JPS58223640A - Preparation of pipe coating type optical fiber - Google Patents

Preparation of pipe coating type optical fiber

Info

Publication number
JPS58223640A
JPS58223640A JP57106565A JP10656582A JPS58223640A JP S58223640 A JPS58223640 A JP S58223640A JP 57106565 A JP57106565 A JP 57106565A JP 10656582 A JP10656582 A JP 10656582A JP S58223640 A JPS58223640 A JP S58223640A
Authority
JP
Japan
Prior art keywords
pipe
optical fiber
resin
layer
inner layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57106565A
Other languages
Japanese (ja)
Other versions
JPS6144825B2 (en
Inventor
Kenichi Fuse
布旋 憲一
Yoshiaki Oishi
大石 義昭
Shuji Okagawa
岡川 周司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP57106565A priority Critical patent/JPS58223640A/en
Publication of JPS58223640A publication Critical patent/JPS58223640A/en
Publication of JPS6144825B2 publication Critical patent/JPS6144825B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To make it possible to prepare continuously the titled optical fiber having improved mechanical characteristics, transmission characteristics, shape and performance, etc., by forming the inner layer of a pipe from a noncrystalline resin, and forming the outer layer from a crystalline resin. CONSTITUTION:An optical fiber 1 having a buffer layer 3 is fed into a nipple (B) of a crosshead (A), and a viscous material 4 is fed into the nipple (B) while heated with a storing part (C), a supply pipe (D) and a heater (E). A noncrystalline resin 5', e.g. polycarbonate, is fed to a resin path (F), and a crystalline resin 6', e.g. polybutylene terephthalate, is fed to a resin path (H). Thus, the noncrystalline resin 5' is formed into a pipe as an inner layer 5 of a pipe 7, and the optical fiber 1 and the viscous material 4 are introduced into the inner layer 5 at the same time. On the other hand, the crystalline resin 6' is formed into a pipe on the outer periphery of the inner layer 5 as an outer layer 6 of the pipe 7. These members are continuously extruded from the crosshead (A) to give the aimed pipe coating type optical fiber.

Description

【発明の詳細な説明】 本発明はパイプ被覆型光フーアイバの製造方法(こ関す
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a pipe-coated optical fiber.

パイプ被覆型光フアイバは光ファイバフシ・線の1種で
あり、この被覆光ファイバの一般的なもの回、1次被覆
層(プライマリコ−1・)、緩衝層(バッフアコ−1・
)が順次形成された尤ファイバの外周に、樹脂製のパイ
プが被覆され、緩衝層外周とパイプ内層との間イこ一〇
状とか、ンエリー状の粘性材が介在されている。
Pipe coated optical fiber is a type of optical fiber wire, and the general coated optical fiber consists of a primary coating layer (primary coat 1) and a buffer layer (buffer coat 1).
) is sequentially formed on the outer periphery of the fiber, which is coated with a resin pipe, and a viscous material in the shape of a diagonal or an ellipse is interposed between the outer periphery of the buffer layer and the inner layer of the pipe.

上記におけるパイプ被覆型光ファイバは、・ζイブより
も光ファイバの方が長く、かつ、光ファイバが融通性を
もって、しかもマイクロベンドのない大きな曲がり状態
でパイプ内Iこ収納されているため、耐引張性、耐側圧
特性、緩衝性など、光ファイバの防護効果を高めたり、
良Qfな伝送特性を確保し得る見通しはあるが、既イf
の押出成形手段により光ファイバの外周を・2イブ被覆
するとき、つぎのような問題があるため必要な緒特性が
得られず、かえって悪い結果を招いている。
The pipe-coated optical fiber mentioned above is longer than the ζ-beam, and the optical fiber is flexible and is stored in the pipe in a large bend without micro-bends, so it is durable. Improve the protective effects of optical fibers such as tensile strength, lateral pressure resistance, and cushioning properties.
Although there is a prospect of securing good Qf transmission characteristics,
When the outer periphery of an optical fiber is coated by extrusion molding means, the following problems occur, making it impossible to obtain the necessary fiber properties, and on the contrary, this results in worse results.

つまり、緩衝着付の光ファイバを押出成形機にかけてこ
れの外周にパイプを形成し、その緩衝層外周とパイプ内
周との間に粘性相を介在させて所要のパイプ被覆型光フ
アイバをつくるとき、高温の状態でパイプ化された結晶
性の樹脂け押出成形機のクロスヘッド内lこおいてこれ
よりも低f!iAの粘性材と接触することfこなるが、
こうして粘性イA(低温)が・2イブ(高温)と接触す
ると、当該パイプの内面側が一部固化してその固化物が
供給樹脂の流れを阻害することとなり、−・方、長時間
の運転では押出成形機内において尤ファイバの断線事故
や樹脂の間欠充填をfノ1発するような閉塞状態も発生
し、さらに閉塞原因であった固化物が剥落してパイプ中
に混入するなど、良好な成形状態が得られなくなってい
る。
In other words, when a pipe is formed around the outer periphery of a buffer-coated optical fiber by extrusion molding, and a viscous phase is interposed between the outer periphery of the buffer layer and the inner periphery of the pipe, a desired pipe-covered optical fiber is produced. If a crystalline resin piped into a pipe is stored in the crosshead of an extrusion molding machine at a high temperature, the temperature will be lower than this! Although it comes into contact with the viscous material of iA,
In this way, when the viscous A (low temperature) comes into contact with the viscous A (high temperature), the inner surface of the pipe will partially solidify and the solidified material will obstruct the flow of the supplied resin. In the extrusion molding machine, fiber breakage accidents and intermittent filling of resin occurred in the extrusion molding machine, causing clogging conditions such as f times, and solidified material that was the cause of the clogging fell off and got mixed into the pipe, resulting in poor molding. The state is no longer available.

もちろん、活性相を省略することによりパイプ側の問題
Vi解決できるが、こうした場合にけパイプ内(こおけ
る潤滑性がなくなるので、光ファイバがパイプ内で長手
方向に不均一な曲がり状態を呈し、伝送ロス増を招くこ
とになる。
Of course, the problem Vi on the pipe side can be solved by omitting the active phase, but in such a case, the lubricity inside the pipe is lost, so the optical fiber exhibits a non-uniform bending state in the longitudinal direction within the pipe. This will lead to an increase in transmission loss.

一方、パイプ材である結晶性樹脂も必要な機械的!時性
を得る上で不可欠の月質であるから、これを他の相性で
代替させること−できない。
On the other hand, crystalline resin, which is a pipe material, is also required mechanically! Since the lunar quality is indispensable for obtaining temporality, it cannot be replaced by other compatibility.

したがって活性相、結晶性樹脂を不可欠の構成要素とし
て押出成形手段lこよリパイプ被覆光ファイバを製造す
るとき、」二記の問題対策を案出しないかぎり、性能、
品質に優れたものは得られず、それ故、これに対処すべ
き翁効な改善策が希求されている。
Therefore, when manufacturing an optical fiber coated with an extrusion molding method using an active phase, a crystalline resin, as an essential component, unless solutions to the problems mentioned above are devised, the performance will be poor.
It is not possible to obtain products of excellent quality, and therefore, effective improvement measures to deal with this problem are desired.

本発明はこのような実情に鑑み、押出成形による光ファ
イバのパイプ被覆手段に改善を加えたもので、以下その
具体的方法を図示の実施例により説明する。
In view of the above-mentioned circumstances, the present invention is an improvement on the extrusion method for coating an optical fiber pipe, and the specific method thereof will be explained below with reference to the illustrated embodiments.

第1図はクロスヘッドのみが示されている押出成形機、
第2図はパイプ被覆前の光ファイバ、第3図はパイプ被
覆後の光ファイバである。
Figure 1 shows an extrusion molding machine with only the crosshead shown.
FIG. 2 shows the optical fiber before the pipe is coated, and FIG. 3 shows the optical fiber after the pipe is coated.

上記lこおけるパイプ被覆前の光ファイバ(1)ハ石英
系であり、これの外周には/リコーン樹脂からなる1次
被覆層(2)、同じく/リコーン樹脂からなる緩衝層(
3)が形成されている。
The optical fiber (1) before being coated with the pipe in the above (1) is made of quartz, and on its outer periphery there is a primary coating layer (2) made of silicone resin, and a buffer layer (2) also made of silicone resin.
3) is formed.

場合により、上記光ファイバil+の外周には1次被覆
層(2)と緩衝層(3)とを兼ねるものが1層だけ形成
されていることもある。
In some cases, only one layer serving as the primary coating layer (2) and the buffer layer (3) may be formed on the outer periphery of the optical fiber il+.

第1図1こおいて、上記緩衝層(3)付の光ファイバ(
1)は図示しない供給機から巻きもどされてクロノヘノ
l−AのニップルB内へ送りこ捷れる。
In FIG. 1, the optical fiber with the buffer layer (3) (
1) is unwound from a feeder (not shown) and fed into nipple B of Chronoheno l-A.

このニソグルBの後端部に目/リコーンオイル等からな
る活性相(4)の貯溜部Cを備えた供給配管I〕が連結
されており、粘性相(4)は貯溜部C1供給配管D1ニ
ップルBの後端部に巻きつけられたヒータFJにより加
熱されながらニップルB内へ供給される。
A supply pipe I] equipped with a reservoir C of an active phase (4) consisting of oil/recone oil, etc. is connected to the rear end of this Nisoglu B, and a viscous phase (4) is connected to the reservoir C1 supply pipe D1 nipple. It is supplied into the nipple B while being heated by the heater FJ wrapped around the rear end of the nipple B.

一力、クロスヘッドA内には上記ニソフルBと対応して
樹脂通流路Fを形成する内層ダイスG1ならびlこ該内
層ダイアGと対応して樹脂通流路I]を形成する外層ダ
イスIがそれぞれ装着感れており、樹脂通流路Fにはポ
リカーボネートなどの非結晶性樹脂(5)′が図示しな
い供給部から供給され、同じく樹脂通流路H+こはポリ
ブグレンデレフタレートなどの結晶性樹脂(6)′が図
示しない供給部から供給される。
Inside the crosshead A, there is an inner layer die G1 that corresponds to the Nisoflu B and forms a resin flow path F, and an outer layer die I that corresponds to the inner layer die G and forms a resin flow path I. The resin flow path F is supplied with a non-crystalline resin (5)' such as polycarbonate from a supply section (not shown), and the resin flow path H+ is supplied with a non-crystalline resin (5)' such as polycarbonate. Crystalline resin (6)' is supplied from a supply section (not shown).

したがって上記のように押出成形するとき、非結晶樹脂
(5)′がパイプ(7)の内層(5)としてパイプ状i
こ成形されるとともにこの内層(5)の内部へ光ファイ
バ(1)、粘性材(4)が入りこむこととなり、一方、
結晶性樹脂(6)′はパイプ(7)の外層(6)として
内層(5)の外周へパイプ状に形成されるから、これら
各部利がクロスヘッドAがら連続的に押し出されること
により第3図のごときパイプ被覆型光ファイバが得られ
る。
Therefore, when extrusion molding is performed as described above, the amorphous resin (5)' is used as the inner layer (5) of the pipe (7) to form the pipe shape i.
As this is formed, the optical fiber (1) and the viscous material (4) enter into the inner layer (5), and on the other hand,
Since the crystalline resin (6)' is formed in a pipe shape as the outer layer (6) of the pipe (7) to the outer periphery of the inner layer (5), each of these parts is continuously extruded through the crosshead A to form the third layer. A pipe-coated optical fiber as shown in the figure is obtained.

上記クロスヘッドAを出た後、パイプ被覆型光ファイバ
は冷却槽を通過することによりここで所定温度にまで冷
却され、以下、引取機を経由して巻取機により巻きとら
れるが、当該押出成形時fこあっては光ファイバ(1)
の供給速度をパイプ(7)の押出速度よりも速クシ、パ
イプ(7)に対して光ファイバ(1)に余長をもたせる
After exiting the crosshead A, the pipe-coated optical fiber passes through a cooling tank where it is cooled to a predetermined temperature, and then is passed through a take-up machine and wound up by a take-up machine. During molding, the optical fiber (1)
The feeding speed is set higher than the extrusion speed of the pipe (7), and the optical fiber (1) is made to have an extra length with respect to the pipe (7).

つぎに第1図で述べた本発明方法の具体例を下記の条件
で実施した結果につき説明する。
Next, the results of implementing a specific example of the method of the present invention described in FIG. 1 under the following conditions will be explained.

光ファイバ(1)二石英系、コア径5011m %外径
125 /1m 1次被覆層(2):シリコーン樹脂、外径200/1m
緩 衝 層(3):シリコーン樹脂、外径400μm粘
 性 材(4):シリコーンオイル、充填温度180℃
内 層I5):ボリカーボネー1・、外径10間、肉1
i50/Rn、押出温度300℃ 外 層(f、i) :ポリブチレンテレフタレート、外
径12配、押出44度300℃ 1−記の条(iにより製造されたパイプ被覆型光ファイ
バは、パイプ被覆前とパイプ被覆後とで伝送損失が殆ど
同じであるとともに機械的特性も充分備わっており、捷
だ、1時間以上の連続押出成形を実施しても、樹脂通流
路F、Hにおりる樹脂の硬化、該各通流路F、Hの閉塞
などは発生ぜず、パイプ(7)の肉厚も長手方向(こわ
たりはX均一であり、粘性相(4)の劣化も認められな
かった。
Optical fiber (1) diquartz-based, core diameter 5011 m, outer diameter 125/1 m, primary coating layer (2): silicone resin, outer diameter 200/1 m
Buffer layer (3): Silicone resin, outer diameter 400μm Viscous material (4): Silicone oil, filling temperature 180℃
Inner layer I5): polycarbonate 1, outer diameter 10, meat 1
i50/Rn, extrusion temperature 300℃ Outer layer (f, i): polybutylene terephthalate, outer diameter 12 layers, extrusion 44 degrees 300℃ The transmission loss is almost the same before and after the pipe is coated, and the mechanical properties are sufficient, so even if continuous extrusion molding is performed for more than 1 hour, the resin will not flow into the resin flow paths F and H. There was no curing of the resin or clogging of the flow paths F and H, the wall thickness of the pipe (7) was uniform in the longitudinal direction (the stiffness was uniform), and no deterioration of the viscous phase (4) was observed. Ta.

」−記の好結果が得られた理由として、粘性相(,1)
の温度(180℃)は両樹脂[5)’i6)’の温度(
300℃)をかなり下回っているが、該粘性層(4)と
直接接触することになるパイプ内層用の樹脂(5)′は
、これが非結晶性であるため、低温の活性H(4)と接
触しても固化せず、一方、パイプ外層用の樹脂(6)′
は結晶性であっても低温の粘性相(4)と非接触の状態
をとるのでこれも固化せず、したがって両樹脂i51 
’ [(i) ’がクロスヘッドA内で閉塞などのトラ
ブルを惹き起こすことはないのであり、その結果、パイ
プ(7)の押出状態は長時間にわたって安定し、物理的
特性、化学的特性、形状構造などに優れたパイプ被覆状
態が得られるのである。
” - The reason why the good results were obtained is that the viscous phase (,1)
The temperature (180℃) is the temperature of both resins [5)'i6)' (
Although the temperature is well below 300°C, the resin (5)' for the pipe inner layer that comes into direct contact with the viscous layer (4) is amorphous, so it does not react with the activated H (4) at low temperature. On the other hand, the resin for the outer layer of the pipe (6)'
Even if it is crystalline, it does not solidify because it does not come into contact with the low-temperature viscous phase (4), and therefore both resins i51
'[(i)' does not cause trouble such as blockage in the crosshead A, and as a result, the extrusion state of the pipe (7) is stable for a long time, and the physical properties, chemical properties, A pipe coating with excellent shape and structure can be obtained.

また、上記のようζこ樹脂の固化がvノ止できる場合、
樹脂と粘性相(4)との温度差を解消すべく当該活性H
(4)を極端に高温化する必要il′j、ないのであり
、それ故、粘性相(4)が高温により劣化することもな
い。
In addition, if the solidification of the resin can be stopped as described above,
In order to eliminate the temperature difference between the resin and the viscous phase (4), the active H
There is no need to raise the temperature of (4) to an extremely high temperature, and therefore the viscous phase (4) does not deteriorate due to high temperatures.

このように具合よくパイプ被覆できることにより、光フ
ァイバ(1)の伝送損失増も見られなくなり、高い伝送
特性が確保できる。
By appropriately covering the pipe in this manner, no increase in transmission loss of the optical fiber (1) is observed, and high transmission characteristics can be ensured.

比較のため、Ail記具体例とはソ同一の条件において
パイプ成形用の樹脂を結晶性のポリブチレンテレフタレ
ートのみとし、この結晶性樹脂からなる単層のパイプ(
内径/外径= 0.8 mm/ 1 、2 mm )に
より緩衝着付の光ファイバを被覆し、さら(こ活性H(
/リコーン副イル)の温度に、180℃のま1としてパ
イプ被覆型光ファイバをつくったところ、その・くイブ
の外周には押出開始後1時間未墨の時点で固化したポリ
ブチレンテレフタレートが間欠的に付着しはじめた。
For comparison, under the same conditions as in the specific example described in Ail, only crystalline polybutylene terephthalate was used as the resin for pipe molding, and a single layer pipe made of this crystalline resin (
The buffer-attached optical fiber was coated with inner diameter/outer diameter = 0.8 mm/1,2 mm), and further (with active H(
When a pipe-covered optical fiber was made at a temperature of 180°C, solidified polybutylene terephthalate was deposited intermittently on the outer periphery of the pipe one hour after the start of extrusion. It started to stick to the target.

また、上記比較例1こおいて粘性相の温度を240°〜
250℃に昇温させてパイプ被覆したところ、前例(・
1どでないにしても同化樹脂のf=J着現象がやはり生
じ、きらに粘性相の温度を250℃以」二とした場合に
はこれの劣化かはなはグこしく、実用不可能であった。
In addition, in Comparative Example 1 above, the temperature of the viscous phase was set at 240° to
When the pipe was coated by increasing the temperature to 250℃, the previous example (・
In any case, the f=J adhesion phenomenon of the assimilated resin still occurs, and if the temperature of the viscous phase is increased to 250°C or higher, the deterioration of this is serious and impractical. there were.

υ上説明した通り、本発明によれば光ファイバの夕(周
には緩衝層が形成されており、該緩衝層の外周「こ幻押
出成形手段を介してパイプが被覆され、この押出成形と
同期して緩衝層外周とバ1プ内周との間には活性Hが介
在されるパイプ被覆型光ファイバの製造方法lこおいて
、上記押出成形にJ:るパイプ成形時、非結晶性樹脂に
よりパイプの内層を形成し、結晶性の樹脂により・ぐイ
ブの外層を形成する仁とを特徴としているから、パイプ
成形用樹脂と活性Hとの温度差に起因したトラブルは発
生しなくなり、機械的特性、伝送特性、形状、外観など
を含め、性能、品質に優れたパイプ被覆型光ファイバの
連続製造が実現できる。
υAs explained above, according to the present invention, a buffer layer is formed around the optical fiber. A method for manufacturing a pipe-coated optical fiber in which active H is synchronously interposed between the outer circumference of the buffer layer and the inner circumference of the buffer layer. Since the inner layer of the pipe is made of resin and the outer layer of the pipe is made of crystalline resin, troubles caused by the temperature difference between the pipe molding resin and the activated H will not occur. It is possible to continuously manufacture pipe-coated optical fibers with excellent performance and quality, including mechanical properties, transmission properties, shape, appearance, etc.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明方法の1実施例を示した装部説明図、第
2図はパイプ被& Mf+の光ファイバを示した断面図
、第3図は本発明方法により製造されたパイプ被覆型光
ファイバの断面図である。 +11・・・・・尤ファイバ (2)・・・・・1次被覆層 (3)・・・・・緩衝層 (4)・・・・・活性H 15)Φ−・中・内 層 (5)′・・・・非結晶性樹脂 (6)・・・・・外 層 (6)′・・・・結晶性樹脂 (7)・ol、・パイプ
Fig. 1 is an explanatory view of the mounting part showing one embodiment of the method of the present invention, Fig. 2 is a sectional view showing a pipe-covered & Mf+ optical fiber, and Fig. 3 is a pipe-covered type manufactured by the method of the present invention. FIG. 2 is a cross-sectional view of an optical fiber. +11...Fiber (2)...Primary coating layer (3)...Buffer layer (4)...Active H 15)Φ-・Middle/inner layer ( 5)'...Amorphous resin (6)...Outer layer (6)'...Crystalline resin (7)・ol,・pipe

Claims (1)

【特許請求の範囲】[Claims] 毘ファイバの外周には緩衝層が形成されており、該緩衝
層の外周には押出成形手段によりパイプが被覆され、こ
の押出成形と同期して緩衝層外周とパイプ内周との間に
は粘性相が介在さノ1.るパイプ被覆型光フアイバの製
造方法においで、−に記押出成形手段1こJ:るパイプ
成形時、非結晶性樹脂1こよりパイプの内層を形成し、
結晶+1樹脂(こ」2リパイプの外層を形成することを
特徴としたパイプ被覆型光)゛アイバの製造方法。
A buffer layer is formed on the outer periphery of the bifiber, and a pipe is coated on the outer periphery of the buffer layer by extrusion molding, and in synchronization with this extrusion, viscosity is created between the outer periphery of the buffer layer and the inner periphery of the pipe. 1. There is a phase involved. In the method for manufacturing a pipe-covered optical fiber, the extrusion molding means described in - 1 is used to form the inner layer of the pipe from 1 amorphous resin during pipe molding;
A method for manufacturing a pipe-covered light beam characterized by forming the outer layer of a crystal + 1 resin (resin) and 2-repipe.
JP57106565A 1982-06-21 1982-06-21 Preparation of pipe coating type optical fiber Granted JPS58223640A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57106565A JPS58223640A (en) 1982-06-21 1982-06-21 Preparation of pipe coating type optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57106565A JPS58223640A (en) 1982-06-21 1982-06-21 Preparation of pipe coating type optical fiber

Publications (2)

Publication Number Publication Date
JPS58223640A true JPS58223640A (en) 1983-12-26
JPS6144825B2 JPS6144825B2 (en) 1986-10-04

Family

ID=14436804

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57106565A Granted JPS58223640A (en) 1982-06-21 1982-06-21 Preparation of pipe coating type optical fiber

Country Status (1)

Country Link
JP (1) JPS58223640A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60154220A (en) * 1984-01-25 1985-08-13 Nippon Telegr & Teleph Corp <Ntt> Coated optical fiber and its production
JPH03209409A (en) * 1989-10-25 1991-09-12 American Teleph & Telegr Co <Att> Optical fiber cable core
JPH0618753A (en) * 1992-04-16 1994-01-28 American Teleph & Telegr Co <Att> Hermetic seal optical fiber cable

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60154220A (en) * 1984-01-25 1985-08-13 Nippon Telegr & Teleph Corp <Ntt> Coated optical fiber and its production
JPH0546524B2 (en) * 1984-01-25 1993-07-14 Nippon Telegraph & Telephone
JPH03209409A (en) * 1989-10-25 1991-09-12 American Teleph & Telegr Co <Att> Optical fiber cable core
JPH0618753A (en) * 1992-04-16 1994-01-28 American Teleph & Telegr Co <Att> Hermetic seal optical fiber cable

Also Published As

Publication number Publication date
JPS6144825B2 (en) 1986-10-04

Similar Documents

Publication Publication Date Title
JP3176390B2 (en) Method of manufacturing reinforced plastic armored cable
US5830304A (en) Method for producing a tension-resistance core element for a cable
JPS6348041B2 (en)
JPS58223640A (en) Preparation of pipe coating type optical fiber
US7558454B2 (en) Optical fiber cable and method for making the same
CN1058215C (en) Optical fibre cable and method of manufacture
JP2016126231A (en) Optical cable and manufacturing method thereof
JPS59107943A (en) Manufacture of optical fiber core
JPH07256779A (en) Manufacture of fiber reinforced thermoplastic resin composite tube
JPH0954232A (en) Production of optical cable and apparatus for production therefor
JPH075328A (en) Slot for carrying optical fiber and its production, optical fiber cable using this slot and its production
JPH0692127B2 (en) Method for producing fiber reinforced thermoplastic resin pipe
JP3289042B2 (en) Method for manufacturing high-density optical fiber cable
JPS60179219A (en) Extrusion molding method of external coating to optical fiber made of plastics
JP3104926B2 (en) Manufacturing method of single groove spiral slot
JPH03146328A (en) Manufacture of fiber-reinforced resin pipe
JPS62129806A (en) Optical fiber unit and its manufacture
JPH1090568A (en) Spacer for optical fiber cable and its production and production apparatus therefor
JP2020071264A (en) Optical fiber cable and manufacturing method for optical fiber cable
JPS6318311A (en) Manufacture of spacer for carrying optical fiber
JP3386181B2 (en) Method for manufacturing high-density optical fiber cable
JPH11311729A (en) Optical fiber cable
JPH1090570A (en) Self-supporting type optical cable with slit and its production
JPS6344532B2 (en)
JPS6241014A (en) Extrusion molding of internally corrugated tubular body