrochemicals Co., Ltd., trade name N Polymer A1050), and the outer diameter is 1.
, a 6 mm core strand 5 was obtained.

この中芯素線5を、さらに後述するスペーサの断面形状
に相応する回転ダイを有する第2のクロスヘッドダイ6
に挿通し、該中芯素線5の外周に高密度ポリエチレン(
M I = 0.3)によって等間隔に山径7.Omm
、谷径3.Ommの6条の突起7を有し螺旋のピッチが
260mmになるようなスペーサ本体8を形成するよう
に被覆した後、冷却槽9に導入して冷却固化し、しかる
後ドラム10に巻き取った。
This core strand 5 is then passed through a second crosshead die 6 having a rotating die corresponding to the cross-sectional shape of the spacer, which will be described later.
high-density polyethylene (
M I = 0.3), the mountain diameter is 7. Omm
, valley diameter 3. After being coated to form a spacer body 8 having 6 protrusions 7 of 0 mm and a spiral pitch of 260 mm, it was introduced into a cooling tank 9 to be cooled and solidified, and then wound onto a drum 10. .

このようにして製造された光ファイバ担持用スペーサの
スペーサ本体8と抗張力線1との接合強度を以下の方法
によって測定した。
The bonding strength between the spacer main body 8 and the tensile strength wire 1 of the optical fiber supporting spacer manufactured in this way was measured by the following method.

すなわち、前記螺旋スペーサ本体8の端部10mIIl
の長さについて該螺旋スペーサ本体8の断面方向の熱可
塑性樹脂部を引張試験機のチャック部分の冶具で挾持し
、引張速度51IIlZ分で引張って引張剪断接合強力
を測定し、その値を抗張力線1の児11Hノの外周の面
積で除して接合強度(引扱強度)とした。
That is, the end portion 10mIIl of the spiral spacer main body 8
Regarding the length, the thermoplastic resin part in the cross-sectional direction of the helical spacer main body 8 was clamped with a jig of the chuck part of a tensile tester, and the tensile shear bonding strength was measured by pulling at a tensile rate of 51IIlZ, and the value was expressed as the tensile force line. The bonding strength (handling strength) was determined by dividing by the area of the outer periphery of the child 11H.

この測定方法による本実施例のスペーサの接合強度は4
2kg/cぜであった。
The bonding strength of the spacer of this example according to this measurement method was 4
The amount was 2 kg/c.

また、60℃、100℃の乾熱用炉中に、約1mの長さ
の試料を入れ1時間放置し、続いて23℃(常温)にて
30分放置後、スペーサ本体8の長さを測定して(L 
’) mmとし、次式より熱収縮率を測定した。
In addition, a sample with a length of about 1 m was placed in a dry heat oven at 60°C and 100°C and left for 1 hour, and then left at 23°C (room temperature) for 30 minutes, and then the length of the spacer body 8 was measured. Measure (L
') mm, and the heat shrinkage rate was measured using the following formula.

熱収縮率= ((1000−L ) /1000) x
  10o (%)本実施例のサンプルでは60℃にお
いて−0,05%、100℃において 0.08%の熱
収縮率であった。
Heat shrinkage rate = ((1000-L)/1000) x
10o (%) The heat shrinkage rate of the sample of this example was -0.05% at 60°C and 0.08% at 100°C.

さらに、温度を23℃から60℃まで昇温する過程での
抗張力線1およびスペーサ本体8の熱膨張率を求めたと
ころ、本実施例のサンプルではスペーサ本体8は1.1
XIO−5/℃、抗張力線1は1.0×10−5/℃と
極めて近似した値であった。
Furthermore, when the tensile strength line 1 and the coefficient of thermal expansion of the spacer body 8 were determined in the process of increasing the temperature from 23°C to 60°C, it was found that in the sample of this example, the spacer body 8 was 1.1.
XIO-5/°C and tensile strength line 1 were 1.0 x 10-5/°C, which were very similar values.

(比較例1) 上記実施例1の一次被覆4を全く行なわないで、抗張力
線1の外周に直接スペーサ本体8を形成したものであっ
て、これ以外の材料構成などは実施例1と同じにした。
(Comparative Example 1) The spacer main body 8 was formed directly on the outer periphery of the tensile strength wire 1 without applying the primary coating 4 of the above-mentioned Example 1, and the other material composition etc. were the same as in Example 1. did.

その結果、接合強度は5 kg/ cdと極めて小さく
、熱収縮率および熱膨張率のいずれも満足すべき値が得
られなかった。
As a result, the bonding strength was extremely low at 5 kg/cd, and neither the thermal contraction rate nor the thermal expansion rate were satisfactory.

(実施例2) 単線径0.38vaの鋼線を<3+6)本の構造に撚り
合わせた見掛けの外径1.2mmの撚鋼線を抗張力線1
とし、それを実施例1と同様に脱脂し、加熱して実施例
1と同一の接着性PE樹脂によって外径2.0mmに被
覆した。これを実施例1と同一の回転ダイを装着したク
ロスヘッドダイ6に挿通して、実施例1と同一の樹脂に
よりスペーサ本体8を形成するようにして被覆を施した
(Example 2) A tensile strength wire 1 is a twisted steel wire with an apparent outer diameter of 1.2 mm, which is made by twisting steel wires with a single wire diameter of 0.38 va into a structure of <3+6).
It was degreased in the same manner as in Example 1, heated, and coated with the same adhesive PE resin as in Example 1 to an outer diameter of 2.0 mm. This was inserted into a crosshead die 6 equipped with the same rotary die as in Example 1, and coated with the same resin as in Example 1 to form the spacer body 8.

このようにして得られた本実施例による螺旋スペーサの
物性は、接合強度が51kg/c#、熱収縮率が60℃
において−0,05(%)、100℃において0.05
  (%)であり、熱膨張率はスペーサ本体部が1x1
0’/’Cで、抗張力線1が1,0X10−5であった
The physical properties of the helical spacer according to this example obtained in this way include a bonding strength of 51 kg/c# and a heat shrinkage rate of 60°C.
-0.05 (%) at , 0.05 at 100℃
(%), and the coefficient of thermal expansion is 1x1 for the spacer body.
0'/'C, tensile strength line 1 was 1.0X10-5.

(比較例2) 上記実施例2の一次被覆4を全く行なわないで、抗張力
線1の外周に直接スペーサ本体8を形成したものであっ
て、これ以外の材料構成などは実施例2と同じにした。
(Comparative Example 2) The spacer main body 8 was formed directly on the outer periphery of the tensile strength wire 1 without applying the primary coating 4 of the above-mentioned Example 2, and the other material composition was the same as that of Example 2. did.

その結果、接合強度は13kg/cぜとあまり大きくな
く、熱収縮率および熱膨張率のいずれも満足すべぎ値が
得られなかった。
As a result, the bonding strength was not very high at 13 kg/cm, and neither the thermal contraction rate nor the thermal expansion rate were satisfactory.

以上の構成材料や試験結果をまとめたものが以下に示す
表である。
The table below summarizes the above constituent materials and test results.

(発明の効果) 以上の説明および表からも明らかなように、本発明に係
る光ファイバ担持用スペーサでは、スペーサ本体と抗張
力線との接合強度が極めて大きくなるとともに、熱収縮
率が小さく、しかも、スペーサ本体と抗張力線との熱膨
張率が近似した値となるため、光ファイバを担持して実
際に敷設した場合の周囲の環境変化に対して寸法安定性
が高く、光ファイバの伝送損失を増大させることがなく
なる。
(Effects of the Invention) As is clear from the above explanation and table, in the optical fiber supporting spacer according to the present invention, the bonding strength between the spacer body and the tensile strength wire is extremely high, the thermal shrinkage rate is small, and Since the thermal expansion coefficients of the spacer body and the tensile strength wire are similar, it has high dimensional stability against changes in the surrounding environment when actually laying an optical fiber, and reduces the transmission loss of the optical fiber. There will be no need to increase it.

また、このような信頼性の高いスペーサは、従来の製造
方法に一次被覆を施すという工程を追加すればよく、比
較的簡単に製造できる。
Further, such a highly reliable spacer can be manufactured relatively easily by adding a step of applying a primary coating to the conventional manufacturing method.

ざらに、−次被覆を施した後、スペーサ本体を形成被覆
するため、スペーサ本体の突部と内周部との冷却固化時
の冷却速度の差が緩和されて、螺旋形状が崩れることの
ない、良形状のスペーサが得られる。
Since the spacer body is formed and coated after the second coating is applied, the difference in cooling rate between the protruding part and the inner circumferential part of the spacer body during cooling and solidification is alleviated, and the spiral shape does not collapse. , a well-shaped spacer can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の工程を示す概略図、第2図はスペーサ
本体の断面図である。 1・・・・・・・・・抗張力線 2・・・・・・・・・乾 熱 炉 3・・・・・・・・・第1のクロスヘッドダイ4・・・
・・・・・・−次被覆 5・・・・・・・・・中芯素線 6・・・・・・・・・第2のクロスヘッドダイ7・・・
・・・・・・突  起 8・・・・・・・・・スペーサ本体 9・・・・・・・・・冷 却 槽 10・・・・・・ド ラ ム
FIG. 1 is a schematic view showing the steps of the present invention, and FIG. 2 is a sectional view of the spacer body. 1...Tensile strength line 2...Dry heat furnace 3...First crosshead die 4...
......-Next coating 5...Central strand 6...Second crosshead die 7...
...Protrusion 8 ...Spacer body 9 ...Cooling tank 10 ...Drum

Claims (2)

【特許請求の範囲】[Claims] (1)鋼線などからなる抗張力線と、該抗張力線を囲繞
する一次被覆層と、該一次被覆層の外周にあつて長手方
向に延びる光ファイバ収納溝が形成されたスペーサ本体
部とを具え、該一次被覆層を接着性熱可塑性樹脂で形成
する一方、該スペーサ本体部を該接着性熱可塑性樹脂と
の相溶度が大きい熱可塑性樹脂で形成し、該一次被覆層
の外周と該スペーサ本体部の内周とを融合接着してなる
ことを特徴とする光ファイバ担持用スペーサ。
(1) A spacer body comprising a tensile strength wire made of steel wire or the like, a primary coating layer surrounding the tensile strength wire, and a spacer main body in which an optical fiber storage groove extending in the longitudinal direction is formed on the outer periphery of the primary coating layer. , the primary coating layer is formed of an adhesive thermoplastic resin, and the spacer body is formed of a thermoplastic resin having high compatibility with the adhesive thermoplastic resin, and the outer periphery of the primary coating layer and the spacer body are formed of a thermoplastic resin having high compatibility with the adhesive thermoplastic resin. A spacer for supporting an optical fiber, characterized in that it is formed by fusing and adhering the inner periphery of the main body.
(2)抗張力線をクロスヘッドダイに挿通しながら、そ
の外周に溶融した接着性熱可塑性樹脂を供給して0.1
〜0.5mm厚の一次被覆層を形成した後、該一次被覆
層の外周に該接着性熱可塑性樹脂と相溶度が大きい熱可
塑性樹脂を溶融状態で供給し、外周に長手方向に連続す
る光ファイバ収納溝を有するスペーサ本体部を形成する
ようにして被覆することを特徴とする光ファイバ担持用
スペーサの製造方法。
(2) While inserting the tensile strength wire into the crosshead die, molten adhesive thermoplastic resin is supplied to the outer periphery of the crosshead die.
After forming a primary coating layer with a thickness of ~0.5 mm, a thermoplastic resin having high compatibility with the adhesive thermoplastic resin is supplied in a molten state to the outer periphery of the primary coating layer, and is continued in the longitudinal direction around the outer periphery. 1. A method of manufacturing an optical fiber supporting spacer, comprising coating the spacer to form a spacer main body having an optical fiber storage groove.
JP60019262A 1985-02-05 1985-02-05 Spacer for carrying optical fiber and its production Granted JPS61179408A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60019262A JPS61179408A (en) 1985-02-05 1985-02-05 Spacer for carrying optical fiber and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60019262A JPS61179408A (en) 1985-02-05 1985-02-05 Spacer for carrying optical fiber and its production

Publications (2)

Publication Number Publication Date
JPS61179408A true JPS61179408A (en) 1986-08-12
JPH0431364B2 JPH0431364B2 (en) 1992-05-26

Family

ID=11994521

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60019262A Granted JPS61179408A (en) 1985-02-05 1985-02-05 Spacer for carrying optical fiber and its production

Country Status (1)

Country Link
JP (1) JPS61179408A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62168104A (en) * 1986-01-20 1987-07-24 Sumitomo Electric Ind Ltd Spacer for housing optical fiber and its production
JPS63174006A (en) * 1987-01-14 1988-07-18 Ube Nitto Kasei Kk Spacer for carrying optical fiber
JPS6423211A (en) * 1987-07-20 1989-01-25 Toyo Chemicals Co Ltd Production of spacer for optical fiber cable
JPS6423212A (en) * 1987-07-20 1989-01-25 Toyo Chemicals Co Ltd Production of spacer for optical fiber cable
JPH0481706A (en) * 1990-07-24 1992-03-16 Sumitomo Electric Ind Ltd Polyethylene spacer for optical fiber cable
EP0930145A1 (en) * 1998-01-19 1999-07-21 Sumitomo Electric Industries, Ltd. Extrusion coating apparatus
JP2006343536A (en) * 2005-06-09 2006-12-21 Ube Nitto Kasei Co Ltd Spacer for plastic optical fiber cable
JP2008197486A (en) * 2007-02-14 2008-08-28 Ube Nitto Kasei Co Ltd Manufacturing method of spacer for optical fiber cable

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5263351A (en) * 1975-09-19 1977-05-25 Cables De Lyon Geoffroy Delore Optical cable
JPS57187408U (en) * 1981-05-25 1982-11-27
JPS59114501U (en) * 1983-01-20 1984-08-02 日本電信電話株式会社 Spacer for optical fiber cable

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5263351A (en) * 1975-09-19 1977-05-25 Cables De Lyon Geoffroy Delore Optical cable
JPS57187408U (en) * 1981-05-25 1982-11-27
JPS59114501U (en) * 1983-01-20 1984-08-02 日本電信電話株式会社 Spacer for optical fiber cable

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62168104A (en) * 1986-01-20 1987-07-24 Sumitomo Electric Ind Ltd Spacer for housing optical fiber and its production
JPH0476448B2 (en) * 1986-01-20 1992-12-03 Sumitomo Electric Industries
JPS63174006A (en) * 1987-01-14 1988-07-18 Ube Nitto Kasei Kk Spacer for carrying optical fiber
JPH07104467B2 (en) * 1987-01-14 1995-11-13 宇部日東化成株式会社 Spacer for supporting optical fiber
JPS6423211A (en) * 1987-07-20 1989-01-25 Toyo Chemicals Co Ltd Production of spacer for optical fiber cable
JPS6423212A (en) * 1987-07-20 1989-01-25 Toyo Chemicals Co Ltd Production of spacer for optical fiber cable
JPH0481706A (en) * 1990-07-24 1992-03-16 Sumitomo Electric Ind Ltd Polyethylene spacer for optical fiber cable
JPH0833503B2 (en) * 1990-07-24 1996-03-29 住友電気工業株式会社 Polyethylene spacer for optical fiber cable
EP0930145A1 (en) * 1998-01-19 1999-07-21 Sumitomo Electric Industries, Ltd. Extrusion coating apparatus
US6344086B1 (en) 1998-01-19 2002-02-05 Sumitomo Electric Industries, Ltd. Extrusion coating apparatus
JP2006343536A (en) * 2005-06-09 2006-12-21 Ube Nitto Kasei Co Ltd Spacer for plastic optical fiber cable
JP2008197486A (en) * 2007-02-14 2008-08-28 Ube Nitto Kasei Co Ltd Manufacturing method of spacer for optical fiber cable

Also Published As

Publication number Publication date
JPH0431364B2 (en) 1992-05-26

Similar Documents

Publication Publication Date Title
US4157194A (en) Thermoplastic multi-walled pipes
US4919513A (en) Plastic optical fiber
CN100520468C (en) Drop optical fiber cable and FRP tension member used for the cable
JPS61179408A (en) Spacer for carrying optical fiber and its production
JPS58123504A (en) Optical cable element
JP2014073637A (en) Heat-shrinkable tubing
US3159513A (en) Coating for linear material and method of application
US5914160A (en) Adhesive tube composite tube and method for sealing using the same
JP5902007B2 (en) Optical fiber cable and optical fiber cable manufacturing method
JPS61179407A (en) Spacer for carrying optical fiber and its production
JPS5937515A (en) Reinforcing method of optical fiber connection part
JP2793594B2 (en) Manufacturing method of spacer for supporting optical fiber
JPS60243611A (en) Wire rod carrying spiral spacer for communication and its manufacture
JP2557069B2 (en) Method of manufacturing spacer for supporting optical fiber
JPS62168104A (en) Spacer for housing optical fiber and its production
JPS60154204A (en) Multicore optical fiber and its manufacture
JPH0248608A (en) Spacer for carrying optical fiber
JPS63193106A (en) Connecting method for plastic clad optical fiber
JPH0333166Y2 (en)
JP3412074B2 (en) Manufacturing method of metal wire coil / plastic tube composite sheath
JPH10115750A (en) Optical fiber cable
JPH11174291A (en) Cord type optical cable and its production
JPH0339710A (en) Plastic optical fiber cable having excellent mechanical characteristic
JPH0225485B2 (en)
JPH09236734A (en) Grooved spacer and optical fiber cable formed by using the same

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term