JP2852753B2 - Oxide superconductor element and method for producing oxide superconductor thin film - Google Patents

Oxide superconductor element and method for producing oxide superconductor thin film

Info

Publication number
JP2852753B2
JP2852753B2 JP1033136A JP3313689A JP2852753B2 JP 2852753 B2 JP2852753 B2 JP 2852753B2 JP 1033136 A JP1033136 A JP 1033136A JP 3313689 A JP3313689 A JP 3313689A JP 2852753 B2 JP2852753 B2 JP 2852753B2
Authority
JP
Japan
Prior art keywords
thin film
oxide
oxide layer
silicon wafer
oxide superconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1033136A
Other languages
Japanese (ja)
Other versions
JPH02212304A (en
Inventor
栄治 名取
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP1033136A priority Critical patent/JP2852753B2/en
Publication of JPH02212304A publication Critical patent/JPH02212304A/en
Application granted granted Critical
Publication of JP2852753B2 publication Critical patent/JP2852753B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Containers, Films, And Cooling For Superconductive Devices (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はSQUID、ジョセフソン素子、超伝導トランジ
スタ、電磁波センサー、素子配線、電極等に用いる酸化
物超伝導素子および酸化物超伝導体薄膜の製造方法に関
する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to an oxide superconducting element and an oxide superconducting thin film used for a SQUID, a Josephson element, a superconducting transistor, an electromagnetic wave sensor, an element wiring, an electrode and the like. It relates to a manufacturing method.

(従来の技術) 現在話題の酸化物超伝導物質は結晶構造に起因して異
方正が強い例えば臨界電流密度を見るとC軸方向はa、
b軸方向の1/5〜1/7となっている。故に高臨界電流密度
を要求する薄膜デバイスに酸化物超伝導物質を応用する
にはエピタキシャル成長をさせることが必要不可欠とい
える。エピタキシャル成長をさせるには基板との格子定
数をマッチングさせる必要があり一般的には応用物理第
57巻第2号(1988)p227−231公開特許公報昭63−27039
5に述べられているように基板にSrTiO3を初めとしたペ
ロブスカイト型酸化物の単結晶が用いられていた。
(Prior art) At present, the superconducting oxide material has a strong anisotropy due to its crystal structure.
It is 1/5 to 1/7 in the b-axis direction. Therefore, it can be said that epitaxial growth is indispensable for applying an oxide superconducting material to a thin film device requiring a high critical current density. For epitaxial growth, it is necessary to match the lattice constant with the substrate.
Vol. 57, No. 2, (1988) p227-231
As described in 5, a single crystal of perovskite oxide such as SrTiO3 was used for the substrate.

(発明が解決しようとする課題) しかしながら従来の酸化物超伝導薄膜の形成に用いる
ペロブスカイト型酸化物の単結晶基板はベルヌーイ法で
作製されており、結晶の直径が約2cmφ前後以下のもの
に限られていた。そのため大口径化は不可能であり、用
途が限定される(小型素子しか応用できない)、量産性
が無い、基板のコストが高い(例えばSrTiO3の2cmφ単
結晶基板は約2万円/枚である)等の問題を有してい
た。
(Problems to be Solved by the Invention) However, the perovskite-type oxide single crystal substrate used for forming the conventional oxide superconducting thin film is manufactured by the Bernoulli method, and the crystal diameter is limited to about 2 cmφ or less. Had been. For this reason, it is impossible to increase the diameter, and the application is limited (only small elements can be applied), there is no mass production, and the cost of the substrate is high (for example, a 2cmφ single crystal substrate of SrTiO3 is about 20,000 yen / sheet) ).

また大口径化の可能な単結晶シリコンウエハーを用い
直接酸化物超伝導薄膜を付ける場合は(1)格子定数に
大きな差がありエピタキシャル成長性が悪い(2)シリ
コンウエハーと反応し、膜厚が200nm以下では低臨界温
度相になり易くさらに半導体相になった。
In addition, when a single crystal silicon wafer capable of increasing the diameter is used and the oxide superconducting thin film is directly applied, (1) there is a large difference in the lattice constant and the epitaxial growth is poor. (2) The silicon superconductor reacts with the silicon wafer to have a thickness of 200 nm. In the following, the phase becomes low critical temperature phase easily and further becomes semiconductor phase.

本発明はこの様な問題を解決するものであり、その目
的とするところは大口径、高臨界電流密度で用途の限定
が無く量産性に優れた酸化物超伝導薄膜を低コストで得
んとするものである。
The present invention is intended to solve such a problem. The purpose of the present invention is to obtain an oxide superconducting thin film having a large diameter, a high critical current density and excellent mass productivity without limitation of application at a low cost. Is what you do.

(課題を解決するための手段) 本発明は、以下の1、2を特徴とする。(Means for Solving the Problems) The present invention is characterized by the following 1 and 2.

1. 単結晶シリコンウエハー基板と、前記単結晶シリコ
ンウエハー基板上に形成されてなり、組成をAxTiyO
z(ここで、Aは希土類元素を示す)と表したとき0.9≦
x≦1.1,0.85≦y≦1.15である酸化物層と、前記酸化物
層上に形成されてなるLnBaCuO系酸化物超伝導薄膜(こ
こで、LnはYを含み4価元素を除く希土類元素を示す)
と、を有することを特徴とする。
1. a single-crystal silicon wafer substrate, formed on the single-crystal silicon wafer substrate and having a composition of A x Ti y O
z (where A represents a rare earth element) 0.9 ≦
an oxide layer satisfying x ≦ 1.1, 0.85 ≦ y ≦ 1.15, and an LnBaCuO-based oxide superconducting thin film formed on the oxide layer (where Ln is a rare earth element containing Y and excluding a tetravalent element) Show)
And the following.

2. 単結晶シリコンウエハー基板上に、組成をAxTiyOz
(ここで、Aは希土類元素を示す)と表したとき0.9≦
x≦1.1,0.85≦y≦1.15である酸化物層を形成し、前記
酸化物層上にLnBaCuO系酸化物超伝導薄膜(ここで、Ln
はYを含み4価元素を除く希土類元素を示す)を形成す
ることを特徴とする。
2. monocrystalline silicon wafer substrate, the composition A x Ti y O z
(Where A represents a rare earth element) 0.9 ≦
An oxide layer satisfying x ≦ 1.1, 0.85 ≦ y ≦ 1.15 is formed, and an LnBaCuO-based oxide superconducting thin film (here, Ln
Represents a rare earth element containing Y and excluding a tetravalent element).

x、yの値が上記組成範囲を外れると酸化物層は安定
した結晶構造をとらなくなる。それは酸化物超伝導薄膜
のエピタキシャル成長を阻害する原因となる。また値は
共に1に近いほど好ましい。zは薄膜では測定が困難な
ため確認できていないがバルクでは最適組成において3
となっている。
When the values of x and y are out of the above composition ranges, the oxide layer does not have a stable crystal structure. It causes the epitaxial growth of the oxide superconducting thin film to be hindered. It is more preferable that both values are closer to 1. z could not be confirmed because of the difficulty in measuring thin films, but 3
It has become.

(実施例) 以下実施例に従い本発明を説明する。(Examples) Hereinafter, the present invention will be described according to examples.

実施例−1 先ず最初に100配向の単結晶シリコンウエハー基板上
に第1表に示した組成の酸化物膜をRFマグネトロンスパ
ッタ法により形成する。
Example 1 First, an oxide film having the composition shown in Table 1 was formed on a 100-oriented single-crystal silicon wafer substrate by RF magnetron sputtering.

使用ターゲットは第1表の組成に近い組成(最終的に
第1表になるよう補正したもの)の酸化物焼結ターゲッ
トである。成膜条件は基板温度450℃〜800℃、真空度3
〜6*10-3Torr、使用ガスO2:Ar比3:1、Power density
3.9(W/cm2)、成膜速度は10〜15nm/minである。また膜
厚は500〜600nmである。次にこの酸化物膜の結晶構造を
安定化させるため750℃酸素雰囲気中で3時間アニール
処理を行う。得られた酸化物膜はX線回折とRHEEDによ
り分析したところエピタキシャル成長した膜であった。
また格子定数は3.90〜3.95でありLn−Ba−Cu−O(Lnは
4価元素を除く希土類元素)系酸化物超伝導物質に近い
ものであった。
The target used is an oxide sintered target having a composition close to the composition shown in Table 1 (finally corrected to become Table 1). Deposition conditions are: substrate temperature 450 ° C to 800 ° C, vacuum degree 3
~ 6 * 10 -3 Torr, gas used O2: Ar ratio 3: 1, Power density
3.9 (W / cm 2 ), and the deposition rate is 10 to 15 nm / min. The thickness is 500 to 600 nm. Next, annealing is performed for 3 hours in an oxygen atmosphere at 750 ° C. in order to stabilize the crystal structure of the oxide film. When the obtained oxide film was analyzed by X-ray diffraction and RHEED, it was a film epitaxially grown.
The lattice constant was 3.90 to 3.95, which was close to that of an Ln-Ba-Cu-O (Ln is a rare earth element excluding a tetravalent element) oxide superconducting material.

次に反応蒸着法により前記酸化物膜上にEu−Ba−Cu−
O超伝導薄膜を150nm形成した。成膜条件は蒸発源にE
u、Ba、Cuの金属を用い、真空度3〜6*10−5Torr、基
板温度650℃、成膜速度20〜35nm/minであり、酸素の供
給はマイクロ波で活性化した酸素プラズマを基板部に成
膜中に照射して行った。
Next, Eu-Ba-Cu- was formed on the oxide film by a reactive evaporation method.
An O superconducting thin film was formed to a thickness of 150 nm. The deposition conditions are E
Using u, Ba, and Cu metals, the degree of vacuum is 3-6 * 10-5 Torr, the substrate temperature is 650 ° C, and the film formation rate is 20-35 nm / min. Oxygen is supplied by oxygen plasma activated by microwave. Irradiation was performed during the film formation on the part.

次に500℃酸素雰囲気中において15時間アニール処理
を行い不足している酸素を補給すると共に(酸素不足は
低臨界温度相の発生を招く)結晶構造を安定化させ酸化
物超伝導薄膜を得る。酸化物超伝導薄膜をX線回折、RH
EEDにより分析したところエピタキシャル成長した膜で
あった。
Next, annealing is performed for 15 hours in an oxygen atmosphere at 500 ° C. to replenish the insufficient oxygen (oxygen insufficiency causes generation of a low critical temperature phase) and to stabilize the crystal structure to obtain an oxide superconducting thin film. X-ray diffraction of oxide superconducting thin film, RH
Analysis by EED revealed that the film was epitaxially grown.

実施例−2 実施例−1と同様な条件で単結晶シリコンウエハー上
にLa−Ti−O酸化物、Eu−Ti−O酸化物の順に形成す
る。膜厚はそれぞれ200nm、400nmである。次にEu−Ba−
Cu−O薄膜を100nm形成し酸化物超伝導薄膜を得た。
Example 2 A La—Ti—O oxide and a Eu—Ti—O oxide are formed in this order on a single crystal silicon wafer under the same conditions as in Example 1. The film thicknesses are 200 nm and 400 nm, respectively. Next, Eu-Ba-
A 100 nm thick Cu-O thin film was formed to obtain an oxide superconducting thin film.

得られた酸化物超伝導薄膜の臨界温度と臨界電流密度
を4端子法により測定した。測定雰囲気は77Kに冷却
(ダイキン工業製極低温冷凍機UV204SR使用)したヘリ
ウムガス中である。
The critical temperature and critical current density of the obtained oxide superconducting thin film were measured by a four-terminal method. The measurement atmosphere was helium gas cooled to 77K (using a cryogenic refrigerator UV204SR manufactured by Daikin Industries, Ltd.).

結果を第2表(実施例−1)と第3表(実施例−2)
に比較例と共に示した。比較例は単結晶シリンコンウエ
ハー基板上に直接Eu−Ba−Cu−O薄膜を形成した場合
(G、H、Iそれぞれ膜厚100nm、200nm、700nm)と基
板にSrTiO3単結晶を用いた場合である。
The results are shown in Table 2 (Example-1) and Table 3 (Example-2).
Are shown together with Comparative Examples. The comparative example is a case where a Eu-Ba-Cu-O thin film is directly formed on a single crystal silicon wafer substrate (G, H, I film thicknesses of 100 nm, 200 nm, and 700 nm, respectively) and a case where an SrTiO3 single crystal is used for the substrate. is there.

表より判るように本発明による酸化物超伝導薄膜は大
口径化の可能なシリコンウエハーを基板として用いても
エピタキシャル成長させることが出来、高い臨界電流密
度が得られるようになった。比較例(100nm)、L(200
nm)で超伝導特性が悪いのはシリコンウエハーと酸化物
超伝導物質が反応して酸化物超伝導の結晶構造を壊して
いるためである。本発明ではこの反応を抑制 出来るため100nmと薄く形成しても良い超伝導特性を得
ることが出来る。酸化物層元素に酸化物超伝導物質と同
じ希土類元素を用いているため界面でミキシングがあっ
ても影響が少ないことも良い一因となっているものと考
えられる。比較例I(膜厚700nm)の臨界温度は90Kと良
い値であるが臨界電流密度は低い、これは超伝導薄膜が
エピタキシャル成長していないためでる。また実施例の
中でBとEが他に比べ臨界電流密度が高いのは酸化物層
が最適組成近いことにより最適結晶構造をとり、それが
酸化物超伝導膜のエピタキシャル成長を促している。故
に酸化物の組成はAxTiyOz(ここでAは希土類元素を示
す)と表したとき0.9≦x≦1.1、0.85≦y≦1.15の範囲
内である必要があり、外れると臨界電流密度は急激に低
下する。
As can be seen from the table, the oxide superconducting thin film according to the present invention can be epitaxially grown even when a silicon wafer having a large diameter can be used as a substrate, and a high critical current density can be obtained. Comparative example (100 nm), L (200
The poor superconductivity in nm) is due to the reaction between the silicon wafer and the oxide superconducting material, breaking the oxide superconducting crystal structure. The present invention suppresses this reaction As a result, it is possible to obtain superconducting characteristics that can be formed as thin as 100 nm. Since the same rare earth element as the oxide superconducting material is used as the oxide layer element, it is considered that the effect of mixing at the interface is small, which is also a good factor. The critical temperature of Comparative Example I (film thickness 700 nm) is a good value of 90 K, but the critical current density is low, because the superconducting thin film is not epitaxially grown. Further, in the examples, B and E have higher critical current densities than the others because the oxide layer has an optimum composition and thus has an optimum crystal structure, which promotes the epitaxial growth of the oxide superconducting film. Therefore, when the composition of the oxide is expressed as AxTiyOz (where A represents a rare earth element), it must be within the range of 0.9 ≦ x ≦ 1.1 and 0.85 ≦ y ≦ 1.15. I do.

第3表は格子定数の異なる酸化物層を2層形成したも
のであるが本発明の中では最も臨界電流密度が高い。こ
れは酸化物超伝導膜側に酸化物超伝導物質に格子定数の
最も近い酸化物層を配しマッチングを良くしたためと該
酸化物層とシリコンウエハー基板との間に格子定数がシ
リコンウエハー基板と酸化物超伝導物質の間に位置する
酸化物層を配したため各膜層の格子定数の変化が少なく
なり酸化物層の歪が少なくなったためと考えられる。
Table 3 shows that two oxide layers having different lattice constants are formed, but the critical current density is the highest in the present invention. This is because an oxide layer having the closest lattice constant to the oxide superconducting material is disposed on the oxide superconducting film side to improve matching, and the lattice constant between the oxide layer and the silicon wafer substrate is equal to that of the silicon wafer substrate. This is probably because the arrangement of the oxide layer between the oxide superconducting materials reduced the change in the lattice constant of each film layer and reduced the distortion of the oxide layer.

これら実施例の値はSrTiO3単結晶基板を用いた値(比
較例N:NTTデータ)に近いものであり十分デバイス等に
応用できる値である。
The values in these examples are close to the values obtained using a SrTiO3 single crystal substrate (Comparative Example N: NTT data), and are values that can be sufficiently applied to devices and the like.

第4表に単結晶シリコンウエハー基板と従来よく用い
られていたSrTiO3単結晶基板の1枚の値段を示した。単
結晶シリコンウエハー基板は4インチ(約10cmφ)とSr
TiO3単結晶基板の約5倍と大口径であるにも関わらず値
段は約1/10であり大幅な低コスト化が可能となる。
Table 4 shows the price of a single crystal silicon wafer substrate and a single SrTiO3 single crystal substrate that has been often used in the past. Single-crystal silicon wafer substrate is 4 inches (about 10cmφ) and Sr
Although the diameter is about 5 times as large as that of the TiO3 single crystal substrate, the price is about 1/10 and the cost can be significantly reduced.

(発明の効果) 請求項1に係る発明によれば、酸化物層が希土類元素
を含有し、酸化物層上の酸化物超伝導薄膜も希土類元素
を含有するので、酸化物層と酸化物超伝導薄膜の界面で
組成分のミキシングがあってもその影響は小さい。その
結果、酸化物超伝導薄膜の結晶性は良好であり、高い臨
界電流密度および高い臨界温度を有する。また、基板と
して、容易に得ることができる単結晶シリコンウエハー
基板を構成として有するので、低コストで量産性に優れ
るという顕著な効果を有する。
According to the first aspect of the present invention, the oxide layer contains a rare earth element, and the oxide superconducting thin film on the oxide layer also contains the rare earth element. Even if there is mixing of components at the interface of the conductive thin film, the effect is small. As a result, the oxide superconducting thin film has good crystallinity, and has a high critical current density and a high critical temperature. In addition, since a single crystal silicon wafer substrate that can be easily obtained is used as a substrate, there is a remarkable effect that low cost and excellent mass productivity are achieved.

また、請求項2に係る発明によれば、希土類元素を有
する酸化物層の上に希土類元素を含む酸化物超伝導薄膜
を形成するので、酸化物層と酸化物超伝導薄膜の界面で
の組成分のミキシングがあってもその影響を低く抑える
ことが出来る。その結果、非常に結晶性の良い酸化物超
伝導薄膜を形成すること可能となるという顕著な効果を
奏する。
According to the second aspect of the present invention, since the oxide superconducting thin film containing the rare earth element is formed on the oxide layer containing the rare earth element, the composition at the interface between the oxide layer and the oxide superconducting thin film is formed. Even if there is mixing, the effect can be kept low. As a result, a remarkable effect that an oxide superconducting thin film having very good crystallinity can be formed is obtained.

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】単結晶シリコンウエハー基板と、 前記単結晶シリコンウエハー基板上に形成されてなり、
組成をAxTiyOz(ここで、Aは希土類元素を示す)と表
したとき0.9≦x≦1.1,0.85≦y≦1.15である酸化物層
と、 前記酸化物層上に形成されてなるLnBaCuO系酸化物超伝
導薄膜(ここで、LnはYを含み4価元素を除く希土類元
素を示す)と、 を有することを特徴とする酸化物超伝導素子。
1. A single crystal silicon wafer substrate, formed on the single crystal silicon wafer substrate,
When the composition is represented by A x Ti y O z (where A represents a rare earth element), an oxide layer satisfying 0.9 ≦ x ≦ 1.1, 0.85 ≦ y ≦ 1.15; and an oxide layer formed on the oxide layer An LNBaCuO-based oxide superconducting thin film (here, Ln represents a rare earth element containing Y and excluding a tetravalent element).
【請求項2】単結晶シリコンウエハー基板上に、組成を
AxTiyOz(ここで、Aは希土類元素を示す)と表したと
き0.9≦x≦1.1,0.85≦y≦1.15である酸化物層を形成
し、前記酸化物層上にLnBaCuO系酸化物超伝導薄膜(こ
こで、LnはYを含み4価元素を除く希土類元素を示す)
を形成することを特徴とする酸化物超伝導薄膜の製造方
法。
2. The composition on a single crystal silicon wafer substrate.
A x Ti y O z (wherein, A is shows the rare-earth element) to form an oxide layer is 0.9 ≦ x ≦ 1.1,0.85 ≦ y ≦ 1.15 when expressed as, LnBaCuO based oxide in the oxide layer Superconducting thin film (here, Ln is a rare earth element containing Y and excluding tetravalent elements)
Forming an oxide superconducting thin film.
JP1033136A 1989-02-13 1989-02-13 Oxide superconductor element and method for producing oxide superconductor thin film Expired - Lifetime JP2852753B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1033136A JP2852753B2 (en) 1989-02-13 1989-02-13 Oxide superconductor element and method for producing oxide superconductor thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1033136A JP2852753B2 (en) 1989-02-13 1989-02-13 Oxide superconductor element and method for producing oxide superconductor thin film

Publications (2)

Publication Number Publication Date
JPH02212304A JPH02212304A (en) 1990-08-23
JP2852753B2 true JP2852753B2 (en) 1999-02-03

Family

ID=12378182

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1033136A Expired - Lifetime JP2852753B2 (en) 1989-02-13 1989-02-13 Oxide superconductor element and method for producing oxide superconductor thin film

Country Status (1)

Country Link
JP (1) JP2852753B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE602006021287D1 (en) * 2006-05-18 2011-05-26 Nexans Conductor coated with a polycrystalline film usable for producing high temperature superconducting films

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Applied Physics Letters Vol.53,14 Nov,No.20.

Also Published As

Publication number Publication date
JPH02212304A (en) 1990-08-23

Similar Documents

Publication Publication Date Title
JP3275836B2 (en) Superconducting device
Covington et al. Tunneling and anisotropic charge transport properties of superconducting (110)‐oriented YBa2Cu3O7 thin films
JPH03150218A (en) Production of superconductive thin film
US6649570B2 (en) Buffer layer structure based on doped ceria for providing optimized lattice match with a YBCO layer in a conductor
JP3188358B2 (en) Method for producing oxide superconductor thin film
JPH02177381A (en) Tunnel junction element of superconductor
CA2194400A1 (en) Epitaxial thallium high temperature superconducting films formed via a nucleation layer
JP2852753B2 (en) Oxide superconductor element and method for producing oxide superconductor thin film
JP2844206B2 (en) Oxide superconductor element and method for producing oxide superconductor thin film
JP2844207B2 (en) Oxide superconductor element and method for producing oxide superconductor thin film
JPS63225599A (en) Preparation of oxide superconductive thin film
JP2958645B2 (en) Oxide superconductor element and method for producing oxide superconductor thin film
JP2561303B2 (en) Method for producing single crystal oxide superconducting thin film
CA2264724A1 (en) Series of layers and component containing such
JP2913653B2 (en) Oxide superconducting thin film structure
JP2545423B2 (en) Composite oxide superconducting thin film and method for producing the same
JP2544759B2 (en) How to make a superconducting thin film
JPH05279192A (en) Synthesis of oxide superconductor thin film
Lyonnet et al. Pulsed Laser Deposition of Zr 1-x CexO 2 and Ce 1-x La x O 2-x/2 for Buffer Layers and Insulating Barrier in Oxide Heterostructures
JP2545422B2 (en) Composite oxide superconducting thin film and method for producing the same
JP2544760B2 (en) Preparation method of superconducting thin film
JPS63236794A (en) Production of superconductive thin film of oxide
JPH03275504A (en) Oxide superconductor thin film and its production
JPH0829938B2 (en) Composite oxide superconducting thin film and method for producing the same
JPH09260733A (en) Oxide superconducting thin film laminated body and manufacture thereof

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071120

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081120

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091120

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091120

Year of fee payment: 11