JPS61179407A - Spacer for carrying optical fiber and its production - Google Patents

Spacer for carrying optical fiber and its production

Info

Publication number
JPS61179407A
JPS61179407A JP60019261A JP1926185A JPS61179407A JP S61179407 A JPS61179407 A JP S61179407A JP 60019261 A JP60019261 A JP 60019261A JP 1926185 A JP1926185 A JP 1926185A JP S61179407 A JPS61179407 A JP S61179407A
Authority
JP
Japan
Prior art keywords
spacer
coating layer
primary coating
thermoplastic resin
spacer body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60019261A
Other languages
Japanese (ja)
Other versions
JPH0431363B2 (en
Inventor
Takeshi Kitagawa
健 北川
Shigehiro Matsuno
繁宏 松野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Exsymo Co Ltd
Original Assignee
Ube Nitto Kasei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Nitto Kasei Co Ltd filed Critical Ube Nitto Kasei Co Ltd
Priority to JP60019261A priority Critical patent/JPS61179407A/en
Publication of JPS61179407A publication Critical patent/JPS61179407A/en
Publication of JPH0431363B2 publication Critical patent/JPH0431363B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
    • G02B6/4479Manufacturing methods of optical cables
    • G02B6/4489Manufacturing methods of optical cables of central supporting members of lobe structure
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
    • G02B6/4401Optical cables
    • G02B6/4407Optical cables with internal fluted support member

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)

Abstract

PURPOSE:To improve the performance of a spacer by a simple process for production by fusing and adhering a spacer body and primary coating layer and forming continuously plural grooves for mounting optical fibers extending continuously in the longitudinal direction to the spacer body. CONSTITUTION:Tensile wires 1 having twisted structure are passed into a cross head die and a hard and heat-resistant thermoplastic resin is melt-extruded to the outside periphery thereof to form the primary coating layer having at least >=0.25mm coating layer. The spacer body 9 formed with the plural grooves for carrying the optical fibers extending in the longitudinal direction is coated on the outside periphery of the primary coating layer by using the soft thermoplastic resin having large compatibility with the termoplastic resin by which the spacer 12 is obtd. The thermoplastic resin for primary coating is preferably selected from the resins which have the stable heat resistance with a temp. change and hardness in the stage of using the resins as the element for an optical fiber cable and have >=150kg/mm<2> bending modulus and >=100 deg.C thermal deformation temp. under 18.6kg/cm<2> load.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、光ファイバケーブルの要素として用いられ、
複数本の光ファイバを集合化して保護・担持するスペー
サおよびその製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention is used as an element of an optical fiber cable,
The present invention relates to a spacer for collectively protecting and supporting a plurality of optical fibers, and a method for manufacturing the spacer.

(従来技術とその問題点) この種のスペーサとしては、単調線、撚鋼線などを抗張
力線とし、その外周に熱可塑性樹脂でスペーサ本体を形
成し、スペーサ本体の外周縁に連続した複数の螺旋溝を
設けたものが知られており、また、その製造方法として
、抗張力線をクロスへラドダイに挿通し、種々の口金形
状のダイを回転しながら熱可塑性樹脂を該ダイから溶融
押出しして被覆し、冷却固化させる方法が公知である。
(Prior art and its problems) This type of spacer uses a monotonic wire, twisted steel wire, or the like as a tensile strength wire, and forms a spacer body around the outer periphery of a thermoplastic resin. A type with a spiral groove is known, and its manufacturing method involves inserting a tensile strength wire crosswise into a Rad die, and melting and extruding the thermoplastic resin from the die while rotating a die with various mouth shapes. Methods of coating and cooling and solidifying are known.

このような従来の製造方法においては、例えば抗張力線
として撚鋼線を使用し、スペーサ本体形成用樹脂として
高密度ポリエチレンを用い、押出し被覆することでスペ
ーサを製造している。
In such a conventional manufacturing method, for example, a twisted steel wire is used as the tensile strength wire, high-density polyethylene is used as the resin for forming the spacer body, and the spacer is manufactured by extrusion coating.

従って、この構成のスペーサでは、抗張力線とスペーサ
本体との長手方向の接合力は、撚鋼線の撚構造に基づく
凹凸と、この凹凸部に押出し被覆された熱可塑性樹脂が
入り込んで得られる、いわゆるアンカー接着による係止
力に専ら依存していた。
Therefore, in the spacer having this configuration, the bonding force in the longitudinal direction between the tensile strength wire and the spacer body is obtained by the unevenness based on the twisted structure of the twisted steel wire and the extrusion-coated thermoplastic resin entering the unevenness. It relied exclusively on the locking force of so-called anchor adhesion.

しかしながら、このようなアンカー接着では、抗張力線
とスペーサ本体との接合力が不十分なため、以下に示す
問題があった。
However, in such anchor bonding, the bonding force between the tensile strength wire and the spacer body is insufficient, and therefore there are problems as shown below.

すなわち、特にスペーサ本体にポリエチレンやポリプロ
ピレンのホモポリマなどの軟質樹脂を用いた場合には、
抗張力線とスペーサ本体との接合あるいは接着が不十分
となり、光ファイバをスペーサの溝内に装着して布設し
た使用状態において、スペーり本体の熱可塑性樹脂が温
度変化で伸縮し、光ファイバにマイクロベンディングロ
スを生ぜしめ、伝送損失を増加させる危惧があった。
In other words, especially when a soft resin such as polyethylene or polypropylene homopolymer is used for the spacer body,
When the tensile strength wire and the spacer body are insufficiently bonded or bonded, and the optical fiber is installed and laid in the groove of the spacer, the thermoplastic resin of the spacer body expands and contracts due to temperature changes, causing microscopic damage to the optical fiber. There was a concern that this would cause bending loss and increase transmission loss.

この現象は、−上述した熱可塑性樹脂が、抗張力線より
も線膨張係数が大きく、スペーサ本体の環境温度の変化
に応じて長手方向に伸縮する熱応力が、抗張力線とスペ
ーサ本体とのアンカー接着による係止力よりも大きくな
ることと、スペーサ本体を成形するに際して、熱可塑性
樹脂の冷却固化時の残留歪みの影響によって熱収縮する
ことなどが原因であると思われる。
This phenomenon is caused by the fact that the above-mentioned thermoplastic resin has a larger coefficient of linear expansion than the tensile strength line, and the thermal stress that expands and contracts in the longitudinal direction in response to changes in the environmental temperature of the spacer body causes the anchor bond between the tensile strength line and the spacer body. This is thought to be due to the fact that the locking force is larger than the locking force of the spacer body, and that the thermoplastic resin is thermally shrunk due to the influence of residual strain when the spacer body is cooled and solidified when the spacer body is molded.

特に、前述のアンカー接着における係止力は、高温下で
は熱可塑性樹脂部が軟らかくなって、抗張力線の撚構造
による凹凸を乗り越えて変形しやすくなり、係止力が低
下するものと思われる。
In particular, it is thought that the locking force in the above-mentioned anchor adhesion decreases because the thermoplastic resin part becomes soft at high temperatures and becomes easily deformed over the unevenness caused by the twisted structure of the tensile strength wire.

ここで、このような問題を解決し、アンカー接着におけ
る係止力を増強するために、スペーサ本体の形成樹脂と
して硬質あるいは耐熱性の熱可塑性樹脂を使用すること
が考えられるが、この構成では抗張力線とスペーサ本体
の接合力は向上づるが、光ファイバケーブルの担持用ス
ペーサとしての屈撓性に欠け、光ファイバをスペーサの
溝内に装着する作業や、敷設作業での取扱上の問題が発
生する。
Here, in order to solve this problem and increase the locking force in anchor bonding, it is possible to use a hard or heat-resistant thermoplastic resin as the forming resin for the spacer body, but with this configuration, the tensile strength Although the bonding strength between the wire and the spacer body is improved, it lacks flexibility as a spacer for supporting optical fiber cables, which causes handling problems when installing optical fibers into the spacer grooves and during installation work. do.

(発明の目的) 本発明は上述した従来の問題点に鑑みてなされたもので
あって、その目的とするところは、環境温度変化による
寸法変化が少く、光ファイバの伝送損失の増加などの悪
影響を及ぼす可能性が小さく、しかも布設するに適した
屈撓性を備えた光ファイバ担持用スペーサおよびそのI
 W方法を促供づるところにある。
(Object of the Invention) The present invention has been made in view of the above-mentioned conventional problems, and its purpose is to minimize dimensional changes due to changes in environmental temperature, and to reduce adverse effects such as increased transmission loss of optical fibers. A spacer for supporting an optical fiber and its I
It is here to encourage the W method.

(問題点を解決するための手段) 上記目的を達成するために、この発明は光ファイバ担持
用スペーサとして、撚構造を有する抗張力線と、該抗張
力線を囲繞する硬質且つ耐熱性の熱可塑性樹脂からなる
一次被覆層と、該一次被覆層の外周に該熱可塑性樹脂と
の相溶度が大きく、且つ、該熱可塑性樹脂より軟質の熱
可塑性樹脂によって形成されたスペーサ本体とからなり
、該スペーサ本体と該一次被覆層とを融合接着するとと
もに、該スペーサ本体には長手方向に連続して延びる複
数の光ファイバ装着用の溝を形成してなることを特徴と
し、このような構成からなる光ファイバ担持用スペーサ
の製造方法として、撚構造を有する抗張力線をクロスへ
ラドダイに挿通し、硬質且つ耐熱性の熱可塑性樹脂をそ
の外周に環状に溶融押出しして、少くとも0.25mm
以上の被覆厚を有する一次被覆層を形成した後、該熱可
塑性樹脂との相溶度が大ぎく且つ軟質の熱可塑性樹脂で
もって、該一次被覆層の外周に長手方向に延びる複数の
溝を形成するようにして被覆することを特徴とする。
(Means for Solving the Problems) In order to achieve the above object, the present invention provides a spacer for supporting an optical fiber that includes tensile strength wires having a twisted structure and a hard and heat-resistant thermoplastic resin surrounding the tensile strength wires. and a spacer body formed around the outer periphery of the primary coating layer from a thermoplastic resin that has a high compatibility with the thermoplastic resin and is softer than the thermoplastic resin, the spacer The main body and the primary coating layer are fused and bonded, and the spacer main body is formed with a plurality of grooves for attaching optical fibers continuously extending in the longitudinal direction. As a manufacturing method for a fiber-supporting spacer, a tensile strength wire having a twisted structure is inserted through a RAD die crosswise, and a hard and heat-resistant thermoplastic resin is melt-extruded around the outer circumference of the wire in a ring shape to a thickness of at least 0.25 mm.
After forming the primary coating layer having the above coating thickness, a plurality of grooves extending in the longitudinal direction are formed on the outer periphery of the primary coating layer using a soft thermoplastic resin that has a high compatibility with the thermoplastic resin. It is characterized by being coated in such a manner that it is formed.

より詳細に説明すると、上記抗張力線としては、撚鋼線
、 II維強化プラスチックの撚線などが用いられ、複
数の素線が撚り合わされることで表面に凹凸状の撚構造
が形成され、所定の張力を備えていればよい。
To explain in more detail, twisted steel wires, twisted wires of II fiber reinforced plastic, etc. are used as the above-mentioned tensile strength wires, and by twisting a plurality of wires together, an uneven twisted structure is formed on the surface, and a predetermined twisting structure is formed. It is sufficient if the tension is as follows.

また、上記一次被覆用熱可塑性樹脂としては、光ファイ
バケーブルの要素として使用されるに際して、環境温度
変化に対して安定な耐熱性と硬さを有するちのであって
、150kg/mイ以上の曲げ弾性率と、18.6認/
Cぜ荷重下での熱変形温度がioo’c以上である樹脂
から選択することが望ましい。
In addition, the thermoplastic resin for the primary coating has heat resistance and hardness that are stable against environmental temperature changes when used as an element of an optical fiber cable, and has a bending resistance of 150 kg/m or more. Elastic modulus and 18.6/
It is desirable to select a resin whose heat deformation temperature under C-load is IOO'C or higher.

これらの条件を満足する樹脂として、ガラス繊維や炭素
繊維などの補強繊維によって強化された熱可塑性樹脂、
例えば、ガラス繊維強化ポリエチレン、同ポリプロピレ
ン、同ナイロンなど、あるいは炭素繊維で強化されたこ
れらの樹脂や同ABS樹脂、および繊維強化されたこれ
らの各種変性樹脂などが挙げられる。
Resins that satisfy these conditions include thermoplastic resins reinforced with reinforcing fibers such as glass fibers and carbon fibers,
Examples include glass fiber-reinforced polyethylene, polypropylene, nylon, carbon fiber-reinforced resins, ABS resins, and various fiber-reinforced modified resins.

曲げ弾性率および熱変形温度が、上述の値よりも低い樹
脂を用いると、光−ファイバケーブルの担持要素として
炉用するに当たって、使用時の環境温度変化による膨張
あるいは熱収縮などの変化によって、撚構造の凹凸部と
一次被覆樹脂層との係止ツノが不十分となり、一次被覆
樹脂層と溶着されたスペーサ本体が熱収縮するなどして
、スペーサ本体の溝部に装着された光ファイバに悪影響
を及ぼす危惧がある。
If a resin with a bending modulus of elasticity and a thermal deformation temperature lower than the above values is used in a furnace as a supporting element for an optical fiber cable, it will not twist due to changes such as expansion or thermal contraction due to environmental temperature changes during use. The locking horns between the uneven parts of the structure and the primary coating resin layer may become insufficient, and the spacer body welded to the primary coating resin layer may shrink due to heat, which may adversely affect the optical fiber installed in the groove of the spacer body. There is a risk that it may cause harm.

また、上述の樹脂による一次被覆層の厚みは、撚構造の
抗張力線の見かけの外径よりもQ、5nv程度径大であ
ること、すなわら、肉厚として最も薄い部分でも0.2
5m1l1以上の厚みを右していることが、事後に形成
するスペーサ本体部との溶着接合の点から望ましい。
In addition, the thickness of the primary coating layer made of the above-mentioned resin should be approximately Q5nv larger than the apparent outer diameter of the tensile strength wire of the twisted structure, that is, the thickness at the thinnest part should be 0.2nv.
It is desirable that the thickness be 5 ml or more from the viewpoint of welding and joining with the spacer main body that will be formed later.

一方、上記スペーサ本体形成樹脂としては、上記一次被
覆層との相溶度が大きく、該一次被覆層とa着接合が可
能な樹脂であればよいが、スベーIJ′本体部に要求さ
れる機能は、各光ファイバ素線乃至は心線を区画するに
十分な物性と、径方向の側圧に対する強度が必要とされ
ており、これらの点から高密度ポリエチレン、低密度ポ
リエチレンおよびポリプロピレン、ABS、ナイロン1
2などの小モポリマ、およびその各種変性樹脂あるいは
共重合体などが挙げられる。
On the other hand, the resin for forming the spacer body may be any resin that has high compatibility with the primary coating layer and is capable of a-bonding with the primary coating layer, but the resin has the functions required for the main body of the sub-IJ'. requires sufficient physical properties to partition each optical fiber strand or core, and strength against radial lateral pressure.From these points of view, high-density polyethylene, low-density polyethylene, polypropylene, ABS, nylon 1
Examples include small mopolymers such as No. 2, and various modified resins or copolymers thereof.

そして、特に屈JQ性が要求されるときには、軟らかい
樹脂を選択して使用すればよい。
When JQ flexibility is particularly required, a soft resin may be selected and used.

なお、スペーサ本体の形状は、光ファイバ82計上の要
求によって、満数、溝深さ、溝幅1本体の外径J5よび
平行、螺旋溝などが決定される。
The shape of the spacer body is determined by the requirements of the optical fiber 82, such as full number, groove depth, groove width, outer diameter J5 of the main body, parallel groove, spiral groove, etc.

(発明の作用効果) 上述した構成の本発明の光ファイ°バ担持用スペーサに
おいては、撚構造を有する抗張力線の凹凸部分には、硬
質且つ耐熱性の熱可塑性PfI脂からなる一次被覆層3 の間のアンカー接着による係止力は環境湿態の広範囲な
変化に対して安定しており、特に高温下で低下すること
が防止される。
(Operations and Effects of the Invention) In the optical fiber supporting spacer of the present invention having the above-described structure, the uneven portions of the tensile strength wires having a twisted structure are coated with a primary coating layer 3 made of a hard and heat-resistant thermoplastic PfI resin. The locking force due to the anchor adhesion between the two is stable over a wide range of changes in environmental humidity, and is particularly prevented from decreasing at high temperatures.

また、光ファイバが装着されるスペーサ本体部は、一次
被覆層の樹脂よりも軟質の熱可塑性樹脂で形成されてい
るため、M設する1際などに必要とされる屈撓性が確保
され、しかもこれらの樹脂が相nに相溶度が大きいため
に、一次被覆層とスペーサ本体との接合強度も大きく保
てる。
In addition, since the spacer main body to which the optical fiber is attached is made of a thermoplastic resin that is softer than the resin of the primary coating layer, the flexibility required for M installation is ensured. Moreover, since these resins have high compatibility with phase n, the bonding strength between the primary coating layer and the spacer body can also be maintained high.

さらに、本発明の製造方法によれば、上述した作用効果
が14られるスペーサが比較的簡単に製造できるととも
に、抗張力線の外周熱可塑性樹脂の被覆を2段に分けて
行なうため、冷却固化時の残留歪みを低下させることが
できる。
Furthermore, according to the manufacturing method of the present invention, a spacer having the above-mentioned effects can be manufactured relatively easily, and since the outer periphery of the tensile strength wire is coated with thermoplastic resin in two stages, Residual distortion can be reduced.

(実 施 例) 以下、本発明の実施例と化較例について添附図面を参照
にして詳細に説明する。
(Example) Examples and comparative examples of the present invention will be described in detail below with reference to the accompanying drawings.

(実施例1) 抗張力線1として直径0.38mmの9木の鋼線を、(
3+6)本の構造に撚った見かけの外径(各素線の外周
を結ぶ包絡径、双r′同じ)1.2mmの撚鋼線を使用
し、この表面をアセトンで洗浄しで脱脂した後、クロス
へラドダイ2に挿通して、ガラス含有量15%のガラス
炭素繊維強化ポリエチレンによって一次被覆層3を施し
、冷JJI固化槽4に導入した後、ドラム5に巻き取っ
て被覆外径2.2mmの中芯素線7を得た。
(Example 1) A 9-wood steel wire with a diameter of 0.38 mm was used as the tensile strength wire 1 (
3+6) Twisted steel wires with an apparent outer diameter of 1.2 mm (the envelope diameter connecting the outer periphery of each strand, both r' are the same) were used, and the surface was cleaned with acetone and degreased. After that, the cloth is passed through the RAD die 2, a primary coating layer 3 is applied with glass carbon fiber reinforced polyethylene with a glass content of 15%, and after being introduced into the cold JJI solidification tank 4, it is wound up on a drum 5 and the outer diameter of the coating is 2. A core strand 7 of .2 mm was obtained.

この素線7を、さらに後述するスペーサの断面形状に相
応するダイを有するクロスへラドダイに沖通し、ダイ8
を回転しながら該中芯素線7の外周に高密度ポリエチレ
ン(MI=0.3)によって、等間隔に5.1mm、谷
径2.4mm(7)4条0’)98起を有し、螺旋のピ
ッチが120mmになるようなスペーサ本体9を形成す
るように被覆した後、空気や冷却水などの冷媒で満たし
た冷W槽10に導入して冷却固化し、しかる後ドラム1
1に巻き取った。
This strand 7 is further passed through a rad die into a cross having a die corresponding to the cross-sectional shape of the spacer, which will be described later.
While rotating, the outer periphery of the core strand 7 was made of high-density polyethylene (MI=0.3) with 98 grooves of 5.1 mm at equal intervals and a valley diameter of 2.4 mm (7) 4 threads 0'). After coating the spacer body 9 to form a spacer body 9 with a spiral pitch of 120 mm, the drum 1 is introduced into a cold W tank 10 filled with a refrigerant such as air or cooling water to be cooled and solidified.
I wound it up to 1.

このようにして製造されたスペーサ12は、第3図に示
す断面形状を有し、スペーサ本体つと撚鋼線による抗張
力線1との接合強度を以下の方法によって測定した。
The spacer 12 manufactured in this manner had the cross-sectional shape shown in FIG. 3, and the bonding strength between the spacer body and the tensile strength wire 1 made of twisted steel wire was measured by the following method.

すなわち、前記螺旋スペーサ本体9の端部10mmの長
さについて、該螺旋スペーサ本体9の断面方向の熱可塑
性樹脂部を引張試験機のチャック部分の治具に当接し、
引張速度5 mm/分で引張試験して引張剪断接合強力
を測定し、その値を抗張力線1の見かけの外周の面積で
除して接合強度(引失強度)とした。この測定方法によ
る本実施例のスペーサの接合強度は42kg/crlで
あった。
That is, for a length of 10 mm at the end of the helical spacer body 9, the thermoplastic resin part in the cross-sectional direction of the helical spacer body 9 was brought into contact with a jig of the chuck part of a tensile tester,
A tensile test was carried out at a tensile rate of 5 mm/min to measure the tensile shear bonding strength, and the value was divided by the area of the apparent outer periphery of the tensile strength line 1 to obtain the bonding strength (withdrawal strength). The bonding strength of the spacer of this example measured by this measurement method was 42 kg/crl.

また、60℃、100℃の乾熱風炉中に、約1mの長さ
の試料を入れ1時間放置し、続いて23℃(常温)にて
30分放置後、スペーす本体9の長さを測定して(L 
) 111111とし、次式より熱収縮率を測定した。
In addition, a sample with a length of approximately 1 m was placed in a dry hot air oven at 60°C and 100°C, and left for 1 hour, and then left at 23°C (room temperature) for 30 minutes, and then the length of the main body 9 was measured. Measure (L
) 111111, and the heat shrinkage rate was measured using the following formula.

熱収縮率= ((1000−L ) / 1000) 
x 100 (%)本実施例のサンプルでは、60℃お
よび100℃における熱収縮率はそれぞれ0%であった
Heat shrinkage rate = ((1000-L) / 1000)
x 100 (%) In the sample of this example, the heat shrinkage rates at 60°C and 100°C were respectively 0%.

さらに、−35℃にて1時間、引き続いて80℃にて1
時間のヒートサイクルを交互に30回繰返して、同じよ
うに収縮率を測定したところ、本実施例については0.
15%の値が得られた。
Furthermore, at -35°C for 1 hour, and then at 80°C for 1 hour.
When the heat cycle was repeated 30 times and the shrinkage rate was measured in the same way, the shrinkage rate was 0.
A value of 15% was obtained.

さらにまた、抗張力線1を中央に配したスペーサ本体9
の屈撓性を、以下の手段で測定した。
Furthermore, the spacer body 9 has the tensile strength line 1 arranged in the center.
The flexibility of was measured by the following means.

測定用サンプルを直径100mmの半円状となし、この
半円状のサンプルによる反撥力をバネばかりで測定した
。この測定方法による本実施例のサンプルの値は0.1
5−であった。
The sample for measurement was semicircular with a diameter of 100 mm, and the repulsive force due to the semicircular sample was measured using a spring balance. The value of the sample of this example by this measurement method is 0.1
It was 5-.

なお、以下の実施例および比較例での接合強度などの物
性値は、上述した方法ですべて測定した値であるので、
以後は測定法の説明は省略する。
In addition, all physical property values such as bonding strength in the following examples and comparative examples are values measured using the method described above.
The explanation of the measurement method will be omitted hereafter.

(比較例1) 抗張力線1としては、上記実施例1と同じものを用い、
二次被覆層3は形成せず、これを脱脂処理後、上記実施
例1と同じクロスへラドダイ8に挿通して、高密度ポリ
エチレン(MI=0.3)によって、同じ形態のスペー
サ本体9を形成した。
(Comparative Example 1) As the tensile strength wire 1, the same one as in Example 1 was used,
The secondary coating layer 3 was not formed, but after degreasing, it was inserted into the same cloth as in Example 1 through the RAD die 8, and a spacer body 9 of the same form was made of high-density polyethylene (MI=0.3). Formed.

つまり、この比較例1では、上記実施例1で説明した第
1図に示す工程を省略してスペーサ12を形成した。
That is, in Comparative Example 1, the spacer 12 was formed by omitting the step shown in FIG. 1 described in Example 1 above.

その結果、接合強度は13 kg/ cd、60℃およ
び100℃の熱収縮率は、それぞれ0.1〜0゜15%
、0,3〜0.55%、ヒートサイクル後の熱収縮率は
1.6%、屈撓性は0.15kgとなり、屈撓性を除く
他の特性はいずれも上記実施例1より劣っていた。
As a result, the joint strength was 13 kg/cd, and the heat shrinkage rate at 60℃ and 100℃ was 0.1~0゜15%, respectively.
, 0.3 to 0.55%, the thermal shrinkage rate after heat cycle was 1.6%, and the flexibility was 0.15 kg, and all other properties except flexibility were inferior to Example 1. Ta.

(比較例2) 抗張力線1の構成、スペーサ本体9の寸法形状などは、
上記実施例1および比較例1と同じ状態で、スペーサ本
体9の形成樹脂を実施例1の一次被覆に使用したものと
同じガラス繊維強化ポリエチレンとし、比較例1と同じ
方法でスペーサ12を形成し、各特性を測定したところ
以下の結果が得られた。
(Comparative Example 2) The configuration of the tensile strength line 1, the dimensions and shape of the spacer body 9, etc.
Under the same conditions as in Example 1 and Comparative Example 1 above, the resin for forming the spacer body 9 was the same glass fiber reinforced polyethylene as that used for the primary coating in Example 1, and the spacer 12 was formed in the same manner as in Comparative Example 1. When we measured each characteristic, we obtained the following results.

すなわち、接合強度は44 kg / cぜ、60℃お
よび100℃の熱収縮率はそれぞれ0%、ヒートサイク
ル後の熱収縮率は0.1%となり、これらの値は上記実
施例1と比較して遜色のない値であるが、屈撓性が0.
35kgとなって、この規格のスペーサとしては光ファ
イバケーブル化や布設時に問題がある。
That is, the bonding strength was 44 kg/cm, the heat shrinkage rates at 60°C and 100°C were 0%, and the heat shrinkage rate after heat cycle was 0.1%, and these values were compared with Example 1 above. However, the flexibility is comparable to that of 0.
The weight is 35 kg, which poses a problem when creating and installing optical fiber cables as a spacer of this standard.

(実施例2) 抗張力線1として直径Q、6+nmの鋼線を(1+6)
本の構造に撚った見かけの外径1.81の撚鋼線を使用
し、この表面をアセトンで洗浄して脱脂した後、クロス
へラドダイ2に挿通して、耐熱性ABS (電気化学工
業製:商品名H8800)によって一次被覆層3を形成
し、冷却固化槽4に導入した後、ドラム5に巻き取って
被覆外径3゜Qmmの中芯素線7を得た。
(Example 2) A steel wire with a diameter Q of 6+nm was used as the tensile strength wire 1 (1+6)
Using twisted steel wire with an apparent outer diameter of 1.81 twisted in the structure of a book, after cleaning the surface with acetone and degreasing it, insert it into the cross through RADODAI 2, and heat-resistant ABS (Denki Kagaku Kogyo) A primary coating layer 3 was formed using a coating (trade name: H8800), introduced into a cooling and solidifying tank 4, and then wound around a drum 5 to obtain a core strand 7 having a coating outer diameter of 3°Qmm.

この素17をさらに後述するスペーサの断面形状に相応
するダイを有するクロスへラドダイに挿通し、このダイ
8を回転しながら眼中芯素線7の外周に変性ABS (
宇部サイコン製:商品名UKB440)によって、等間
隔に山径13.OIIlm、谷径5,8+nmの6条の
突起を有し、螺旋のピッチが150mff1になるよう
なスペーサ本体9を形成するように被覆した後、空気や
冷却水などの冷媒で満たした冷却槽10に導入して冷却
固化し、しかる後ドラム11に巻き取った。
This element 17 is further inserted into a cross having a die corresponding to the cross-sectional shape of a spacer, which will be described later, through a rad die, and while rotating this die 8, a modified ABS (
Made by Ube Saikon (trade name: UKB440), the diameter of the mountain is 13. After coating to form a spacer body 9 having 6 protrusions with a root diameter of 5.8+nm and a spiral pitch of 150 mff1, a cooling tank 10 is filled with a coolant such as air or cooling water. The mixture was introduced into a container, cooled and solidified, and then wound up on a drum 11.

得られたスペーサ12の接合強度は85 kg / c
+/と大きな値が得られ、60℃および100℃の熱収
縮率とヒートサイクル後の熱収縮率はそれぞれ0%、屈
撓性は1.4kgであった。
The bonding strength of the obtained spacer 12 is 85 kg/c
A large value of +/ was obtained, the heat shrinkage rates at 60°C and 100°C and the heat shrinkage rate after heat cycle were each 0%, and the flexibility was 1.4kg.

(比較例3) 抗張力線1としては、上記実施例2と同じものを用い、
一次被覆層3は形成せず、これを脱脂処理後、上記実施
例2と同じクロスへラドダイ8に挿通して、実施例2と
同じ変性ABSによって同じ形態のスペーサ本体9を形
成した。つまり、この比較例3では、上記実施例2で説
明した第1図に示す工程を省略してスペーサ12を形成
した。
(Comparative Example 3) As the tensile strength line 1, the same one as in Example 2 was used,
The primary coating layer 3 was not formed, and after degreasing, it was inserted through the Rad die 8 into the same cloth as in Example 2, and a spacer body 9 having the same form as in Example 2 was formed using the same modified ABS. That is, in Comparative Example 3, the spacer 12 was formed by omitting the step shown in FIG. 1 described in Example 2 above.

その結果、接合強度は15kg/cぜ、60℃および1
00℃の熱収縮率は、それぞれ−0,15%。
As a result, the bonding strength was 15 kg/cm, 60℃ and 1
The heat shrinkage rates at 00°C are -0 and 15%, respectively.

−0,25%、ヒートサイクル後の熱収縮率は1゜3%
、屈撓性は1.2kgとなり、屈撓性を除く他の特性は
いずれも上記実施例2より劣っており、特に接合強度は
115以下であった。
-0.25%, heat shrinkage rate after heat cycle is 1°3%
The flexibility was 1.2 kg, and all other properties except the flexibility were inferior to those of Example 2, particularly the bonding strength was 115 or less.

(比較例4) 抗張力線1の構成、スペーサ本体9の寸法形状などは、
上記実施例2および比較例3と同じ状態で、スペーサ本
体9の形成樹脂を実施例2の一次被覆に使用した耐熱性
ABSとし、比較例3と同じ寸法でスペーサ12を形成
し、各特性を測定したところ以下の結果が得られた。
(Comparative Example 4) The configuration of the tensile strength line 1, the dimensions and shape of the spacer body 9, etc.
Under the same conditions as in Example 2 and Comparative Example 3 above, the resin for forming the spacer body 9 was the heat-resistant ABS used for the primary coating in Example 2, the spacer 12 was formed with the same dimensions as in Comparative Example 3, and each characteristic was evaluated. As a result of measurement, the following results were obtained.

すなわち、接合強度は87kg/cJ、60℃および1
00℃の熱収縮率はそれぞれ0%、ヒートサイクル後の
熱収縮率は0%となり、これらの値は上記実施例2と比
較して遜色のない値であるが、屈撓性が3.5kgとな
って、剛性が大きくなりずぎて、光ファイバケーブルの
布設時に問題がある。
That is, the bonding strength is 87 kg/cJ, 60°C and 1
The thermal contraction rate at 00°C is 0%, and the thermal contraction rate after heat cycle is 0%, and these values are comparable to those in Example 2 above, but the flexibility is 3.5 kg. As a result, the rigidity becomes too large, which causes problems when installing optical fiber cables.

(実施例3) 抗張力線1として直径0.38mmの鋼線を(3+6)
本の構造に撚った見かけの外径1.2mmの撚鋼線を使
用し、この表面をアセトンで洗浄して脱脂した後、クロ
スへラドダイ2に挿通して、ティスモ強化ポリプロピレ
ン(大日精化製:商品名PPT1235)によって一次
被覆3を形成し、冷fJl固化槽4に導入した後、ドラ
ム5に巻き取って被覆外径2.2mmの中芯素線7を得
た。
(Example 3) A steel wire with a diameter of 0.38 mm was used as the tensile strength wire 1 (3+6)
Using twisted steel wire with an apparent outer diameter of 1.2 mm twisted in the structure of a book, after cleaning the surface with acetone and degreasing it, insert it into the cross through RADODAI 2 and insert Tismo-reinforced polypropylene (Dainichiseika A primary coating 3 was formed using the product (trade name: PPT1235), introduced into a cold fJl solidification tank 4, and then wound around a drum 5 to obtain a core strand 7 having a coating outer diameter of 2.2 mm.

この素線7をざらに後述するスペーサの断面形状に相応
するダイを有するクロスへラドダイに挿通し、このダイ
8を回転しながら該中芯素線7の外周に、ポリプロピレ
ン−エチレン共重合体(宇部興産製:商品名J701H
)によって、等間隔に山径5,5mm、谷径3.Qmm
の6条の突起を有し、螺旋のピッチが200mmになる
ようなスペーサ本体9を形成するように被覆した後、空
気や冷却水などの冷媒で満たした冷却槽10に導入して
冷却固化し、しかる後ドラム11に巻き取った。
This strand 7 is inserted into a cross having a die corresponding to the cross-sectional shape of the spacer, which will be roughly described later, through a rad die, and while rotating the die 8, a polypropylene-ethylene copolymer ( Manufactured by Ube Industries: Product name J701H
), the peak diameter is 5.5 mm and the valley diameter is 3.5 mm at equal intervals. Qmm
After coating the spacer body 9 to form a spacer body 9 having six protrusions with a spiral pitch of 200 mm, the spacer body 9 is introduced into a cooling tank 10 filled with a coolant such as air or cooling water, and cooled and solidified. , and then wound onto the drum 11.

得られたスペーサ12の接合強度は35 kg / c
d 。
The bonding strength of the obtained spacer 12 is 35 kg/c
d.

60℃および100℃の熱収縮率はそれぞれ0%、ヒー
トサイクル後の熱収縮率は0.05%、屈撓性は0.2
kgであった。
Heat shrinkage rate at 60°C and 100°C is 0%, heat shrinkage rate after heat cycle is 0.05%, flexibility is 0.2
It was kg.

(比較例5) 抗張力線としては、上記実施例3と同じものを用い、一
次被覆層3は形成せず、これを脱脂処理後、上記実施例
3と同じクロスへラドダイ8に挿通して、ポリプロピレ
ンによって同じ形態のスペーサ本体9を形成した。つま
り、この比較例5では、上記実施例3で説明した第1図
に示す工程を省略してスペーサ12を形成した。
(Comparative Example 5) The same tensile strength wire as in Example 3 was used, the primary coating layer 3 was not formed, and after degreasing, the wire was inserted into the same cloth as in Example 3 through the RAD die 8. A spacer body 9 having the same shape was formed from polypropylene. That is, in Comparative Example 5, the spacer 12 was formed by omitting the step shown in FIG. 1 described in Example 3 above.

その結果、接合強度は14 kg / cぜ、60℃お
よび100℃の熱収縮率は、それぞれ0.05%、ヒー
トサイクル後の熱収縮率は0.15%、屈撓性は0.1
8kgとなり、屈撓性を除く他の特性はいずれも上記実
施例3よりも劣っていた。
As a result, the bonding strength is 14 kg/cze, the heat shrinkage rate at 60℃ and 100℃ is 0.05%, respectively, the heat shrinkage rate after heat cycle is 0.15%, and the flexibility is 0.1
The weight was 8 kg, and all other properties except flexibility were inferior to those of Example 3 above.

以上の実施例と比較例とをまとめたものが以下に示す表
である。
The table below summarizes the above examples and comparative examples.

表の結束からb明らかなように、本発明に係る製造方法
で作られた本発明の光ファイバ担持用スペーりは、抗張
力線1のM構造の凹凸部分に硬質の熱可塑性樹脂からな
る一次被覆層3が、密接充填されているため、大きな接
合強度が得られるとと乙に、この樹脂の熱変形温度が高
いために、環境温度の広い範囲に戸って収縮率が小さく
なり、温度変化に対しても接合強度が安定している。
As is clear from the binding in the table, the space for supporting an optical fiber of the present invention manufactured by the manufacturing method according to the present invention has a primary coating made of a hard thermoplastic resin on the uneven portion of the M structure of the tensile strength wire 1. Because Layer 3 is closely packed, a large bonding strength can be obtained.Secondly, because the thermal deformation temperature of this resin is high, the shrinkage rate is small over a wide range of environmental temperatures, and temperature changes are reduced. The bonding strength is also stable.

また、スペーサ本体9部分は、一次被覆層3よりし軟質
であるため、光ファイバを本体9の溝部に装看してず行
段する際に必要な屈撓性も確保される。
Further, since the spacer main body 9 portion is softer than the primary coating layer 3, the flexibility necessary for moving the optical fiber without inserting it into the groove of the main body 9 is ensured.

さらにスペーサ本体9と一次被覆層3の形成樹脂は、相
溶度が大きいので、これらの界面での接合強度が問題ど
なることはなく、スペーサ12を製造する際に2段に被
覆工程を分けることによって冷2J]固化時の残留歪み
を緩和できる。
Furthermore, since the resins forming the spacer body 9 and the primary coating layer 3 have high compatibility, there is no problem with the bonding strength at their interface, and the coating process can be divided into two stages when manufacturing the spacer 12. Cold 2J] can alleviate residual strain during solidification.

(発明の効果) 以上、実施例で詳細に説明したように、本発明によれば
、スペーサ本体と抗張力線の接合強度が大きく、且つ温
度変化に対する寸法安定性が良く、しかも適度の屈撓性
を備えた光ファイバ担持用スペーサが比較的簡単に製造
できるなどの浸れた効果が得られる。
(Effects of the Invention) As described above in detail in the Examples, according to the present invention, the bonding strength between the spacer body and the tensile strength wire is high, the dimensional stability against temperature changes is good, and the flexibility is moderate. It is possible to obtain a immersive effect such that an optical fiber supporting spacer equipped with an optical fiber supporting spacer can be manufactured relatively easily.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一次被覆の工程を示す説明図、第2図
はスペーサ本体の形成工程を示す説明図、第3図は本発
明の光ファイバ担持用スペーサの一例を示す断面図であ
る。 1・・・・・・・・・抗張力線
FIG. 1 is an explanatory diagram showing the process of primary coating of the present invention, FIG. 2 is an explanatory diagram showing the process of forming a spacer body, and FIG. 3 is a sectional view showing an example of the optical fiber supporting spacer of the present invention. . 1・・・・・・・・・Tensile strength line

Claims (3)

【特許請求の範囲】[Claims] (1)撚構造を有する抗張力線と、該抗張力線を囲繞す
る硬質且つ耐熱性の熱可塑性樹脂からなる一次被覆層と
、該一次被覆層の外周に該熱可塑性樹脂との相溶度が大
きく、且つ、該熱可塑性樹脂より軟質の熱可塑性樹脂に
よつて形成されたスペーサ本体とからなり、該スペーサ
本体と該一次被覆層とを融合接着するとともに、該スペ
ーサ本体には長手方向に連続して延びる複数の光ファイ
バ装着用の溝を形成してなることを特徴とする光ファイ
バ担持用スペーサ。
(1) A tensile strength wire having a twisted structure, a primary coating layer made of a hard and heat-resistant thermoplastic resin surrounding the tensile strength wire, and a material having a high compatibility with the thermoplastic resin on the outer periphery of the primary coating layer. and a spacer body formed of a thermoplastic resin softer than the thermoplastic resin, the spacer body and the primary coating layer are fused and bonded, and the spacer body has a spacer body that is continuous in the longitudinal direction. What is claimed is: 1. A spacer for supporting an optical fiber, comprising a plurality of grooves for mounting optical fibers extending along the groove.
(2)上記一次被覆層の熱可塑性樹脂は、150kg/
mm^2以上の曲げ弾性率を有し、且つ18.6kg/
cm^2の荷重下での熱変形温度が100℃以上の物性
を有していることを特徴とする特許請求の範囲第1項記
載の光ファイバ担持用スペーサ。
(2) The thermoplastic resin of the above primary coating layer weighs 150 kg/
It has a bending elastic modulus of mm^2 or more and is 18.6 kg/
The spacer for supporting an optical fiber according to claim 1, characterized in that the spacer has a thermal deformation temperature of 100° C. or higher under a load of cm^2.
(3)撚構造を有する抗張力線をクロスヘッドダイに挿
通し、硬質且つ耐熱性の熱可塑性樹脂をその外周に環状
に溶融押出しして、少くとも0.25mm以上の被覆厚
を有する一次被覆層を形成した後、該熱可塑性樹脂との
相溶度が大きく且つ軟質の熱可塑性樹脂でもつて、該一
次被覆層の外周に長手方向に延びる複数の溝を形成する
ようにして被覆することを特徴とする光ファイバ担持用
スペーサの製造方法。
(3) A primary coating layer having a coating thickness of at least 0.25 mm is obtained by inserting a tensile strength wire having a twisted structure into a crosshead die, and melting and extruding a hard and heat-resistant thermoplastic resin around the outer circumference in a circular shape. After forming the primary coating layer, the primary coating layer is coated with a soft thermoplastic resin that has high compatibility with the thermoplastic resin so as to form a plurality of grooves extending in the longitudinal direction on the outer periphery of the primary coating layer. A method for manufacturing an optical fiber supporting spacer.
JP60019261A 1985-02-05 1985-02-05 Spacer for carrying optical fiber and its production Granted JPS61179407A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60019261A JPS61179407A (en) 1985-02-05 1985-02-05 Spacer for carrying optical fiber and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60019261A JPS61179407A (en) 1985-02-05 1985-02-05 Spacer for carrying optical fiber and its production

Publications (2)

Publication Number Publication Date
JPS61179407A true JPS61179407A (en) 1986-08-12
JPH0431363B2 JPH0431363B2 (en) 1992-05-26

Family

ID=11994494

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60019261A Granted JPS61179407A (en) 1985-02-05 1985-02-05 Spacer for carrying optical fiber and its production

Country Status (1)

Country Link
JP (1) JPS61179407A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6423211A (en) * 1987-07-20 1989-01-25 Toyo Chemicals Co Ltd Production of spacer for optical fiber cable
JPS6481921A (en) * 1987-09-25 1989-03-28 Ube Nitto Kasei Co Manufacture of spiral spacer
JPH01257907A (en) * 1988-04-08 1989-10-16 Ube Nitto Kasei Co Ltd Production of spacer for carrying optical fiber
JP2008286942A (en) * 2007-05-16 2008-11-27 Furukawa Electric Co Ltd:The Slot rod for optical fiber cable and optical fiber cable using the same
JP2010039275A (en) * 2008-08-06 2010-02-18 Furukawa Electric Co Ltd:The Optical fiber cable

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57187408U (en) * 1981-05-25 1982-11-27
JPS59114501U (en) * 1983-01-20 1984-08-02 日本電信電話株式会社 Spacer for optical fiber cable

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57187408U (en) * 1981-05-25 1982-11-27
JPS59114501U (en) * 1983-01-20 1984-08-02 日本電信電話株式会社 Spacer for optical fiber cable

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6423211A (en) * 1987-07-20 1989-01-25 Toyo Chemicals Co Ltd Production of spacer for optical fiber cable
JPS6481921A (en) * 1987-09-25 1989-03-28 Ube Nitto Kasei Co Manufacture of spiral spacer
JPH01257907A (en) * 1988-04-08 1989-10-16 Ube Nitto Kasei Co Ltd Production of spacer for carrying optical fiber
JP2008286942A (en) * 2007-05-16 2008-11-27 Furukawa Electric Co Ltd:The Slot rod for optical fiber cable and optical fiber cable using the same
JP2010039275A (en) * 2008-08-06 2010-02-18 Furukawa Electric Co Ltd:The Optical fiber cable

Also Published As

Publication number Publication date
JPH0431363B2 (en) 1992-05-26

Similar Documents

Publication Publication Date Title
US4763983A (en) Optical transmission cable with messenger
US6559385B1 (en) Stranded cable and method of making
KR20070044400A (en) Noiseproof toothed cable
JPS61179407A (en) Spacer for carrying optical fiber and its production
EP0149336A2 (en) Flexible tension members
JPH0431364B2 (en)
JPH0583931U (en) Overhead power line
JPS6310806B2 (en)
CN100454065C (en) Frp tension member for drop optical fiber cable
JPH042165B2 (en)
JPS5836881B2 (en) optical cable
CA2191241A1 (en) Fibre reinforced resin composite reinforcing material and method for producing the same
JPS61198113A (en) Optical fiber core
JP7360689B2 (en) Joining method and joint structure of thermoplastic resin members
CN220711045U (en) Heat insulation structure of automobile engine wire harness
JPH0118525B2 (en)
JPS6323690Y2 (en)
JPH0476448B2 (en)
JPH0235131Y2 (en)
JP3274559B2 (en) Spacer for overhead optical cable
JP3730103B2 (en) Fiber optic cable
JPS58100114A (en) Manufacture of optical fiber connection part
JP2023089670A (en) Cable fixing structure
JP2557069B2 (en) Method of manufacturing spacer for supporting optical fiber
JPH07122686B2 (en) Fusing type optical coupler

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term