JPS634313B2 - - Google Patents

Info

Publication number
JPS634313B2
JPS634313B2 JP55074805A JP7480580A JPS634313B2 JP S634313 B2 JPS634313 B2 JP S634313B2 JP 55074805 A JP55074805 A JP 55074805A JP 7480580 A JP7480580 A JP 7480580A JP S634313 B2 JPS634313 B2 JP S634313B2
Authority
JP
Japan
Prior art keywords
manganese dioxide
battery
chromium sesquioxide
positive electrode
active material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55074805A
Other languages
Japanese (ja)
Other versions
JPS57847A (en
Inventor
Nobuo Eda
Takashi Iijima
Yoshinori Toyoguchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP7480580A priority Critical patent/JPS57847A/en
Publication of JPS57847A publication Critical patent/JPS57847A/en
Publication of JPS634313B2 publication Critical patent/JPS634313B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/502Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese for non-aqueous cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【発明の詳細な説明】 本発明は、リチウムで代表される軽金属を負極
活物質とし、有機電解質などを用いる非水電池の
正極活物質の製造法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing a positive electrode active material for a non-aqueous battery using a light metal such as lithium as a negative electrode active material and an organic electrolyte.

近年、携帯用電子機器の小型化、低消費電力化
が進み、その電源としての電池に対しても小形軽
量で高エネルギー密度をもつことが要求されてお
り、これに対応する電池として、リチウム電池が
注目されており、二酸化マンガン−リチウム電池
もこの中の一つである。
In recent years, portable electronic devices have become smaller and have lower power consumption, and the batteries that serve as their power sources are required to be small, lightweight, and have high energy density. are attracting attention, and manganese dioxide-lithium batteries are one of them.

従来のリチウム電池の正極活物質の二酸化マン
ガンには、通常、含水している電解二酸化マンガ
ンを空気中において水分離脱温度である250℃以
上、好ましくは300〜450℃にて熱処理して脱水
し、結晶構造がγ・β乃至β相のものが用いられ
ている。本来、電気化学的にはγ相の電解二酸化
マンガン活性が高くて好ましいが、このままでは
含水しているため、非水系のリチウム電池には貯
蔵性に難点がある。一方、β相の二酸化マンガン
は、貯蔵性は満足すべきものであるが、活性が低
くて放電々圧が低い難点がある。そこで、上記に
示したような両者の折衷ともいうべき方法で対処
しているのが現状である。
Manganese dioxide, which is the positive electrode active material of conventional lithium batteries, is usually produced by dehydrating electrolytic manganese dioxide containing water by heat-treating it in air at a water removal temperature of 250°C or higher, preferably 300 to 450°C. Those having a crystal structure of γ/β or β phase are used. Originally, electrochemically, the γ-phase electrolytic manganese dioxide has high activity and is preferable, but since it contains water as it is, non-aqueous lithium batteries have a difficulty in storage performance. On the other hand, β-phase manganese dioxide has satisfactory storage properties, but has the drawbacks of low activity and low discharge pressure. Therefore, the current situation is to use a method that can be called a compromise between the two as shown above.

しかし、上記の熱処理した二酸化マンガンをカ
ーボンブラツクなどの導電材やフツ素樹脂などの
結着剤とともに成形して電池に組み立て、60℃程
度の高温に保存すると、電池内部でガスを発生し
て電池総高が大きく増大し、また、電池内部抵抗
も増加するなど電池特性が悪化する不都合があつ
た。電池総高については60℃保存3日後に最大と
なり、以後徐々にふくれは減少し、30日後にはほ
ぼ保存開止時の総高に戻る。一方、内部抵抗は増
加の一途をたどる。
However, if the above-mentioned heat-treated manganese dioxide is molded together with a conductive material such as carbon black or a binder such as fluorine resin, assembled into a battery, and stored at a high temperature of around 60°C, gas is generated inside the battery and the battery becomes damaged. There were disadvantages in that the total height increased significantly and the internal resistance of the battery also increased, resulting in deterioration of battery characteristics. The total height of the battery reaches its maximum after 3 days of storage at 60°C, after which the swelling gradually decreases, and after 30 days it returns to almost the total height at the end of storage. On the other hand, internal resistance continues to increase.

本発明者らは、上記の現象を検討した結果、つ
ぎのことが判明した。すなわち、二酸化マンガン
−リチウム電池の電解液は、一般に過塩素酸リチ
ウムを溶解させた炭酸プロピレンを主体に、低沸
点のエーテルなどを混合して用いている。このう
ち、炭酸プロピレンはエステルであり、特定の条
件下では微量の酸などで分解し、ガス発生が生じ
ることが分かつた。特に高温での保存ではこの傾
向は著しい。
The present inventors investigated the above phenomenon and found the following. That is, the electrolytic solution of a manganese dioxide-lithium battery is generally mainly composed of propylene carbonate in which lithium perchlorate is dissolved, mixed with a low boiling point ether or the like. Of these, propylene carbonate is an ester, and it was found that under certain conditions it decomposes with trace amounts of acid, producing gas. This tendency is particularly noticeable when stored at high temperatures.

二酸化マンガンはイオン交換能を有し、水溶液
中ではプロトンを放出し、液の酸性度を強めるこ
とが知られている。リチウム電池用の二酸化マン
ガンは、高温で熱処理して脱水しているが、その
表面には依然として化学吸着している水酸基を有
している。この点では酸触媒とも云える。
Manganese dioxide has ion exchange ability and is known to release protons in an aqueous solution, increasing the acidity of the solution. Although manganese dioxide for lithium batteries is dehydrated by heat treatment at high temperatures, it still has chemically adsorbed hydroxyl groups on its surface. In this respect, it can also be called an acid catalyst.

電池内の電解液には、電池製造中の雰囲気から
や、正極合剤からの滲出により、数十〜数百ppm
の水分の混入は避けられないのが現状である。
The electrolyte in the battery contains tens to hundreds of ppm due to the atmosphere during battery manufacturing and leaching from the positive electrode mixture.
Currently, the contamination of water is unavoidable.

上記二酸化マンガンとこれら水分の接触によ
り、表面水酸基からプロトンを放出して酸性とな
り、このために保存中に炭酸プロピレンを分解し
て、ガス発生をする一因となつていると考えられ
る。
The contact between the above-mentioned manganese dioxide and this water releases protons from the surface hydroxyl groups and becomes acidic, which is thought to be a factor in decomposing propylene carbonate during storage and generating gas.

以上の知見により、本発明は、上記二酸化マン
ガンの表面水酸基の酸触媒性を失活させる塩基性
質をもつた三二酸化クロム(Cr2O3)を添加混合
し、熱処理することにより、二酸化マンガンの表
面水酸基に基づく固体酸性を中和し失活させるも
のである。このようにして処理した二酸化マンガ
ンを用いて電池を構成すると、60℃で保存しても
ガス発生による電池ふくれは極めて小さくなり、
また、内部抵抗も低く安定し、従来の欠点を解消
することができた。
Based on the above findings, the present invention has disclosed that chromium sesquioxide (Cr 2 O 3 ), which has basic properties that deactivates the acid catalytic properties of the surface hydroxyl groups of manganese dioxide, is added and mixed, and heat-treated. It neutralizes and deactivates solid acidity based on surface hydroxyl groups. When a battery is constructed using manganese dioxide treated in this way, the battery bulges due to gas generation will be extremely small even when stored at 60°C.
In addition, the internal resistance is low and stable, eliminating the drawbacks of the conventional technology.

以下、本発明をその実施例により説明する。 Hereinafter, the present invention will be explained with reference to examples thereof.

二酸化マンガンには、通常の電解二酸化マンガ
ンを用いた。電解二酸化マンガンはγ相であり、
通常5〜6重量%の水分を含有している。この電
解二酸化マンガンに、添加剤である三二酸化クロ
ムを各種の割合で混合し、加熱した。加熱は二酸
化マンガンの脱水と、相変化の抑制ならびに二酸
化マンガン表面の水酸基中のプロトンを失活さ
せ、二酸化マンガンのプレンステツト酸性の中和
反応の促進をかねるものである。
Ordinary electrolytic manganese dioxide was used as manganese dioxide. Electrolytic manganese dioxide is in the γ phase,
It usually contains 5 to 6% water by weight. The electrolytic manganese dioxide was mixed with chromium sesquioxide as an additive in various proportions and heated. Heating dehydrates manganese dioxide, suppresses phase change, deactivates protons in hydroxyl groups on the surface of manganese dioxide, and promotes the neutralization reaction of Prensted acidity of manganese dioxide.

本発明の主旨は、二酸化マンガン表面上の化学
吸着水酸基のプロトンを失活させるために上記の
性質を有する三二酸化クロムを添加して、二酸化
マンガンのブレンステツト酸性を中和させること
にあり、その中和反応は二酸化マンガンと三二酸
化クロムの固体間で行なわれる固相反応であるた
めに、反応速度は比較的小さいものと考えられ
る。そこで、反応速度を大きくし、予め中和反応
をできるだけ進行させておくために加熱による温
度効果が有利となる。ここでは従来の二酸化マン
ガンの熱処理温度と同じ300℃、350℃、400℃、
450℃の4点を採用し、空気中にて5時間上記添
加剤を加えた電解二酸化マンガンを熱処理した。
The gist of the present invention is to neutralize the Brønstedt acidity of manganese dioxide by adding chromium sesquioxide having the above properties in order to deactivate the protons of chemisorbed hydroxyl groups on the surface of manganese dioxide. Since the sum reaction is a solid phase reaction between solid manganese dioxide and chromium sesquioxide, the reaction rate is considered to be relatively low. Therefore, in order to increase the reaction rate and advance the neutralization reaction as much as possible in advance, the temperature effect by heating is advantageous. Here, the heat treatment temperature of conventional manganese dioxide is 300℃, 350℃, 400℃,
Electrolytic manganese dioxide to which the above additives had been added was heat treated in air for 5 hours at 450°C at four points.

なお処理温度は、二酸化マンガンのもつ細孔か
らの水分の完全な離脱と、500℃付近ではγ−
MnO2からMn2O3へ相変化することから300〜450
℃に規定した。
The treatment temperature was set to ensure complete removal of moisture from the pores of manganese dioxide, and to ensure that γ-
300-450 due to the phase change from MnO 2 to Mn 2 O 3
The temperature was set at ℃.

これらの熱処理二酸化マンガン100重量部にア
セチレンブロツク3重量部およびフツ素樹脂結着
剤5重量部を混合して正極合剤とし、第1図に示
すような最大外径20mm、総高1.6mmの電池を構成
した。
A positive electrode mixture was prepared by mixing 100 parts by weight of these heat-treated manganese dioxide with 3 parts by weight of acetylene block and 5 parts by weight of a fluororesin binder, and a positive electrode mixture was prepared with a maximum outer diameter of 20 mm and a total height of 1.6 mm as shown in Figure 1. The battery was constructed.

第1図において、1はステンレス鋼製のケー
ス、2は同材質の封口板、3は封口板の内面に溶
着したグリツドであり、このグリツドに負極のリ
チウム4を圧着している。5は正極で、上記合剤
の所定量をデイスク状に成形、乾燥したものであ
る。6はケース1の内面に溶着したチタン製集電
体、7,8はそれぞれポリプロピレン製不織布の
セパレータと保液材、9はガスケツトである。電
解液には炭酸プロピレンと1・2−ジメトキシエ
タンとの等体積混合溶媒に過塩素酸リチウムを1
モル/の濃度に溶解したものを用いた。
In FIG. 1, 1 is a case made of stainless steel, 2 is a sealing plate made of the same material, and 3 is a grid welded to the inner surface of the sealing plate, and lithium 4 as a negative electrode is pressure-bonded to this grid. 5 is a positive electrode, which is obtained by molding a predetermined amount of the above mixture into a disk shape and drying it. 6 is a titanium current collector welded to the inner surface of the case 1, 7 and 8 are a separator and a liquid retaining material made of polypropylene nonwoven fabric, respectively, and 9 is a gasket. The electrolyte is a mixed solvent of equal volumes of propylene carbonate and 1,2-dimethoxyethane and 1 part of lithium perchlorate.
A solution dissolved at a concentration of mol/molar was used.

第2図は、上記電池の60℃、3日保存後(電池
ふくれ最大時)の電池ふくれを示す。第3図は同
じく60℃で30日間保存後に、20℃において交流
1KHzで測定した電池の内部抵抗を示す。また、
第4図は60℃で30日間保存後に、20℃において
13KΩの負荷で2.0Vまで放電して求めた放電容量
の比較を示す。放電容量は三二酸化クロムを添加
せず上記と同じ条件で熱処理した二酸化マンガン
を用いた電池の放電容量を100%として示した。
Figure 2 shows the battery swelling of the above battery after storage at 60°C for 3 days (maximum battery swelling). Figure 3 shows the same condition after storage at 60℃ for 30 days, followed by exchange at 20℃.
Shows the internal resistance of the battery measured at 1KHz. Also,
Figure 4 shows the temperature at 20℃ after storage at 60℃ for 30 days.
A comparison of the discharge capacity obtained by discharging to 2.0V with a 13KΩ load is shown. The discharge capacity is expressed as 100% of the discharge capacity of a battery using manganese dioxide heat-treated under the same conditions as above without adding chromium sesquioxide.

第2図では、三二酸化クロム無添加系に比して
添加系は電池ふくれが、かなり抑制されており効
果がみられる。第3図でも、高温長期保存にもか
かわらず添加系は無添加系に比して電池内部抵抗
値が低く安定していることが分かる。
In FIG. 2, compared to the system without the addition of chromium sesquioxide, the system with the addition of chromium sesquioxide significantly suppresses battery swelling, which shows the effectiveness of the system. FIG. 3 also shows that the battery internal resistance value of the additive system is lower and more stable than that of the non-additive system despite long-term storage at high temperatures.

さらに、第4図のように、添加系では、放電容
量についても高温長期保存を行なつても劣化は殆
んどなく、三二酸化クロムの添加量が5.0モル%
あたりまでは、従来電池と大差ない。また、三二
酸化クロムは分子量が約152で、比重が約5.2とい
ずれも適当な値にあるため添加量の嵩としても大
きくならず有利である。
Furthermore, as shown in Figure 4, in the additive system, there is almost no deterioration in discharge capacity even after long-term storage at high temperatures, and the amount of chromium sesquioxide added is 5.0 mol%.
So far, it's not much different from conventional batteries. Further, since chromium sesquioxide has a molecular weight of about 152 and a specific gravity of about 5.2, both of which are appropriate values, it is advantageous that the amount added does not become bulky.

第2図〜第4図の電池ふくれ、高温長期保存後
の内部抵抗および放電容量の比較から、添加する
三二酸化クロムの量は0.5〜5.0モル%が適当であ
る。三二酸化クロムの量が0.5モル%未満では電
池ふくれ、長期保存後の内部抵抗の低減は図れな
い。又5.0モル%を超すと内部抵抗の増大等をも
たらす。
From the comparison of battery swelling, internal resistance after long-term storage at high temperature, and discharge capacity in FIGS. 2 to 4, it is found that the appropriate amount of chromium sesquioxide to be added is 0.5 to 5.0 mol %. If the amount of chromium sesquioxide is less than 0.5 mol%, the battery will swell and internal resistance cannot be reduced after long-term storage. Moreover, if it exceeds 5.0 mol%, internal resistance will increase.

また、実施例では負極にリチウムを用いたが、
ナトリウムなど他の軽金属負極を用いる非水電池
にも適用できる。
In addition, although lithium was used for the negative electrode in the example,
It can also be applied to non-aqueous batteries using other light metal negative electrodes such as sodium.

以上のように、本発明は、保存中の電池ふくれ
や内部抵抗の増大を抑制する非水電池用正極活物
質を提供するものである。
As described above, the present invention provides a positive electrode active material for nonaqueous batteries that suppresses battery swelling and increase in internal resistance during storage.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例に用いた電池の縦断面
図、第2図は二酸化マンガンに対する三二酸化ク
ロムの添加割合と電池ふくれの関係を示す図、第
3図は三二酸化クロムの添加割合と電池の内部抵
抗の関係を示す図、第4図は三二酸化クロムの添
加割合と放電容量との関係を示す。
Figure 1 is a longitudinal cross-sectional view of a battery used in an example of the present invention, Figure 2 is a diagram showing the relationship between the addition ratio of chromium sesquioxide to manganese dioxide and battery swelling, and Figure 3 is the addition ratio of chromium sesquioxide Figure 4 shows the relationship between the addition ratio of chromium sesquioxide and the discharge capacity.

Claims (1)

【特許請求の範囲】[Claims] 1 電解液に有機溶媒を用い、二酸化マンガンを
正極活物質とした非水電池の正極活物質製造法で
あつて、二酸化マンガンに、0.5〜5、0モル%
の三二酸化クロムを混合し、これを空気中にて
300〜450℃の温度で熱処理することを特徴とする
非水電池用正極活物質の製造法。
1. A method for producing a positive electrode active material for a nonaqueous battery using an organic solvent as an electrolyte and using manganese dioxide as a positive electrode active material, the method comprising 0.5 to 5.0 mol% of manganese dioxide.
of chromium sesquioxide and put it in the air.
A method for producing a positive electrode active material for a non-aqueous battery, characterized by heat treatment at a temperature of 300 to 450°C.
JP7480580A 1980-06-02 1980-06-02 Manufacture of positive active material for nonaqueous battery Granted JPS57847A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7480580A JPS57847A (en) 1980-06-02 1980-06-02 Manufacture of positive active material for nonaqueous battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7480580A JPS57847A (en) 1980-06-02 1980-06-02 Manufacture of positive active material for nonaqueous battery

Publications (2)

Publication Number Publication Date
JPS57847A JPS57847A (en) 1982-01-05
JPS634313B2 true JPS634313B2 (en) 1988-01-28

Family

ID=13557887

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7480580A Granted JPS57847A (en) 1980-06-02 1980-06-02 Manufacture of positive active material for nonaqueous battery

Country Status (1)

Country Link
JP (1) JPS57847A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0644482B2 (en) * 1983-09-20 1994-06-08 三洋電機株式会社 Non-aqueous electrolyte primary battery
FR2553568B1 (en) * 1983-10-14 1986-04-11 Gipelec ELECTROCHEMICAL GENERATOR WITH NONAQUEOUS ELECTROLYTE, WHOSE POSITIVE ELECTRODE IS BASED ON MANGANESE BIOXIDE

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5217616A (en) * 1975-07-31 1977-02-09 Matsushita Electric Ind Co Ltd Organic electrolyte battery
JPS54103515A (en) * 1978-02-01 1979-08-15 Hitachi Ltd Nonnelectrolytic liquid cell

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5217616A (en) * 1975-07-31 1977-02-09 Matsushita Electric Ind Co Ltd Organic electrolyte battery
JPS54103515A (en) * 1978-02-01 1979-08-15 Hitachi Ltd Nonnelectrolytic liquid cell

Also Published As

Publication number Publication date
JPS57847A (en) 1982-01-05

Similar Documents

Publication Publication Date Title
JPS6324301B2 (en)
US5750282A (en) Process for improving lithium ion cell
US4379817A (en) Organic solvent-treated manganese dioxide-containing cathodes
JP3774315B2 (en) Nonaqueous electrolyte secondary battery
JPH0487156A (en) Nonaqueous electrolyte battery
JPH0368507B2 (en)
JPH0368506B2 (en)
JP4053630B2 (en) Nonaqueous electrolyte secondary battery
CN106129335B (en) A kind of anode preparation method of lithium battery
US4737423A (en) Cathode active material for metal of CFX battery
JP4052695B2 (en) Lithium secondary battery
JPS634313B2 (en)
JP2012169137A (en) Lithium ion secondary battery
JP3176172B2 (en) Lithium secondary battery and method of manufacturing the same
JP4803867B2 (en) Method for producing lithium manganate for positive electrode of lithium battery
JPH0127550B2 (en)
JPS6146948B2 (en)
TWI222232B (en) Lithium polymer secondary battery and process for producing the same
JPH0462764A (en) Nonaqueous electrolyte cell
JP2010073572A (en) Nonaqueous electrolyte battery
JPS62108455A (en) Non aqueous secondary cell
JPS6348393B2 (en)
JPS62119867A (en) Manufacture of active material for positive electrode of battery with organic electrolytic solution
JPH04253161A (en) Manufacture of positive electrode for nonaqueous electrolyte battery
JPH0428171A (en) Nonaqueous electrolytic liquid battery