JPS6341087A - Manufacture of superconductive thin film - Google Patents

Manufacture of superconductive thin film

Info

Publication number
JPS6341087A
JPS6341087A JP61184181A JP18418186A JPS6341087A JP S6341087 A JPS6341087 A JP S6341087A JP 61184181 A JP61184181 A JP 61184181A JP 18418186 A JP18418186 A JP 18418186A JP S6341087 A JPS6341087 A JP S6341087A
Authority
JP
Japan
Prior art keywords
thin film
compound
substrate
lattice constant
thermal expansion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61184181A
Other languages
Japanese (ja)
Inventor
Hidefumi Asano
秀文 浅野
Keiichi Tanabe
圭一 田辺
Yujiro Kato
加藤 雄二郎
Osamu Michigami
修 道上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP61184181A priority Critical patent/JPS6341087A/en
Publication of JPS6341087A publication Critical patent/JPS6341087A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/10Junction-based devices
    • H10N60/12Josephson-effect devices
    • H10N60/124Josephson-effect devices comprising high-Tc ceramic materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/01Manufacture or treatment
    • H10N60/0268Manufacture or treatment of devices comprising copper oxide
    • H10N60/0296Processes for depositing or forming copper oxide superconductor layers
    • H10N60/0576Processes for depositing or forming copper oxide superconductor layers characterised by the substrate
    • H10N60/0604Monocrystalline substrates, e.g. epitaxial growth

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)

Abstract

PURPOSE:To obtain a high Tc compound thin film having increased superconductivity by a method wherein, after an insulating single-crystal thin film whose lattice constant closely resembles the lattice constant of a superconductive thin film bas been deposited in advance on an insulating substrate whose coefficient of thermal expansion closely resembles the coefficient of thermal expansion of the superconductive thin film, a superconductive thin film of high critical temperature is grown epitaxially. CONSTITUTION:When a high critical temperature (Tc) compound superconductive thin film is manufactured for use as a superconductive device including a Josephson device, a substrate is selected on the basis of the coefficient of thermal expansion. An insulating thin film is selected on the basis of the crystal system and the a0, and is deposited on the substrate. Then, a high Tc compound thin film is formed. In order that the high Tc compound thin film can be grown epitaxially, the insulating thin film must be deposited when the lattice constant a0 is close to the lattice constant of a high Tc compound of the cubic crystallinity and its state is singlecrystalline. In this case, the deviation in the matching characteristic of the lattice constant must be kept within 10%.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、ジョセフソン素子を始めとする超伝導デバイ
スに用いる高い臨界温度(以下、TCと略記する)の化
合物超伝導薄膜の作製方法に関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a method for producing a compound superconducting thin film with a high critical temperature (hereinafter abbreviated as TC) for use in superconducting devices such as Josephson elements. .

〔従来の技術〕[Conventional technology]

超伝導デバイスは高速スイッチング素子、高感度検波素
子、高感度磁束計として実用化が期待されている。これ
らは、絶縁体基板上に形成された超伝導薄膜を用いて構
成されるため、品質の良い超伝導薄膜の作製が、高性能
なデバイス実現の鍵である。
Superconducting devices are expected to be put to practical use as high-speed switching elements, high-sensitivity detection elements, and high-sensitivity magnetometers. These devices are constructed using superconducting thin films formed on insulating substrates, so the production of high-quality superconducting thin films is the key to realizing high-performance devices.

従来、かかる超伝導薄膜の作製方法としては、熱酸化シ
リコン、あるいはサファイア(Atgos)を基板とし
て用いて、その上にスパッタリング、電子ビーム蒸着等
によって目的とする超伝導薄膜を堆積する方法が知られ
ている。
Conventionally, known methods for producing such superconducting thin films include using thermally oxidized silicon or sapphire (Atgos) as a substrate and depositing the desired superconducting thin film thereon by sputtering, electron beam evaporation, etc. ing.

しかし、超伝導薄膜として、Nt)、V化合物からなる
高Tcの化合物薄膜を用いる場合には、従来の方法では
、次のような問題点が存在した。
However, when using a high Tc compound thin film made of Nt) and V compounds as a superconducting thin film, the following problems existed in the conventional method.

第一は、その超伝導薄膜には、膜厚方向での超伝導特性
の不均一性が存在することである。この不均一性の原因
は、これらの薄膜の堆積初期には、薄膜と基板との結晶
構造の違い、格子定数a6の不整合等により、aoが本
来の値からずれ、Tc  の低い層が成長するためであ
る。例えば、既知物質中で最高のTc(〜22K)を示
すNb3[有]全サファイア基板上に形成した場合、膜
厚1000A以下ではa(1が人き(Tcは15に以下
となる。膜厚増加と共に順次aoは本来の値に近づき、
TCは増加し、膜厚が200OAの所で、a6  が5
.14A、Tcが20〜23にの高TcのNb3Geと
なる。したがって、高TcのN1)3()8膜では、基
板界面から約100OAの厚さまで低Tc層が存在する
。この様な膜厚方向の特性の不均一性は、Nb3Geに
限らず、はとんどの高Tc化合物に見られる現象である
。第二は、基板と高Tc化合物薄膜との熱膨張係数の差
に由来する内部応力によりその超伝導特性が劣化するこ
とである。一般に、熱膨張係数の差に由来する内部応力
σは次式で与えられる。
The first is that the superconducting thin film has non-uniformity in superconducting properties in the film thickness direction. The reason for this non-uniformity is that in the initial stage of deposition of these thin films, ao deviates from its original value due to differences in the crystal structure between the thin film and the substrate, mismatch in lattice constant a6, etc., and a layer with a low Tc grows. This is to do so. For example, when formed on an all-sapphire substrate with Nb3, which has the highest Tc (~22K) among known substances, if the film thickness is less than 1000A, a(1 is 1) (Tc is less than 15.Film thickness As it increases, ao gradually approaches its original value,
TC increases, and when the film thickness is 200OA, a6 becomes 5
.. 14A, Nb3Ge with a high Tc of 20 to 23. Therefore, in the high Tc N1)3()8 film, a low Tc layer exists from the substrate interface to a thickness of about 100 OA. Such non-uniformity of properties in the film thickness direction is a phenomenon observed not only in Nb3Ge but also in most high Tc compounds. Second, the superconducting properties are degraded due to internal stress resulting from the difference in thermal expansion coefficient between the substrate and the high Tc compound thin film. Generally, the internal stress σ derived from the difference in thermal expansion coefficients is given by the following equation.

σ=(αデーα8)(T−Tm月七/(1−νf月  
(1)ここで、α1、α8はそれぞれ薄膜、基板の熱膨
張係数、Tは薄膜形成時の温度、Tmは応力全測定する
温度(通常は室温)、Ef1νfはそれぞれ薄膜のヤン
グ率、ボアンン比である。
σ = (α day α8) (T-Tm month 7/(1-νf month
(1) Here, α1 and α8 are the coefficients of thermal expansion of the thin film and the substrate, respectively, T is the temperature during thin film formation, Tm is the temperature at which the total stress is measured (usually room temperature), Ef1νf is the Young's modulus of the thin film, and the Boann ratio, respectively. It is.

例えば、サファイア基板(α81:5,7X10−’/
℃)及びシリコン基板(αs2= 2.3 X 10−
’/ ℃)上に成長温度900℃で作製したNb5()
e薄膜の応力(それぞれσ1.σ2)は り/り1=巨αf−α82)/(αデーα81)1とな
る。つまり、Nb3Geとの熱膨張係数の差が小さいサ
ファイアに比べて、その差が大きいシリコン基板では、
約12倍の応力が生じる。特に、高Tc化合物では膜形
成温度として600〜900℃という高温が必要なため
、(1)式から分るように応力値がより大きくなる。こ
の基板による応力の違いにより、シリコン基板上に形成
したNb3Ge薄膜(3000A)は、サファイア基板
上の膜(Tc=22K )  よりかなり低いTc(<
20K)k示すことが知られている。このような応力に
よる超伝導特性の劣化は、はとんどの高Tc化合物薄膜
に見られるものである。
For example, sapphire substrate (α81:5,7X10-'/
°C) and silicon substrate (αs2=2.3×10−
Nb5 ( ) fabricated at a growth temperature of 900 °C on
e Stress of the thin film (respectively σ1.σ2) beam / beam 1 = giant αf - α82) / (α day α81) 1. In other words, compared to sapphire, which has a small difference in thermal expansion coefficient from Nb3Ge, a silicon substrate has a large difference in thermal expansion coefficient.
Approximately 12 times as much stress is generated. In particular, in the case of a high Tc compound, a high temperature of 600 to 900° C. is required as a film forming temperature, so that the stress value becomes larger as can be seen from equation (1). Due to this difference in stress depending on the substrate, the Nb3Ge thin film (3000A) formed on the silicon substrate has a much lower Tc (<
20K) k. Such deterioration of superconducting properties due to stress is seen in most thin films of high Tc compounds.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

以上説明したような不均一で劣化した超伝導特性を有す
る高Tc化合物薄膜を超伝導素子の電極として用いても
高性能な超伝導素子を得ることは困難であった。
Even if a high Tc compound thin film having non-uniform and deteriorated superconducting characteristics as described above is used as an electrode of a superconducting device, it is difficult to obtain a high-performance superconducting device.

本発明の目的は、超伝導デバイスに用いる高Tc  化
合物薄膜において超伝導性、均一性が劣化するという従
来技術の欠点を解決し、超伝導性、均一性の大幅に向上
した高Tc化合物薄膜を提供することにある。
The purpose of the present invention is to solve the drawback of the conventional technology that superconductivity and uniformity deteriorate in high Tc compound thin films used in superconducting devices, and to provide high Tc compound thin films with significantly improved superconductivity and uniformity. It is about providing.

〔問題点を解決するための手段〕[Means for solving problems]

本発明を概説すれば、本発明は、Nb化合物あるいはV
化合物からなる高いTci有するA15型構造超伝導薄
膜の作製方法において、その超伝導薄膜の熱膨張係数と
近似する熱膨張係数を有する絶縁体を基板として用いて
、その基板上にその超伝導薄膜の格子定数と近似する格
子定数を有する絶縁体の単結晶薄膜をあらかじめ堆積さ
せた後、該高Tcの超伝導薄膜の単結晶をエピタキシャ
ル成長させることによp1高Tc化合物薄膜の超伝導性
を改善することを最も主要な特徴とする。
To summarize the present invention, the present invention relates to Nb compounds or V
In a method for producing an A15 type structural superconducting thin film made of a compound and having a high Tci, an insulator having a thermal expansion coefficient close to that of the superconducting thin film is used as a substrate, and the superconducting thin film is deposited on the substrate. Improving the superconductivity of the p1 high Tc compound thin film by depositing in advance a single crystal thin film of an insulator having a lattice constant similar to the lattice constant, and then epitaxially growing a single crystal of the high Tc superconducting thin film. This is the most important feature.

高品質で、均一性の優れた高Tc化合物薄膜金作友する
ためには、基板として熱膨張係数、結晶糸、aoのすべ
てが高Tc化合物薄膜と合致した絶縁体金遣べば良い。
In order to produce a high-Tc compound thin film with high quality and excellent uniformity, it is sufficient to use an insulating material as a substrate whose coefficient of thermal expansion, crystalline thread, and ao all match those of the high-Tc compound thin film.

しかし、表1に示すように、市販の基板にはこれらの条
件をすべて満足するものは存在しない。本発明では、熱
膨張係数を基準に、基板を選択する。そして、結晶系、
ao  t−基準に、絶縁体の薄膜を選び、これを、そ
の基板上に堆積する。その次に、目的とする高Tc化合
物薄膜を形成する。ここで、高Tc化合物薄膜がエピタ
キシャル成長するためには、絶縁体薄膜は、立方晶系で
、高Tc化合物の句に近いaot−持ち、かつ単結晶の
状態で堆積されなければならない。この場合、格子定数
の整合性は出来るだけ高いことが望ましく、そのずれは
10チ以内でなければならない。表2に、主要な高Tc
 化合物薄膜(立方晶系、A15型構造)の熱膨張係数
、”sTQ’!:示す。例えば、高Tc化合物薄膜とし
てNb1Ge (α= lx、 D X j D−’/
 Tl:、ao =a14A)を選ぶ場合、基板として
Atzos (α= 5.7 x 1 o−6/r: 
)を、基板上に堆積する絶縁体薄膜としてEuO(aO
= 5.14 A ) k選ぶ。すると、Nb5Gθ薄
膜は、基板(Attos )との熱膨張係数の差が小さ
いため、その内部応力は小さくなる。また、Nb3Ge
薄膜は結晶系、aoの一致した絶縁体薄膜EuO上に堆
積されるため、エピタキシャル成長が可能となる。
However, as shown in Table 1, there is no commercially available substrate that satisfies all of these conditions. In the present invention, a substrate is selected based on the coefficient of thermal expansion. And crystal system,
On an ao t- basis, a thin film of insulator is selected and deposited on the substrate. Next, a desired high Tc compound thin film is formed. Here, in order for the high Tc compound thin film to grow epitaxially, the insulator thin film must be deposited in a cubic system, an aot- similar to that of the high Tc compound, and in a single crystal state. In this case, it is desirable that the matching of the lattice constants be as high as possible, and the deviation must be within 10 inches. Table 2 shows the major high Tc
The thermal expansion coefficient of a compound thin film (cubic system, A15 type structure), "sTQ'!" is shown. For example, as a high Tc compound thin film, Nb1Ge (α= lx, D
Tl:, ao = a14A), the substrate is Atzos (α = 5.7 x 1 o-6/r:
) is used as the insulator thin film deposited on the substrate.
= 5.14 A) Choose k. Then, since the Nb5Gθ thin film has a small difference in thermal expansion coefficient from the substrate (Attos), its internal stress becomes small. Also, Nb3Ge
Since the thin film is deposited on the insulating thin film EuO with the same crystal system and ao, epitaxial growth is possible.

表  1 絶縁体  α(×10″″’/aθg) 結晶系 ao
(A)At203      5.7     六方晶
  −AtN        五6    六方晶  
−BeO7,0六方晶  − Mgo       1五〇    立方晶  4.2
0S1       2.2     立方晶  4.
9Z r02      11L O立方晶  5.0
7EuO115立方晶  5.14 Y203       9.3     立方晶  5
.29衣  2 高Tc化合物  α(Xf O−’/dθg )   
a6 (A)   TOVsSi          
5        4.72   17.IV3()a
          5       4.81   
16.5Nb38n          6     
    a29   1a3Nb3At       
  6        5.18   1a9N’b3
Ga          6       5.17 
  2α2Nb3()e          6   
     5.14   21このよプにすれば、高T
c化合物薄膜のエピタキシャル成長あるいは単結晶化が
可能である点が従来技術と異なる。
Table 1 Insulator α (×10″″’/aθg) Crystal system ao
(A) At203 5.7 hexagonal -AtN 56 hexagonal
-BeO7,0 hexagonal crystal - Mgo 150 cubic crystal 4.2
0S1 2.2 Cubic crystal 4.
9Z r02 11L O cubic crystal 5.0
7EuO115 cubic crystal 5.14 Y203 9.3 cubic crystal 5
.. 29 Coating 2 High Tc compound α(Xf O-'/dθg)
a6 (A) TOVsSi
5 4.72 17. IV3()a
5 4.81
16.5Nb38n 6
a29 1a3Nb3At
6 5.18 1a9N'b3
Ga 6 5.17
2α2Nb3()e 6
5.14 21 If you make it like this, high T
This method differs from the conventional technology in that epitaxial growth or single crystallization of a c-compound thin film is possible.

〔実施例〕〔Example〕

以下に、実施例と共に本発明を具体的に祝明するが、本
発明はこれら実施例に限定されない。
The present invention will be specifically celebrated below along with Examples, but the present invention is not limited to these Examples.

実施例1 サファイア(人1zos)の単結晶基板(ランダム方位
)′t−用意し、まずY2O3薄膜をYターゲットを用
いた反応性rfマグネトロンスパッタ法によフ200O
A厚堆積した。その堆積条件は、スパッタガス組成がA
r+20%0:、ガス圧が5 Pa。
Example 1 A single crystal substrate (random orientation) of sapphire (1zos) was prepared, and a Y2O3 thin film was first sputtered at 200O
A thick layer was deposited. The deposition conditions are such that the sputtering gas composition is A.
r+20%0:, gas pressure is 5 Pa.

電力がsoow、基板温度が室温であった。次に、N1
)3Sn薄膜k 、Ntlo、yIsSmo、25の合
金ターゲットを用いてDCffグネトロンスバッタ法に
より、膜厚200〜4oooXで形成した。その形成条
件は、ガス圧(Ar)が25Pa、放電電流が1.OA
1基板温度が900℃であった。
The power was low and the substrate temperature was room temperature. Next, N1
) 3Sn thin film k, Ntlo, yIsSmo, was formed with a film thickness of 200 to 4oooX by the DCff gnetron scattering method using an alloy target of 25. The formation conditions were a gas pressure (Ar) of 25 Pa and a discharge current of 1. OA
One substrate temperature was 900°C.

第1図に本発明で作製したNb3Sn薄膜のTcの膜厚
依存性を、従来法の結果と共にTc(K、縦軸)と膜厚
(A%横軸)との関係のグラフとして示す。
FIG. 1 shows the film thickness dependence of Tc of the Nb3Sn thin film produced by the present invention as a graph of the relationship between Tc (K, vertical axis) and film thickness (A% horizontal axis) together with the results of the conventional method.

第1図から、本発明で作製したNb3Snでは1000
A以下の薄い膜厚でもTcは15に以上と高く、従来法
で作製したNb3Sn薄膜に比較し、Tc  の膜厚依
存性が小さいことが分った。これは、堆積初期から、結
晶性の良いNt)38nがエピタキシャル成長している
ことを示すものである。
From FIG. 1, it can be seen that the Nb3Sn produced according to the present invention
Even with a thin film thickness of A or less, Tc was as high as 15 or more, and it was found that the dependence of Tc on film thickness was smaller than that of the Nb3Sn thin film produced by the conventional method. This indicates that Nt)38n with good crystallinity was epitaxially grown from the initial stage of deposition.

実施例2 Bθ0基板を用意し、まず500AのS1薄膜を蒸着法
により基板温度900℃で堆積した。次に、蒸着法によ
りv3s i、V3 Ga薄膜−@2aaa人で形成し
た。その基板温度が800℃であった。
Example 2 A Bθ0 substrate was prepared, and first, a 500A S1 thin film was deposited by vapor deposition at a substrate temperature of 900°C. Next, a v3s i, V3 Ga thin film-@2aaa film was formed by a vapor deposition method. The substrate temperature was 800°C.

また、従来法により、すなわちBeO基板上に直接堆積
L テ、膜厚2000 A Ovssi、V3Ga薄膜
を作製した。得られた薄膜の超伝導特性全表3に示す。
In addition, a V3Ga thin film with a film thickness of 2000 Å was fabricated by direct deposition on a BeO substrate using a conventional method. The superconducting properties of the obtained thin film are shown in Table 3.

ここでTo。、Tc1、Tc、けそれぞれ超伝導転移の
開始点、中間点、終了点であジ、ΔTc+″j転移幅(
” Tea  T(!@ )である。従来法で作製し九
膜では、TCが全体に低く、ΔTcが広く、膜の均一性
が悪いのに対し、本発明によシ作製した膜では、TCが
全体に高く、ΔTcがα2にと非常に狭く、膜の均一性
が優れていることが分る。
Here To. , Tc1, Tc, respectively at the start, middle, and end points of the superconducting transition, ΔTc+''j transition width (
”Tea T(!@).The nine films prepared by the conventional method have low TC, wide ΔTc, and poor film uniformity, whereas the films prepared by the present invention have low TC. It can be seen that ΔTc is high throughout, ΔTc is very narrow to α2, and the film has excellent uniformity.

表 3 化合物    Tco (FQ  Tc+a QQ  
Tco (K;l  ΔTc(KJV3Si本発明  
17.1  17.0  16.?   CL2従米品
  1&8  1.0  14.8  2.0V3()
a本発明  1&5  1/h4  16.3   [
L2従従来  1/i、4  15.8  1&52.
9実施例3 サファイア(At20s )の単結晶基板(ランダム方
位)を用意し、EuO薄膜をEuターゲットを用いた反
応性rfマグネトロンスパッタ法により4000A厚堆
積した。その堆積条件は、スパッタガス組成がAr+1
0%02、ガス圧が2 Pa、電力が200W、基板温
度が700℃であった。
Table 3 Compound Tco (FQ Tc+a QQ
Tco (K; l ΔTc (KJV3Si invention
17.1 17.0 16. ? CL2 standard product 1&8 1.0 14.8 2.0V3()
aThis invention 1&5 1/h4 16.3 [
L2 conventional 1/i, 4 15.8 1&52.
9 Example 3 A sapphire (At20s) single crystal substrate (random orientation) was prepared, and a EuO thin film was deposited to a thickness of 4000 Å by reactive RF magnetron sputtering using an Eu target. The deposition conditions are such that the sputtering gas composition is Ar+1.
0%02, gas pressure was 2 Pa, power was 200 W, and substrate temperature was 700°C.

次に、Nb5G!3. Nb3Ga、 N1)3SHの
各薄膜を、蒸着法によシ膜厚3000Aで形成した。そ
の基板温度が900℃であった。また、従来法によシ、
すなわちサファイア(kkos )の単結晶基板(ラン
ダム方位)上に直接堆積して、膜厚3000AのNb3
Ge 、 Nb3Ga、 Nb3Snの薄膜を形成した
Next, Nb5G! 3. Each thin film of Nb3Ga and N1)3SH was formed to a thickness of 3000 Å by a vapor deposition method. The substrate temperature was 900°C. In addition, according to the conventional method,
That is, Nb3 with a thickness of 3000 Å was deposited directly on a sapphire (kkos) single crystal substrate (random orientation).
Thin films of Ge, Nb3Ga, and Nb3Sn were formed.

その基板温度が900℃であった。これらの薄膜を用い
てトンネル型ジョセフソン素子を作製した。素子構造は
、下部電極がNb3Ge、 Nb3Ga。
The substrate temperature was 900°C. A tunnel-type Josephson device was fabricated using these thin films. The device structure has a lower electrode of Nb3Ge and Nb3Ga.

Nb3Sn、)ンネルバリア層がNb2os 、  上
部電極がpbであった。素子の特性を表4に示す。なお
、表中、vaはギャップ電圧(mV)、Vl、lは品質
パラメータ(mV)(=2mVでのトンネル抵抗X最大
ジョセフソン電流)である。表4から明らかなように、
従来法で作製した薄膜を用いた素子では、Vaは小さく
、Vaは10mV以下と低品質であるのに対して、本発
明で作製した薄膜を用いた素子では、vlは大きく、v
lは40mV以上と高品質であることが分る。
Nb3Sn,) The channel barrier layer was Nb2os, and the upper electrode was pb. Table 4 shows the characteristics of the device. In the table, va is the gap voltage (mV), Vl, l are the quality parameters (mV) (=tunnel resistance x maximum Josephson current at 2 mV). As is clear from Table 4,
In the device using the thin film made by the conventional method, Va is small and Va is 10 mV or less, which is low quality, whereas in the device using the thin film made by the present invention, vl is large and v
It can be seen that l is 40 mV or more, which indicates high quality.

表 4 化合物       ■、(mV)■Ia(mV)Nb
3Ge 本発明    5.0    45従来品  
  &85 Nb3Ga  本発明    !i、5    52従
来品    3.15 Nb3 S n 本発明    ム358従来品   
 2.88 これらの結果から明かなように、本発明で作製した高T
c化合物薄膜は、従来法で作製した薄膜に比べて超伝導
特性の均一性に著しい向上が見られた。
Table 4 Compound ■, (mV) ■Ia (mV) Nb
3Ge Invention 5.0 45 Conventional product
&85 Nb3Ga This invention! i, 5 52 conventional product 3.15 Nb3 S n Invention Mu358 conventional product
2.88 As is clear from these results, the high T
The uniformity of superconducting properties of the c compound thin film was significantly improved compared to thin films produced by conventional methods.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によれば、高Tc化合物薄
膜の超伝導特性の均一性を大幅に向上できるので、高品
質の超伝導素子を作製できる利点がある。
As explained above, according to the present invention, the uniformity of the superconducting properties of a high Tc compound thin film can be greatly improved, so there is an advantage that a high quality superconducting element can be manufactured.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明及び従来法を用いて作製したNb3Sn
薄膜のTcの膜厚依存性を示すグラフである0
Figure 1 shows Nb3Sn produced using the present invention and the conventional method.
0 is a graph showing the film thickness dependence of Tc of a thin film.

Claims (1)

【特許請求の範囲】[Claims] 1、Nb化合物あるいはV化合物からなる高い臨界温度
を有するA15型構造超伝導薄膜の作製方法において、
その超伝導薄膜の熱膨張係数と近似する熱膨張係数を有
する絶縁体を基板として用いて、その基板上にその超伝
導薄膜の格子定数と近似する格子定数を有する絶縁体の
単結晶薄膜をあらかじめ堆積させた後、該高い臨界温度
の超伝導薄膜をエピタキシャル成長させることを特徴と
する超伝導薄膜の作製方法。
1. In a method for producing an A15 type structured superconducting thin film having a high critical temperature made of a Nb compound or a V compound,
An insulator having a thermal expansion coefficient similar to that of the superconducting thin film is used as a substrate, and a single crystal thin film of an insulator having a lattice constant similar to that of the superconducting thin film is preliminarily deposited on the substrate. A method for producing a superconducting thin film, which comprises epitaxially growing the high critical temperature superconducting thin film after deposition.
JP61184181A 1986-08-07 1986-08-07 Manufacture of superconductive thin film Pending JPS6341087A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61184181A JPS6341087A (en) 1986-08-07 1986-08-07 Manufacture of superconductive thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61184181A JPS6341087A (en) 1986-08-07 1986-08-07 Manufacture of superconductive thin film

Publications (1)

Publication Number Publication Date
JPS6341087A true JPS6341087A (en) 1988-02-22

Family

ID=16148778

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61184181A Pending JPS6341087A (en) 1986-08-07 1986-08-07 Manufacture of superconductive thin film

Country Status (1)

Country Link
JP (1) JPS6341087A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0269981A (en) * 1988-09-05 1990-03-08 Matsushita Electric Ind Co Ltd Josephson device and manufacture of it
JPH04314370A (en) * 1991-04-11 1992-11-05 Nec Corp Superconductive laminated element and its manufacture

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0269981A (en) * 1988-09-05 1990-03-08 Matsushita Electric Ind Co Ltd Josephson device and manufacture of it
JPH04314370A (en) * 1991-04-11 1992-11-05 Nec Corp Superconductive laminated element and its manufacture

Similar Documents

Publication Publication Date Title
US6649570B2 (en) Buffer layer structure based on doped ceria for providing optimized lattice match with a YBCO layer in a conductor
JPH04295015A (en) Production of bi-base oxide superconducting thin film
JPS6341087A (en) Manufacture of superconductive thin film
US5240904A (en) Process for preparing a-axis oriented superconducting oxide thin films
JPS63225599A (en) Preparation of oxide superconductive thin film
JPH01117376A (en) Edge junction type single crystal thin film superconductor tunnel junction element and manufacture thereof
JPH03275504A (en) Oxide superconductor thin film and its production
JPS63236794A (en) Production of superconductive thin film of oxide
JP2958645B2 (en) Oxide superconductor element and method for producing oxide superconductor thin film
JP2852753B2 (en) Oxide superconductor element and method for producing oxide superconductor thin film
JPH08139374A (en) Superconducting device
JP2844206B2 (en) Oxide superconductor element and method for producing oxide superconductor thin film
JP2519337B2 (en) Substrate material for producing oxide superconductor and method for producing oxide superconductor
JP2541037B2 (en) Oxide superconducting thin film synthesis method
JP2844207B2 (en) Oxide superconductor element and method for producing oxide superconductor thin film
JPH01167912A (en) Sheathing material of superconducting material and manufacture thereof
JPH03242320A (en) Oxide superconductor thin film
Yoshida et al. Fabrication of CuO2-plane-based high-temperature superconducting thin films by atomic layer controlled molecular beam epitaxy
JP2913653B2 (en) Oxide superconducting thin film structure
JPH02212306A (en) Oxide superconducting thin film
JPH042697A (en) Oxide single crystal base, superconductor device using thereof and production of same device
JPH03131595A (en) Formation of superconductor thin film
JPH0244782A (en) Superconductive element and manufacture thereof
JPH02267119A (en) Superconducting thin film of oxide
JPH0467692A (en) Superconducting element