JPS6348393B2 - - Google Patents

Info

Publication number
JPS6348393B2
JPS6348393B2 JP55123476A JP12347680A JPS6348393B2 JP S6348393 B2 JPS6348393 B2 JP S6348393B2 JP 55123476 A JP55123476 A JP 55123476A JP 12347680 A JP12347680 A JP 12347680A JP S6348393 B2 JPS6348393 B2 JP S6348393B2
Authority
JP
Japan
Prior art keywords
manganese dioxide
lithium
positive electrode
active material
electrode active
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55123476A
Other languages
Japanese (ja)
Other versions
JPS5749164A (en
Inventor
Kohei Yamamoto
Hiroyuki Takayanagi
Makoto Ishikura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Corp
Original Assignee
FDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FDK Corp filed Critical FDK Corp
Priority to JP55123476A priority Critical patent/JPS5749164A/en
Publication of JPS5749164A publication Critical patent/JPS5749164A/en
Publication of JPS6348393B2 publication Critical patent/JPS6348393B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【発明の詳細な説明】 この発明は、リチウムよりなる負極と、この負
極と直接反応しない非水電解質を使用し、また正
極活物質として二酸化マンガンを用いた非水電解
質リチウム電池の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a nonaqueous electrolyte lithium battery using a negative electrode made of lithium, a nonaqueous electrolyte that does not directly react with the negative electrode, and manganese dioxide as a positive electrode active material.

リチウムを負極とし、非水電解質を使用する電
池は、電気陽性度の大きなリチウムを用いるため
に、高電圧を示し、また負極リチウムは軽く理論
的には高エネルギー密度を有する。しかし、この
種の電池は、微量の水分によつても負極が消耗す
るので完全に乾燥された電池構成要素から構成し
なければならない。特に、正極活物質として使用
される二酸化マンガンについては、付着水の他に
多くの結合水を含み、これを完全に除水しておか
なければ上記非水電解質リチウム電池の陽極とし
て使用することができない。正極活物質の二酸化
マンガンが十分に除水されていないと、保存中に
上記負極が徐々に消耗されて電池の保存寿命が悪
くなる等の障害が発生する。そこで、従来におい
ては、二酸化マンガンを250℃から400℃の高温で
長時間加熱処理することにより、その二酸化マン
ガン中に含まれる結合水までも高度に除去するよ
うにしていた。このような高温で長時間の加熱処
理を行なうことによつて、はじめて二酸化マンガ
ンは上記非水電解質電池の正極活物質として使用
することができるようになるのであるが、しか
し、このような長時間の高温加熱処理を行なつた
二酸化マンガンは、除水という目的は達成される
ものの、その加熱処理を経ることによつて二酸化
マンガンの電気化学的活性度が大幅に低下してし
まい、これを上記非水電解質電池の正極活物質と
して使用しても、その放電性能が低下して、高エ
ネルギー密度が特長であるはずの非水電解質リチ
ウム電池の利点が損なわれてしまうという問題が
あつた。
Batteries using lithium as a negative electrode and a non-aqueous electrolyte exhibit high voltage because lithium, which has a high electropositivity, is used, and the negative electrode lithium is light and theoretically has a high energy density. However, this type of battery must be constructed from completely dry battery components because the negative electrode is consumed by even a small amount of moisture. In particular, manganese dioxide, which is used as a positive electrode active material, contains a lot of bound water in addition to attached water, and unless this water is completely removed, it cannot be used as the positive electrode of the non-aqueous electrolyte lithium battery. Can not. If water is not sufficiently removed from the manganese dioxide of the positive electrode active material, the negative electrode is gradually consumed during storage, causing problems such as shortening the battery's shelf life. Therefore, in the past, even the bound water contained in manganese dioxide was removed to a high degree by heat-treating manganese dioxide at a high temperature of 250°C to 400°C for a long time. Manganese dioxide can only be used as a positive electrode active material in the non-aqueous electrolyte battery by performing heat treatment at such high temperatures for a long time. Although the purpose of removing water from manganese dioxide that has been subjected to high-temperature heat treatment is achieved, the electrochemical activity of manganese dioxide is significantly reduced by the heat treatment, and this Even when used as a positive electrode active material in non-aqueous electrolyte batteries, there was a problem in that the discharge performance deteriorated and the advantage of non-aqueous electrolyte lithium batteries, which should be characterized by high energy density, was lost.

これは主に、二酸化マンガンが長時間の高温加
熱処理によつて、その結晶相が、電気化学的活性
度の高いγ相から電気化学的活性度の低いβ相へ
多く移行してしまうことが考えられる。また、電
解二酸化マンガンは、長時間の高温加熱処理によ
つてその結晶歪が徐々に除かれ小さくなるが、こ
のような結晶歪の小さくなつた二酸化マンガンは
電気化学的活性度も低くなつている。従つて、従
来の正極活物質に二酸化マンガンを用いた非水電
解質リチウム電池においては、その二酸化マンガ
ンを高温で長時間加熱するようなことは、放電性
能の低下を招来してしまうので、好ましくない
が、しかし、十分な加熱処理なくしては二酸化マ
ンガン中の結合水を十分に除去することができな
いという、背反する問題があつた。
This is mainly due to the fact that when manganese dioxide is subjected to long-term high-temperature heat treatment, its crystal phase shifts from the γ phase, which has high electrochemical activity, to the β phase, which has low electrochemical activity. Conceivable. In addition, electrolytic manganese dioxide becomes smaller as its crystal strain is gradually removed by long-term high-temperature heat treatment, but manganese dioxide with reduced crystal strain also has lower electrochemical activity. . Therefore, in conventional non-aqueous electrolyte lithium batteries that use manganese dioxide as the positive electrode active material, it is undesirable to heat the manganese dioxide at high temperatures for long periods of time, as this will lead to a decrease in discharge performance. However, there was a contradictory problem in that bound water in manganese dioxide could not be sufficiently removed without sufficient heat treatment.

この発明は、以上のような問題を鑑みてなされ
たもので、その目的とするところは、正極活物質
として使用される二酸化マンガン中の水分、特に
結合水までも十分に除去し得るとともに、その電
気化学的活性度を高く維持して高放電性能を確保
できるようにした非水電解質リチウム電池の製造
方法を提供することにある。
This invention was made in view of the above-mentioned problems, and its purpose is to be able to sufficiently remove water, especially bound water, from manganese dioxide used as a positive electrode active material, and to An object of the present invention is to provide a method for manufacturing a non-aqueous electrolyte lithium battery that maintains high electrochemical activity and ensures high discharge performance.

以下、この発明の実施例を添附図面を参照しな
がら詳述する。
Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings.

第1図は、この発明に係る非水電解質リチウム
電池の製造方法一実施例を示したものである。同
図に示す電池は、共にステンレススチールで形成
された陽極缶1aと陰極缶1bそれに封口ガスケ
ツト1cからなるボタン型電池ケース1内に、陽
極2a、セパレータ2bおよび陰極2cとを積層
してなる発電要素2が装填されている。ここで、
陰極2cはリチウムが使用されている。また、セ
パレータ2bはポリプロピレン不織布等の多孔性
フイルムが使用され、これには非水電解液が含浸
されている。そして、陽極2aをなす正極活物質
としては二酸化マンガンが使用されているが、こ
の二酸化マンガンは、電解二酸化マンガンに、該
二酸化マンガンの結合水量と同程度の固相のリチ
ウム化合物を添加し、このリチウム化合物の融点
以上の350〜450℃で熱処理をして得られたもので
ある。ここで、上記陽極2aの正極活物質につい
てさらに詳しく述べると、そこに使用される二酸
化マンガンは、例えば次のようにして製造され
る。先ず、電解二酸化マンガンの低融点のリチウ
ム化合物、例えば硝酸リチウム(融点261℃)ま
たは水酸化リチウム(融点445℃)を少量配合し、
混合して、このリチウム化合物の融点より高い温
度で数時間加熱処理する。このときのリチウム化
合物の配合量は、上記加熱処理によつて除去され
る結合水量程度とする。例えば、リチウム化合物
として硝酸リチウムを用いる場合は、15mol%配
合して、350℃で焼成する。また、水酸化リチウ
ムの場合は、15mol%配合して、450℃で焼成す
る。
FIG. 1 shows an embodiment of the method for manufacturing a non-aqueous electrolyte lithium battery according to the present invention. The battery shown in the figure is a power generating device in which an anode 2a, a separator 2b, and a cathode 2c are stacked in a button-type battery case 1 consisting of an anode can 1a, a cathode can 1b, and a sealing gasket 1c, both of which are made of stainless steel. Element 2 is loaded. here,
Lithium is used for the cathode 2c. Moreover, a porous film such as a polypropylene nonwoven fabric is used as the separator 2b, and this is impregnated with a non-aqueous electrolyte. Manganese dioxide is used as the positive electrode active material forming the anode 2a, and this manganese dioxide is produced by adding a solid phase lithium compound to electrolytic manganese dioxide in an amount equivalent to the amount of bound water in the manganese dioxide. It is obtained by heat treatment at 350 to 450°C, which is above the melting point of the lithium compound. Here, to describe the positive electrode active material of the above-mentioned anode 2a in more detail, the manganese dioxide used therein is produced, for example, as follows. First, a small amount of a low melting point lithium compound such as lithium nitrate (melting point 261°C) or lithium hydroxide (melting point 445°C) is mixed with electrolytic manganese dioxide.
The mixture is mixed and heated at a temperature above the melting point of the lithium compound for several hours. The amount of the lithium compound blended at this time is approximately the amount of bound water removed by the heat treatment. For example, when using lithium nitrate as the lithium compound, it is mixed at 15 mol% and fired at 350°C. In addition, in the case of lithium hydroxide, it is mixed at 15 mol% and fired at 450°C.

以上のようにして得られた二酸化マンガンを正
極活物質として第1図に示した形状のボタン型電
池(外径12mm、高さ5mm)のものを構成し、これ
を15KΩの負荷への連続放電試験を行なつたとこ
ろ、第2図のグラフ中の曲線Aで示す如き放電曲
線が得られた。このとき、比較のために、電解二
酸化マンガンを350℃8時間加熱処理したものを
正極活物質として従来の非水電解質リチウム電池
の放電試験を同一条件によつて行なつたところ、
第2図のグラフ中の曲線Bに示すような放電曲線
が得られた。
A button-type battery (outer diameter 12 mm, height 5 mm) as shown in Figure 1 was constructed using the manganese dioxide obtained as above as a positive electrode active material, and this was continuously discharged into a load of 15 KΩ. As a result of the test, a discharge curve as shown by curve A in the graph of FIG. 2 was obtained. At this time, for comparison, a discharge test of a conventional non-aqueous electrolyte lithium battery was conducted under the same conditions using electrolytic manganese dioxide heated at 350°C for 8 hours as the positive electrode active material.
A discharge curve as shown by curve B in the graph of FIG. 2 was obtained.

この2つの試験結果の比較からも明らかなよう
に、この発明による非水電解質リチウム電池は、
その正極活物質を構成している二酸化マンガン
に、その結合水量と同程度の固相のリチウム化合
物を添加し、このリチウム化合物の融点以上の
350〜450℃で熱処理したものを用いることによ
り、その放電性能が従来のものよりも大幅に改善
されている。これは、正極活物質の二酸化マンガ
ンの電気化学的活性度が高められていることによ
る。このようなすぐれた効果が現われる原因とし
ては、リチウムイオンを予め二酸化マンガン中に
分散させておくことにより、放電反応の際のリチ
ウムイオンの固相内拡散が助長されるため考えら
れる。つまり、二酸化マンガン結晶格子内に入り
込んだリチウムイオンは、Li+として離れやすく、
格子内を自由に動きやすい状態になつている。こ
の動きやすいLi+を媒介としてLi+の固相拡散がよ
り円滑に行なえるようになつたためと考えられ
る。すなわち、これにより二酸化マンガン中の
Li+の固相拡散抵抗が小さくなり、放電過電圧が
減少して、これにより第2図に示した如く放電性
能が大幅に向上させられるものと考えられる。
As is clear from the comparison of these two test results, the non-aqueous electrolyte lithium battery according to the present invention
A solid phase lithium compound is added to the manganese dioxide that constitutes the positive electrode active material, and the amount of solid phase lithium compound is the same as the amount of bound water.
By using a material heat-treated at 350 to 450°C, its discharge performance is significantly improved over conventional products. This is due to the increased electrochemical activity of manganese dioxide, which is the positive electrode active material. The reason for this excellent effect is thought to be that by dispersing lithium ions in manganese dioxide in advance, diffusion of lithium ions in the solid phase during the discharge reaction is facilitated. In other words, lithium ions that have entered the manganese dioxide crystal lattice are easily separated as Li + .
It is easy to move freely within the grid. This is thought to be due to the fact that solid phase diffusion of Li + can now be carried out more smoothly using this mobile Li + as a medium. In other words, this results in
It is thought that the solid phase diffusion resistance of Li + becomes smaller, the discharge overvoltage decreases, and thereby the discharge performance is greatly improved as shown in FIG. 2.

以上のようにして、放電性能が向上させられる
のであるが、ここでさらに注目すべきは、このよ
うにして電気化学的活性度が高められた二酸化マ
ンガンが、350〜450℃の高温度でもつて長時間加
熱処理しても得られるということで、これによ
り、上記正極活物質の二酸化マンガンは、その電
気化学的活性度が高められるとともに、非水電解
質リチウム電池の構成要素として必要な乾燥度も
達成せしめられるようになる。
The discharge performance can be improved in the above manner, but what is even more noteworthy here is that manganese dioxide, whose electrochemical activity has been increased in this way, remains stable even at high temperatures of 350 to 450 degrees Celsius. Since it can be obtained even after long-term heat treatment, the above-mentioned positive electrode active material, manganese dioxide, not only increases its electrochemical activity but also has the dryness required as a component of a non-aqueous electrolyte lithium battery. You will be able to achieve it.

以上のように、この発明による非水電解質リチ
ウム電池の製造方法は、二酸化マンガンにその結
合水量と同程度の固相のリチウム化合物を添加
し、このリチウム化合物の融点以上の350〜450℃
で熱処理して得られる二酸化マンガンを正極活物
質とし、この正極活物質と、非水電解質と、リチ
ウムよりなる負極とにより構成されることによ
り、その正極活物質の二酸化マンガンは、十分に
除水され得るようになるとともに、その電気化学
的活性度が高められ、従来より一層すぐれた高放
電性能および保存性能等を両立して達成すること
ができる。
As described above, the method for manufacturing a non-aqueous electrolyte lithium battery according to the present invention involves adding a solid phase lithium compound to manganese dioxide in an amount equivalent to its bound water content, and heating the lithium compound at 350 to 450°C above the melting point of the lithium compound.
Manganese dioxide obtained by heat treatment is used as a positive electrode active material, and the positive electrode active material, a non-aqueous electrolyte, and a negative electrode made of lithium are used as the positive electrode active material. At the same time, its electrochemical activity is increased, and it is possible to achieve both high discharge performance and storage performance that are better than before.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明に係る電池の一実施例を示す
断面図、第2図はこの発明による電池Aと従来の
同型の電池Bのそれぞれの放電曲線を比較して示
すグラフである。 1……電池ケース、2……発電要素、2a……
陽極、2b……セパレータ、2c……陰極。
FIG. 1 is a sectional view showing an embodiment of a battery according to the present invention, and FIG. 2 is a graph showing a comparison of discharge curves of a battery A according to the present invention and a conventional battery B of the same type. 1...Battery case, 2...Power generation element, 2a...
Anode, 2b... separator, 2c... cathode.

Claims (1)

【特許請求の範囲】[Claims] 1 二酸化マンガンに、該二酸化マンガンの結合
水量と同程度の固相のリチウム化合物を添加し、
このリチウム化合物の融点以上の350〜450℃で熱
処理をして得られる二酸化マンガンからなる正極
活物質と、非水電解質と、リチウムからなる負極
とで構成することを特徴とする非水電解質リチウ
ム電池の製造方法。
1 Adding a solid phase lithium compound to manganese dioxide in an amount equivalent to the amount of bound water in the manganese dioxide,
A nonaqueous electrolyte lithium battery comprising a positive electrode active material made of manganese dioxide obtained by heat treatment at 350 to 450°C above the melting point of this lithium compound, a nonaqueous electrolyte, and a negative electrode made of lithium. manufacturing method.
JP55123476A 1980-09-08 1980-09-08 Nonaqueous electrolytic lithium cell Granted JPS5749164A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP55123476A JPS5749164A (en) 1980-09-08 1980-09-08 Nonaqueous electrolytic lithium cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP55123476A JPS5749164A (en) 1980-09-08 1980-09-08 Nonaqueous electrolytic lithium cell

Publications (2)

Publication Number Publication Date
JPS5749164A JPS5749164A (en) 1982-03-20
JPS6348393B2 true JPS6348393B2 (en) 1988-09-28

Family

ID=14861567

Family Applications (1)

Application Number Title Priority Date Filing Date
JP55123476A Granted JPS5749164A (en) 1980-09-08 1980-09-08 Nonaqueous electrolytic lithium cell

Country Status (1)

Country Link
JP (1) JPS5749164A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0746608B2 (en) * 1986-10-30 1995-05-17 三洋電機株式会社 Non-aqueous secondary battery
JPH03122968A (en) * 1989-10-05 1991-05-24 Mitsui Mining & Smelting Co Ltd Manufacture of manganese dioxide for lithium primary battery

Also Published As

Publication number Publication date
JPS5749164A (en) 1982-03-20

Similar Documents

Publication Publication Date Title
US5750282A (en) Process for improving lithium ion cell
JPS6324301B2 (en)
US3060256A (en) Low temperature dry cell
JPS6348393B2 (en)
JP4803867B2 (en) Method for producing lithium manganate for positive electrode of lithium battery
US3836403A (en) Lithium batteries and method of preparing a positive electrode material therefor
JP3110738B2 (en) Non-aqueous electrolyte secondary battery
JPH0373108B2 (en)
JPS62119867A (en) Manufacture of active material for positive electrode of battery with organic electrolytic solution
JPH0495362A (en) Nonaqueous electrolytic battery
JPS6160540B2 (en)
JPS62139260A (en) Manufacture of positive active material for organic electrolyte battery
JPS6146948B2 (en)
JPH067483B2 (en) Non-aqueous electrolyte battery
JP2002208402A (en) Carbonaceous negative electrode material for lithium secondary battery and its manufacturing method
JPH0462764A (en) Nonaqueous electrolyte cell
JP2001023615A (en) Flat nonaqueous electrolyte secondary battery
JPS62108455A (en) Non aqueous secondary cell
JP2925665B2 (en) Non-aqueous electrolyte battery
JPH1064541A (en) Nonaqueous electrolyte secondary battery
JPH0127550B2 (en)
JPH07130361A (en) Nonaqueous electrolyte battery
JP2594827B2 (en) Method for producing electrolytic manganese dioxide
JPS58220367A (en) Nonaqueous electrolyte battery
JPS63143759A (en) Rechargeable electrochemical battery