JPH05279192A - Synthesis of oxide superconductor thin film - Google Patents

Synthesis of oxide superconductor thin film

Info

Publication number
JPH05279192A
JPH05279192A JP4100201A JP10020192A JPH05279192A JP H05279192 A JPH05279192 A JP H05279192A JP 4100201 A JP4100201 A JP 4100201A JP 10020192 A JP10020192 A JP 10020192A JP H05279192 A JPH05279192 A JP H05279192A
Authority
JP
Japan
Prior art keywords
thin film
single crystal
substrate
film
cuo
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4100201A
Other languages
Japanese (ja)
Inventor
Junichi Fujita
淳一 藤田
Hitoshi Igarashi
等 五十嵐
Tsutomu Yoshitake
務 吉武
Tetsuro Sato
哲朗 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP4100201A priority Critical patent/JPH05279192A/en
Publication of JPH05279192A publication Critical patent/JPH05279192A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:To synthesize a Tl2Ba2CaCu2Ox single crystal thin film having excellent superconducting characteristics on a SrTiO3 substrate. CONSTITUTION:An extremely thin Tl2Ba2CuOx or Bi2Sr2CuOx layer is grown as a buffer layer 5 on an inclined SrTiO3 substrate 1 and an amorphous Tl2Ba2 CaCu2Ox film is deposited on the buffer layer at room temperature. The amorphous film is heat-treated in 1 atm oxygen atmosphere containing Tl vapor to effect the growth of a Tl2Ba2CaCu2Ox single crystal thin film 7. A Tl2Ba2 CaCu2Ox single crystal thin film having high flatness and uniform modulation structure can be synthesized by this process without causing the sporadic growth and the generation of hetero-phase on the film surface.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は酸化物超電導薄膜の製造
方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing an oxide superconducting thin film.

【0002】[0002]

【従来の技術】超電導薄膜は、ジョセフソン接合による
量子磁気干渉素子や、超電導LSI配線、超電導能動素
子等への応用上欠かせないものである。近年、1987
年2月米国ヒューストン大学チュー(Chu)らにより
発見された臨界温度90K級のY系酸化物超電導体をは
じめとし、金属材料技術研究所の前田らによる臨界温度
110K級のBi系酸化物超電導体、さらに米国アーカ
ンサス大学のシェン(Z.Z.Sheng)らによる臨
界温度120K級のTl系酸化物超電導体と液体窒素温
度を越える臨界温度を持つ酸化物超電導体が相次いで発
見された。このことより、従来液体ヘリウムを用いなけ
ればならなかった超電導応用デバイスが液体窒素で実現
できることになり、特にこれら酸化物超電導体の薄膜化
は液体窒素温度以上で動くジョセフソン能動デバイスや
超電導LSI配線、またマイクロ波用デバイスを実現
し、その応用は広く利用され得る。
2. Description of the Related Art Superconducting thin films are indispensable for applications in quantum magnetic interference devices using Josephson junctions, superconducting LSI wiring, superconducting active devices and the like. Recently, 1987
February, 2004, including the Y-based oxide superconductor with a critical temperature of 90K discovered by the University of Houston, Chu, etc., and the Bi-based oxide superconductor with a critical temperature of 110K from Maeda et al. In addition, a Tl-based oxide superconductor having a critical temperature of 120K and an oxide superconductor having a critical temperature exceeding liquid nitrogen temperature were successively discovered by ZZ Sheng of the University of Arkansas, USA. This means that superconducting devices that had to use liquid helium in the past can be realized with liquid nitrogen. In particular, thinning these oxide superconductors into Josephson active devices and superconducting LSI wiring that operate at liquid nitrogen temperatures or higher. Also, it realizes a microwave device, and its application can be widely used.

【0003】この酸化物超電導体薄膜は、そのデバイス
応用の見地から、基板上に超電導薄膜をエピタキシャル
成長させ、基板面内でのグレインのオリエンテーション
が揃ったいわゆる単結晶薄膜がその応用上重要であり、
また膜表面に島状成長や異相のない極めて平坦な薄膜を
合成する技術が不可欠となる。Tl系超電導薄膜のin
−situ合成技術においては、レーザーアブレーショ
ンによる方法、RFマグネトロンスパッタによる方法、
真空蒸着による方法等さまざまな成膜方法が報告されて
いるが、いずれも非晶質膜積層後の高温熱処理過程で、
薄膜表面に発生する島状成長や異相の発生が起こり、各
グレインの面内オリエンテーションも乱れている。これ
らの島状成長による薄膜面内の粒界はデバイス応用上重
大な問題となっている。
From the viewpoint of device application, this oxide superconductor thin film is a so-called single crystal thin film in which a superconducting thin film is epitaxially grown on a substrate and the orientation of grains in the substrate plane is uniform.
In addition, a technique for synthesizing an extremely flat thin film without island growth or different phases on the film surface is essential. In Tl-based superconducting thin film
-In the situ synthesis technology, a method by laser ablation, a method by RF magnetron sputtering,
Although various film forming methods such as a method using vacuum evaporation have been reported, all of them are
In-plane orientation of each grain is disturbed due to island-like growth and heterogeneous phase that occur on the surface of the thin film. The grain boundaries in the plane of the thin film due to the island-like growth have become a serious problem in device application.

【0004】[0004]

【発明が解決しようとする課題】Tl系酸化物高温超電
導体薄膜における合成においては、これを直接合成する
ことは、酸化Tlの蒸気圧が非常に高いことから極めて
困難である。このために従来、基板上に非晶質Tl2
2CaCu2xを積層させ、これを1気圧酸素および
Tl蒸気中で熱処理することで、固相反応によりTl2
Ba2CaCu2x薄膜を合成する方法が行われてい
た。しかし、800−900℃での(001)SrTi
3基板上での固相反応の場合、膜成長過程において異
相の発生や島状成長が起こり、この島状成長および異相
の跡が最後まで膜表面のモフォロジーとして残ってしま
う。本発明の目的は、膜表面の島状成長粒および異相の
発生がなく平坦性の良好な単結晶Tl系超電導薄膜を合
成する方法を提供することにある。さらにTl系超電導
体には特徴的なインコメンシュレートな変調構造がある
が、この変調構造の方向が完全に揃ったいわゆる高品質
単結晶膜を得る方法を提供することを目的とする。
In the synthesis of a Tl-based oxide high-temperature superconductor thin film, it is extremely difficult to directly synthesize it because the vapor pressure of oxidized Tl is very high. For this reason, conventionally, amorphous Tl 2 B was formed on the substrate.
By laminating a 2 CaCu 2 O x and heat-treating this in 1 atm oxygen and Tl vapor, Tl 2 is formed by solid-state reaction.
A method of synthesizing a Ba 2 CaCu 2 O x thin film has been performed. However, (001) SrTi at 800-900 ° C
In the case of a solid-phase reaction on an O 3 substrate, a heterogeneous phase is generated or island-shaped growth occurs in the film growth process, and the traces of the island-shaped growth and the heterogeneous phase remain as the morphology of the film surface until the end. An object of the present invention is to provide a method for synthesizing a single crystal Tl-based superconducting thin film which is free of island-shaped growth grains and foreign phases on the film surface and has good flatness. Further, the Tl-based superconductor has a characteristic incommensurate modulation structure, and an object thereof is to provide a method for obtaining a so-called high quality single crystal film in which the directions of this modulation structure are perfectly aligned.

【0005】[0005]

【課題を解決するための手段】本発明の第1は、Tl系
酸化物超電導薄膜のチタン酸ストロンチウム基板上への
合成方法において、非晶質Tl2Ba2CuOxを基板上
に積層し、次いで酸素・Tl蒸気中で熱処理を行うこと
により基板上にヘテロエピタキシャル成長した極薄Tl
2Ba2CuOx膜を形成し、該膜をバッファー層として
用いることを特徴とする単結晶Tl系酸化物超電導薄膜
合成方法である。本発明の第2は、Tl系酸化物超電導
薄膜のチタン酸ストロンチウム基板上への合成方法にお
いて、酸化雰囲気中で基板上にBa2CuOxをヘテロエ
ピタキシャル成長させ、これを1気圧酸素およびTl蒸
気中で熱処理を行うことにより固相反応でBa2CuOx
にTlを拡散させてSrTiO3基板上にヘテロエピタ
キシャル成長した極薄Tl2Ba2CuOx膜を形成し、
該膜をバッファー層として用いることを特徴とする単結
晶Tl系酸化物超電導薄膜合成方法である。本発明の第
3は、Tl系酸化物超電導薄膜のチタン酸ストロンチウ
ム基板上への合成方法において、単結晶Bi2Sr2Cu
xを基板上に成長させ、これをバッファー層として用
いることを特徴とする単結晶Tl系酸化物超電導薄膜合
成方法である。
The first object of the present invention is to synthesize a Tl-based oxide superconducting thin film on a strontium titanate substrate by laminating amorphous Tl 2 Ba 2 CuO x on the substrate. Then, heat treatment is performed in oxygen / Tl vapor, and ultra-thin Tl heteroepitaxially grown on the substrate.
A method for synthesizing a single crystal Tl-based oxide superconducting thin film, which comprises forming a 2 Ba 2 CuO x film and using the film as a buffer layer. A second aspect of the present invention is a method for synthesizing a Tl-based oxide superconducting thin film on a strontium titanate substrate, in which Ba 2 CuO x is heteroepitaxially grown on the substrate in an oxidizing atmosphere, and this is grown in 1 atm oxygen and Tl vapor. Ba 2 CuO x by solid-state reaction by heat treatment at
To form a very thin Tl 2 Ba 2 CuO x film heteroepitaxially grown on the SrTiO 3 substrate by diffusing Tl into
A method for synthesizing a single crystal Tl-based oxide superconducting thin film, which comprises using the film as a buffer layer. A third aspect of the present invention relates to a method for synthesizing a Tl-based oxide superconducting thin film on a strontium titanate substrate, wherein a single crystal Bi 2 Sr 2 Cu is used.
A method for synthesizing a single crystal Tl-based oxide superconducting thin film, which comprises growing O x on a substrate and using it as a buffer layer.

【0006】ここで、チタン酸ストロンチウム(00
1)単結晶基板面に対し、その法線から[111]方向
に傾けて研磨することにより[1 -1 0]方向にステップ
を形成した基板面をTl系酸化物超電導薄膜合成用基板
として用いることが好ましい。また、本発明によれば、
極薄単結晶Tl2Ba2CuOxバッファー層もしくは極
薄単結晶Bi2Sr2CuOxバッファー層上に非晶質T
2Ba2CaCu2xを積層させ、これを1気圧酸素お
よびTl蒸気中で熱処理することで、単結晶バッファー
層に束縛された固相反応により単結晶Tl2Ba2CaC
2x薄膜を合成する請求項4記載の単結晶Tl系酸化
物超電導薄膜合成方法が提供される。
Here, strontium titanate (00
1) A substrate surface on which a step is formed in the [1 -10] direction by inclining in a [111] direction from the normal to the single crystal substrate surface and used as a substrate for synthesizing a Tl-based oxide superconducting thin film Preferably. Further, according to the present invention,
Amorphous T on the ultra-thin single crystal Tl 2 Ba 2 CuO x buffer layer or the ultra-thin single crystal Bi 2 Sr 2 CuO x buffer layer
By stacking 1 2 Ba 2 CaCu 2 O x and heat-treating the same in oxygen and Tl vapor at 1 atm, a single-crystal Tl 2 Ba 2 CaC was formed by a solid-phase reaction bound by a single-crystal buffer layer.
A method for synthesizing a single crystal Tl-based oxide superconducting thin film according to claim 4 for synthesizing a u 2 O x thin film is provided.

【0007】[0007]

【作用】SrTiO3基板へのBi系超電導体のヘテロ
エピタキシャル成長では、[110]SrTiO3[1
00]Tl系超電導体の方位関係でエピタキシャル成長
し、その格子ミスマッチは2%程度となりエピタキシャ
ル成長には極めて有効である。しかしTl系酸化物超電
導体をその場(in−situ)で合成することは、そ
の蒸気圧の高さ故に極めて困難である。このため通常は
非晶質Tl2Ba2CaCu2xを基板上に積層させ、こ
れを1気圧酸素・Tl蒸気中で800−900℃程度の
高温熱処理を行うが、この場合大きな島状成長が起こ
り、面内オリエンテーションもランダムになってしま
う。
In the heteroepitaxial growth of the Bi-based superconductor on the SrTiO 3 substrate, [110] SrTiO 3 [1
[00] Tl-based superconductor is epitaxially grown due to its orientation, and its lattice mismatch is about 2%, which is extremely effective for epitaxial growth. However, it is extremely difficult to synthesize a Tl-based oxide superconductor in-situ because of its high vapor pressure. For this reason, usually, amorphous Tl 2 Ba 2 CaCu 2 O x is laminated on a substrate, and this is subjected to a high temperature heat treatment at about 800-900 ° C. in 1 atm oxygen / Tl vapor. Occurs, and the in-plane orientation becomes random.

【0008】一方、比較的低温から成長するTl2Ba2
CuOx層の非晶質極薄膜を最初に積層させ、これを8
00℃以下の低温熱処理することにより、基板格子に束
縛されたヘテロエピタキシャル成長した極薄Tl2Ba2
CuOx薄膜を形成することができる。ここで極薄膜を
用いることにより800℃以下の低温でも十分に固相反
応が進行し、また基板表面に強く束縛されたヘテロエピ
タキシャル成長が容易となる。この極薄の単結晶Tl2
Ba2CuOx層をバッファー層として用いることで従来
法によるTl系超電導薄膜合成方法を実行した場合、バ
ッファー層から固相反応が進行し島状成長が少なく、か
つ面内方位がバッファー層に一致した単結晶Tl系超電
導薄膜を合成することができる。このバッファー層を成
長させる方法としては、前述した極薄非晶質Tl2Ba2
CuOx膜を低温熱処理する方法の他、in−situ
で極薄Ba2CuOxをヘテロエピタキシャル成長させ、
これを1気圧酸素・Tl蒸気中で処理してヘテロエピタ
キシャル成長した極薄Tl2Ba2CuOxバッファー層
を形成する方法、また結晶構造の類似したBi系220
1層をin−situに成長させてこれをバッファー層
とする方法等が有効である。
On the other hand, Tl 2 Ba 2 which grows at a relatively low temperature
The amorphous ultrathin film of CuO x layer is first laminated, and this is
Heteroepitaxially grown ultrathin Tl 2 Ba 2 bound to the substrate lattice by low temperature heat treatment at 00 ° C or lower
A CuO x thin film can be formed. By using an ultrathin film, the solid-phase reaction sufficiently proceeds even at a low temperature of 800 ° C. or less, and heteroepitaxial growth strongly bound to the substrate surface becomes easy. This ultra-thin single crystal Tl 2
When the conventional method for synthesizing a Tl-based superconducting thin film by using the Ba 2 CuO x layer as the buffer layer is performed, solid-phase reaction proceeds from the buffer layer to reduce island growth, and the in-plane orientation matches the buffer layer. The single crystal Tl-based superconducting thin film can be synthesized. As a method for growing this buffer layer, the ultrathin amorphous Tl 2 Ba 2 described above is used.
In addition to the method of low temperature heat treatment of the CuO x film, in-situ
Heteroepitaxially grows very thin Ba 2 CuO x with
This is treated in oxygen / Tl vapor at 1 atm to form an ultrathin Tl 2 Ba 2 CuO x buffer layer heteroepitaxially grown, and a Bi-based 220 having a similar crystal structure.
It is effective to grow one layer in-situ and use this as a buffer layer.

【0009】さらに傾斜SrTiO3基板を用いたTl
系超電導体薄膜合成方法により合成されたTl系超電導
体薄膜では、面内においてa軸とb軸とが完全に分離し
た単結晶薄膜となっている。一般にTl系超電導体では
b軸方向に基本格子の約5倍周期のインコメンシュレー
トな変調構造を有している。通常のSrTiO3(00
1)基板面を用いた成膜では膜はドメイン構造を形成
し、膜のRHEEDにおいてこの変調構造は基板の[1
10]および[1 -1 0]方向の両方向から観察される。
つまり膜は互いに直行する2種類のドメインからなって
いる。これに対し、(100)SrTiO3基板を[1
11]方向に1゜〜20゜傾けた傾斜研磨基板上に膜を
成長させた場合、膜のb軸は[110]方向に揃い、さ
らに膜のc軸は基板の[001]方向に一致する様にエ
ピタキシャル成長する。即ちSrTiO3基板上には傾
斜させた角度に対応してステップ構造が形成され、膜の
c軸は基板面上のテラス面に垂直にエピタキシャル成長
するために、基板面に対しc軸が基板の傾斜角度分[1
-1 0]方向に傾いている。この傾斜基板上の膜は実質的
に膜のa,b,c軸の方向がすべて揃ったいわゆる単結
晶膜となり、高温酸化物超電導体特有の電気伝導異方性
を利用したデバイスを作成するうえで極めて重要であ
る。
Furthermore, Tl using a tilted SrTiO 3 substrate
The Tl-based superconductor thin film synthesized by the system-based superconductor thin film synthesis method is a single crystal thin film in which the a-axis and the b-axis are completely separated in the plane. Generally, a Tl-based superconductor has an incommensurate modulation structure with a period about 5 times that of the basic lattice in the b-axis direction. Normal SrTiO 3 (00
1) In film formation using the substrate surface, the film forms a domain structure, and in RHEED of the film, this modulation structure is
10] and [1 -10] directions.
That is, the film is composed of two types of domains that are orthogonal to each other. On the other hand, the (100) SrTiO 3 substrate was
When a film is grown on an inclined polished substrate inclined by 1 to 20 ° in the 11] direction, the b axis of the film is aligned with the [110] direction, and the c axis of the film is aligned with the [001] direction of the substrate. Epitaxial growth. That is, a step structure is formed on the SrTiO 3 substrate corresponding to the tilted angle, and the c-axis of the film is epitaxially grown perpendicularly to the terrace surface on the substrate surface, so that the c-axis is tilted with respect to the substrate surface. Angle minutes [1
-10 0] direction. The film on this tilted substrate is a so-called single crystal film in which the directions of the a, b, and c axes of the film are all substantially aligned, and is useful for producing a device utilizing the electrical conduction anisotropy peculiar to a high-temperature oxide superconductor. Is extremely important.

【0010】[0010]

【実施例】以下に、本発明の実施例について説明する。
Tl系酸化物超電導体薄膜合成にはイオンビームスパッ
タ装置を用いた。この装置ではマイクロ波励起による原
子酸素を酸化源としており、基板付近の酸素分圧が約1
-3Torrであった。この時の活性酸素の基板付近で
の到達量は2×1015個/cm2s程度である。また膜
成長速度は約400オングストローム/Hであり、Bi
2Sr2CuOx、Tl2O、Ba2CuOxおよびBa2
aCu2xのターゲットを備え、4つのスパッタソース
を独立に制御することにより、in−situに極薄単
結晶Bi2Sr2CuOxバッファー層を合成することが
できるとともに、室温成膜プロセス中Tl組成のコント
ロール、およびバッファー層Tl2Ba2CuOxと超電
導層Tl2Ba2CaCu2xの組成コントロールができ
るようになっている。
EXAMPLES Examples of the present invention will be described below.
An ion beam sputtering apparatus was used for synthesizing the Tl-based oxide superconductor thin film. This device uses atomic oxygen excited by microwaves as an oxidation source, and the oxygen partial pressure near the substrate is about 1
It was 0 −3 Torr. At this time, the amount of active oxygen reaching the vicinity of the substrate is about 2 × 10 15 pieces / cm 2 s. The film growth rate is about 400 Å / H, and Bi
2 Sr 2 CuO x , Tl 2 O, Ba 2 CuO x and Ba 2 C
By providing a target of aCu 2 O x and independently controlling four sputter sources, an ultra-thin single crystal Bi 2 Sr 2 CuO x buffer layer can be synthesized in-situ and at the same time as the room temperature deposition process. The composition of the Tl composition and the composition of the buffer layer Tl 2 Ba 2 CuO x and the superconducting layer Tl 2 Ba 2 CaCu 2 O x can be controlled.

【0011】図2は本発明にかかる傾斜SrTiO3
板の表面状態の模式図を示す。基板は(001)面を
[111]方向に1度〜20度傾斜させてメカノケミカ
ル研磨したものである。基板面にはSrTiO3のペロ
ブスカイト1ユニットセルに相当する3.9オングスト
ロームの段差(ステップ)が規則的に形成されており、
例えば4度傾斜の場合、テラス幅は約50オングストロ
ームごとに1ステップが形成される。この様子は断面T
EM及びRHEEDで確認され、特にRHEEDでは電
子線を[1 -1 0]SrTiO3方向に入射させた場合、
約50オングストローム幅のテラスに対応してその基本
反射ストリークの分裂がみられる。
FIG. 2 shows a schematic view of the surface state of the inclined SrTiO 3 substrate according to the present invention. The substrate has a (001) plane tilted by 1 to 20 degrees in the [111] direction and is mechanochemically polished. On the substrate surface, steps of 3.9 angstroms corresponding to one unit cell of SrTiO 3 perovskite are regularly formed.
For example, in the case of a tilt of 4 degrees, the terrace width forms one step every about 50 angstroms. This is the cross section T
It was confirmed by EM and RHEED, and especially in RHEED, when an electron beam is incident in the [1 -10] SrTiO 3 direction,
The splitting of the basic reflection streak is seen corresponding to the terrace of about 50 angstrom width.

【0012】図3は第1の発明を適応した極薄Tl2
2CuOx薄膜によるバッファー層を用いた場合の薄膜
合成プロセスフローチャートである。非晶質Tl2Ba2
CuOxによるバッファー層形成方法では、まず図3
(a)のように傾斜SrTiO3基板1上に室温でTl2
Ba2CuOxターゲットを用いて非晶質Tl2Ba2Cu
xを約100オングストローム積層する。これを図3
(b)のような1気圧酸素・Tl雰囲気の電気炉3中で
約800度程度で短時間熱処理することにより、極薄の
Tl2Ba2CuOx層5が傾斜SrTiO3基板上にエピ
タキシャル成長する(図3(c))。またこの時すでに
膜面内のa,b軸の方位は基板のステップに束縛され、
膜のb軸は[1 -1 0]SiTiO3方向に揃った単結晶
薄膜となっている。このバッファー上に図3(d)のよ
うに室温で非晶質Tl2Ba2CaCu2x6を所定の厚
さ積層させ、再度、図3(e)のように1気圧酸素・T
l雰囲気中で熱処理することにより膜全体が基板に対し
てヘテロエピタキシャル成長した単結晶Tl2Ba2Ca
Cu2x薄膜7を合成することができる(図3
(f))。
FIG. 3 shows an ultrathin Tl 2 B according to the first invention.
It is a thin film synthesis process flowchart in the case of using the buffer layer by a 2 CuO x thin film. Amorphous Tl 2 Ba 2
In the buffer layer forming method using CuO x , first, referring to FIG.
As shown in (a), Tl 2 is formed on the inclined SrTiO 3 substrate 1 at room temperature.
Amorphous Tl 2 Ba 2 Cu using Ba 2 CuO x target
Laminate about 100 Å of O x . Figure 3
By performing a heat treatment at about 800 ° C. for a short time in the electric furnace 3 in the atmosphere of 1 atmosphere of oxygen and Tl as shown in (b), the extremely thin Tl 2 Ba 2 CuO x layer 5 is epitaxially grown on the graded SrTiO 3 substrate. (FIG.3 (c)). At this time, the orientations of the a and b axes in the film plane are already bound to the steps of the substrate,
The b-axis of the film is a single crystal thin film aligned in the [1 -10] SiTiO 3 direction. Amorphous Tl 2 Ba 2 CaCu 2 O x 6 was laminated on the buffer at room temperature as shown in FIG. 3D to a predetermined thickness, and again, as shown in FIG.
The entire film was heteroepitaxially grown on the substrate by heat treatment in an atmosphere of single crystal Tl 2 Ba 2 Ca.
The Cu 2 O x thin film 7 can be synthesized (see FIG. 3).
(F)).

【0013】また図3(a)−(c)のプロセスで形成
される極薄Tl2Ba2CuOx単結晶バッファー層の合
成方法としては、第2の発明の方法を用いることも可能
である。この発明にかかる方法では、傾斜基板上にまず
Ba2CuOxのエピタキシャル膜をin−situで形
成させる。Ba2CuOxのエピタキシャル薄膜は10-3
Torr程度の酸素雰囲気中、約650℃程度の基板温
度で容易にin−situ合成される。このBa2Cu
xのエピタキシャル薄膜を図3(b)の熱処理プロセ
スにより膜中にTlを固相拡散させることで単結晶Tl
2Ba2CuOxバッファーを合成できる。
The method of the second invention can also be used as a method of synthesizing the ultrathin Tl 2 Ba 2 CuO x single crystal buffer layer formed by the processes of FIGS. 3 (a) to 3 (c). .. In the method according to the present invention, the Ba 2 CuO x epitaxial film is first formed in-situ on the inclined substrate. The epitaxial thin film of Ba 2 CuO x is 10 −3
In-situ synthesis is easily performed at a substrate temperature of about 650 ° C. in an oxygen atmosphere of about Torr. This Ba 2 Cu
The epitaxial thin film of O x is subjected to the heat treatment process of FIG.
A 2 Ba 2 CuO x buffer can be synthesized.

【0014】さらに第3の発明によって、Bi系酸化物
超電導体(Bi2Sr2CuOx)をバッファーとして用
いることで単結晶Tl2Ba2CaCu2xを合成するこ
とが可能である。Tl系酸化物超電導体と極めて類似し
ているBi系酸化物超電導体のBi2Sr2CuOxは基
板温度600℃、酸素分圧10-3Torr程度の条件で
容易に合成される。このBi2Sr2CuOxはTl系酸
化物超電導体と面内格子定数はほぼ一致し格子整合性に
優れると共に、b軸方向にインコメンシュレート変調構
造が存在する等、Tl系超電導体の結晶構造と酷似して
いる。
Further, according to the third invention, it is possible to synthesize a single crystal Tl 2 Ba 2 CaCu 2 O x by using a Bi-based oxide superconductor (Bi 2 Sr 2 CuO x ) as a buffer. Bi 2 Sr 2 CuO x, which is a Bi-based oxide superconductor very similar to the Tl-based oxide superconductor, is easily synthesized under the conditions of a substrate temperature of 600 ° C. and an oxygen partial pressure of about 10 −3 Torr. This Bi 2 Sr 2 CuO x has an in-plane lattice constant substantially equal to that of the Tl-based oxide superconductor and is excellent in lattice matching, and also has an incommensurate rate modulation structure in the b-axis direction. It is very similar to the crystal structure.

【0015】これらのバッファー層上に非晶質Tl2
2CaCu2xを室温で積層させ、これを図3(e)
のように800℃〜950℃程度の温度で1気圧酸素・
Tl雰囲気中で熱処理を行うと、下地のTl2Ba2Cu
xもしくはBi2Sr2CuOxをテンプレートとしてこ
こから固相成長による単結晶Tl2Ba2CaCu2x
膜が成長する。
Amorphous Tl 2 B is formed on these buffer layers.
a 2 CaCu 2 O x is laminated at room temperature, and this is shown in FIG.
1 atmosphere of oxygen at a temperature of about 800 ° C to 950 ° C.
When heat treatment is performed in a Tl atmosphere, the underlying Tl 2 Ba 2 Cu
O x or Bi 2 Sr 2 CuO x single crystal by the solid phase growth from here as a template Tl 2 Ba 2 CaCu 2 O x thin film grows.

【0016】これらの方法により、Tl2Ba2CaCu
2x単結晶薄膜が合成できたことはRHEEDパターン
およびX線回折により確認できた。この膜構造を図1に
示す。膜は前述のようにTl2Ba2CuOx5もしくは
Bi2Sr2CuOxがバッファー層として形成され、基
板と超電導層との反応を抑えかつ面内方位が揃った単結
晶薄膜7となっている。図1において、まず傾斜基板表
面上には傾斜角度に従いステップ8が形成されていて、
これは[1 -1 0]方向にほぼ等間隔に形成される。この
ステップがバッファー層の結晶成長時のニュークリエイ
ションサイトとなる。ステップに沿って結晶成長が進む
とき変調構造はステップと直行する方向に形成されるた
めに、膜(バッファー)はステップと平行方向にa軸
が、またステップと直行方向にb軸が揃い単結晶膜とし
て成長する。さらに膜はc軸がテラス垂直に成長するた
め基板面に対して基板面に対するc軸は基板の傾斜分だ
け傾いている。このバッファー層上のTl2Ba2CaC
2x膜はバッファーに完全にエピタキシャル成長する
ために、単結晶Tl2Ba2CaCu2x膜が成長する。
もちろんこのTl2Ba2CaCu2x膜のc軸ももとの
SrTiO3基板面から傾斜角度分傾いている。
By these methods, Tl 2 Ba 2 CaCu
It was confirmed by RHEED pattern and X-ray diffraction that the 2 O x single crystal thin film could be synthesized. This film structure is shown in FIG. As described above, the film is formed of Tl 2 Ba 2 CuO x 5 or Bi 2 Sr 2 CuO x as a buffer layer, and becomes a single crystal thin film 7 in which the reaction between the substrate and the superconducting layer is suppressed and the in-plane orientation is uniform. There is. In FIG. 1, first, step 8 is formed according to the inclination angle on the inclined substrate surface,
This is formed in the [1 -10] direction at substantially equal intervals. This step becomes the creation site during crystal growth of the buffer layer. Since the modulation structure is formed in the direction orthogonal to the step when the crystal growth proceeds along the step, the film (buffer) has the a-axis in the direction parallel to the step and the b-axis in the direction orthogonal to the step. It grows as a film. Further, since the c-axis of the film grows perpendicular to the terrace, the c-axis with respect to the substrate surface is inclined by the inclination of the substrate. Tl 2 Ba 2 CaC on this buffer layer
Since the u 2 O x film grows completely epitaxially in the buffer, a single crystal Tl 2 Ba 2 CaCu 2 O x film grows.
Of course, the c-axis of this Tl 2 Ba 2 CaCu 2 O x film is also tilted from the original SrTiO 3 substrate surface by the tilt angle.

【0017】この傾いた単結晶膜の電気的特性は極めて
特異的である。膜のa軸方向([110]SrTiO3
方向)は通常の金属的電気伝導特性を示し、110K程
度の良好な超電導転移を示す。これに対し、b軸方向
([1 -1 0]SrTiO3方向)では半導体的電気伝導
特性を示し、同様に110K程度の超電導転移を示す。
この電気伝導特性はバルク単結晶のc軸方向の電気伝導
特性と同様である。これは膜のb軸方向の異方性を反映
したものではない。バルク単結晶の伝導度測定からa,
b面内の比抵抗に対しc軸方向の比抵抗は4桁以上高
い。傾斜基板を用いていることにより[1 -1 0]方向の
電気伝導ではc軸が傾いていることにより、その伝導パ
スにc軸が含まれる。このためにc軸方向の電気伝導の
異方性がエピタキシャル膜の基板面内の電気伝導異方性
として観測されたと解釈できる。このようなc軸の電気
伝導異方性が傾斜基板上のエピタキシャル膜面内で現れ
ていることはデバイス応用上極めて有用である。なお、
本実施例では、イオンビームスパッタ装置を用いたが、
これに限らず、真空蒸着装置においても酸化物超電導薄
膜合成に有効である。
The electrical characteristics of this tilted single crystal film are extremely specific. A-axis direction of the film ([110] SrTiO 3
(Direction) indicates a normal metallic electric conduction characteristic, and shows a good superconducting transition of about 110K. On the other hand, in the b-axis direction ([1 -10] SrTiO 3 direction), semiconductor-like electric conduction characteristics are exhibited, and similarly, superconducting transition of about 110 K is exhibited.
This electric conduction characteristic is similar to the electric conduction characteristic of the bulk single crystal in the c-axis direction. This does not reflect the anisotropy of the film in the b-axis direction. From the conductivity measurement of bulk single crystal a,
The specific resistance in the c-axis direction is higher than the specific resistance in the b-plane by four digits or more. Since the c-axis is inclined in the electric conduction in the [1 -10] direction due to the use of the inclined substrate, the conduction path includes the c-axis. Therefore, it can be interpreted that the electric conduction anisotropy in the c-axis direction was observed as electric conduction anisotropy in the substrate surface of the epitaxial film. It is extremely useful for device application that such c-axis electric conduction anisotropy appears in the plane of the epitaxial film on the inclined substrate. In addition,
In this embodiment, an ion beam sputtering device was used,
Not limited to this, it is also effective for synthesizing an oxide superconducting thin film in a vacuum vapor deposition apparatus.

【0018】[0018]

【発明の効果】以上のように、本発明を適用することに
より超電導特性の良好なTl系の単結晶エピタキシャル
超電導膜を容易に合成することができる。また傾斜基板
上の単結晶薄膜は、その電気的異方性を用いたデバイス
応用上極めて有用である。
As described above, by applying the present invention, a Tl-based single crystal epitaxial superconducting film having excellent superconducting properties can be easily synthesized. Further, the single crystal thin film on the inclined substrate is extremely useful for device application using its electrical anisotropy.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の方法で合成される傾斜基板を用いたT
l系超電導薄膜の断面構造を示す図である。
FIG. 1 is a schematic view of T using an inclined substrate synthesized by the method of the present invention.
It is a figure which shows the cross-section of the 1 type superconducting thin film.

【図2】本発明の方法に用いられる[111]方向に傾
斜させた(001)SrTiO3基板の表面ステップ構
造を示す図である。
FIG. 2 is a diagram showing a surface step structure of a (001) SrTiO 3 substrate tilted in the [111] direction used in the method of the present invention.

【図3】本発明の一実施例の合成プロセスフローチャー
ト図である。
FIG. 3 is a flow chart diagram of a synthesis process of one embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 SrTiO3基板 2 非晶質Tl2Ba2CuOx層 3 電気炉 4 Tlを封入した容器 5 Tl2Ba2CuOxエピタキシャル層(バッファー
層) 6 非晶質Tl2Ba2CaCu2x膜 7 単結晶Tl2Ba2CaCu2x薄膜 8 ステップ
1 SrTiO 3 substrate 2 amorphous Tl 2 Ba 2 CuO x layer 3 electric furnace 4 container enclosing Tl 5 Tl 2 Ba 2 CuO x epitaxial layer (buffer layer) 6 amorphous Tl 2 Ba 2 CaCu 2 O x film 7 Single crystal Tl 2 Ba 2 CaCu 2 O x thin film 8 steps

フロントページの続き (72)発明者 佐藤 哲朗 東京都港区芝5丁目7番1号 日本電気株 式会社内Continued Front Page (72) Inventor Tetsuro Sato 5-7-1 Shiba, Minato-ku, Tokyo NEC Corporation

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 Tl系酸化物超電導薄膜のチタン酸スト
ロンチウム基板上への合成方法において、非晶質Tl2
Ba2CuOxを基板上に積層し、次いで酸素・Tl蒸気
中で熱処理を行うことにより基板上にヘテロエピタキシ
ャル成長した極薄Tl2Ba2CuOx膜を形成し、該膜
をバッファー層として用いることを特徴とする単結晶T
l系酸化物超電導薄膜合成方法。
1. A method for the synthesis of the Tl-based oxide superconducting thin film of strontium titanate substrate, amorphous Tl 2
Forming an ultrathin Tl 2 Ba 2 CuO x film heteroepitaxially grown on a substrate by laminating Ba 2 CuO x on a substrate and then performing heat treatment in oxygen / Tl vapor, and using the film as a buffer layer Single crystal T characterized by
Method for synthesizing 1-based oxide superconducting thin film.
【請求項2】 Tl系酸化物超電導薄膜のチタン酸スト
ロンチウム基板上への合成方法において、酸化雰囲気中
で基板上にBa2CuOxをヘテロエピタキシャル成長さ
せ、これを1気圧酸素およびTl蒸気中で熱処理を行う
ことにより固相反応でBa2CuOxにTlを拡散させて
SrTiO3基板上にヘテロエピタキシャル成長した極
薄Tl2Ba2CuOx膜を形成し、該膜をバッファー層
として用いることを特徴とする単結晶Tl系酸化物超電
導薄膜合成方法。
2. A method for synthesizing a Tl-based oxide superconducting thin film on a strontium titanate substrate, wherein Ba 2 CuO x is heteroepitaxially grown on the substrate in an oxidizing atmosphere, and heat-treated in 1 atmosphere oxygen and Tl vapor. By diffusing Tl in Ba 2 CuO x by a solid-state reaction to form an ultrathin Tl 2 Ba 2 CuO x film heteroepitaxially grown on a SrTiO 3 substrate, and using the film as a buffer layer. A method for synthesizing a single crystal Tl-based oxide superconducting thin film.
【請求項3】 Tl系酸化物超電導薄膜のチタン酸スト
ロンチウム基板上への合成方法において、単結晶Bi2
Sr2CuOxを基板上に成長させ、これをバッファー層
として用いることを特徴とする単結晶Tl系酸化物超電
導薄膜合成方法。
3. A method for synthesizing a Tl-based oxide superconducting thin film on a strontium titanate substrate, comprising a single crystal Bi 2
A method for synthesizing a single crystal Tl-based oxide superconducting thin film, which comprises growing Sr 2 CuO x on a substrate and using this as a buffer layer.
【請求項4】 チタン酸ストロンチウム(001)単結
晶基板面に対し、その法線から[111]方向に傾けて
研磨することにより[1 -1 0]方向にステップを形成し
た基板面をTl系酸化物超電導薄膜合成用基板として用
いる請求項1〜3のいずれかに記載の単結晶Tl系酸化
物超電導薄膜合成方法。
4. A strontium titanate (001) single crystal substrate surface is tilted in the [111] direction from its normal line and polished to form a step in the [1 -10] direction to form a Tl-based substrate surface. The method for synthesizing a single crystal Tl-based oxide superconducting thin film according to claim 1, which is used as a substrate for synthesizing an oxide superconducting thin film.
【請求項5】 極薄単結晶Tl2Ba2CuOxバッファ
ー層もしくは極薄単結晶Bi2Sr2CuOxバッファー
層上に非晶質Tl2Ba2CaCu2xを積層させ、これ
を1気圧酸素およびTl蒸気中で熱処理することで、単
結晶バッファー層に束縛された固相反応により単結晶T
2Ba2CaCu2x薄膜を合成する請求項4記載の単
結晶Tl系酸化物超電導薄膜合成方法。
5. An amorphous Tl 2 Ba 2 CaCu 2 O x layered on an ultrathin single crystal Tl 2 Ba 2 CuO x buffer layer or an ultrathin single crystal Bi 2 Sr 2 CuO x buffer layer, By heat treatment in atmospheric pressure oxygen and Tl vapor, the single crystal T is bound by the solid-phase reaction bound to the single crystal buffer layer.
The method for synthesizing a single crystal Tl-based oxide superconducting thin film according to claim 4, wherein an l 2 Ba 2 CaCu 2 O x thin film is synthesized.
JP4100201A 1992-03-27 1992-03-27 Synthesis of oxide superconductor thin film Pending JPH05279192A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4100201A JPH05279192A (en) 1992-03-27 1992-03-27 Synthesis of oxide superconductor thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4100201A JPH05279192A (en) 1992-03-27 1992-03-27 Synthesis of oxide superconductor thin film

Publications (1)

Publication Number Publication Date
JPH05279192A true JPH05279192A (en) 1993-10-26

Family

ID=14267693

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4100201A Pending JPH05279192A (en) 1992-03-27 1992-03-27 Synthesis of oxide superconductor thin film

Country Status (1)

Country Link
JP (1) JPH05279192A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1985002694A1 (en) * 1983-12-06 1985-06-20 Fanuc Ltd. Programmable controller
US5856204A (en) * 1995-09-28 1999-01-05 Matsushita Electric Industrial Co., Ltd. Tunnel-type Josephson element and method for manufacturing the same
WO2002020879A1 (en) * 2000-09-01 2002-03-14 Japan Science And Technology Corporation Production method for composite oxide thin film and device therefor and composite oxide film produced thereby
WO2012165504A1 (en) * 2011-05-31 2012-12-06 古河電気工業株式会社 Oxide superconductor thin film, superconducting fault current limiter, and method for manufacturing oxide superconductor thin film

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1985002694A1 (en) * 1983-12-06 1985-06-20 Fanuc Ltd. Programmable controller
US5856204A (en) * 1995-09-28 1999-01-05 Matsushita Electric Industrial Co., Ltd. Tunnel-type Josephson element and method for manufacturing the same
WO2002020879A1 (en) * 2000-09-01 2002-03-14 Japan Science And Technology Corporation Production method for composite oxide thin film and device therefor and composite oxide film produced thereby
US7335283B2 (en) 2000-09-01 2008-02-26 Japan Science And Technology Corporation Production method for composite oxide thin film and device therefor and composite oxide film produced thereby
WO2012165504A1 (en) * 2011-05-31 2012-12-06 古河電気工業株式会社 Oxide superconductor thin film, superconducting fault current limiter, and method for manufacturing oxide superconductor thin film
JPWO2012165504A1 (en) * 2011-05-31 2015-02-23 古河電気工業株式会社 Oxide superconducting thin film, superconducting fault current limiter, and oxide superconducting thin film manufacturing method
US9105794B2 (en) 2011-05-31 2015-08-11 Furukawa Electric Co., Ltd. Oxide superconductor thin film, superconducting fault current limiter, and method for manufacturing oxide superconductor thin film

Similar Documents

Publication Publication Date Title
JP3854551B2 (en) Oxide superconducting wire
JPH01320224A (en) Combined structure of superconductor and substrate, superconductor device, superconductor structure and combined structure of superconductor and galliumate
US20090197770A1 (en) Bismuth based oxide superconductor thin films and method of manufacturing the same
JPH02177381A (en) Tunnel junction element of superconductor
JPH05279192A (en) Synthesis of oxide superconductor thin film
JPH04300292A (en) Film forming method for multicomponent oxide film superconducting film
JP2653003B2 (en) Oxide superconducting thin film synthesis method
CN1312332C (en) Oxide high-temperature superconductor and its production method
JP2747173B2 (en) Oxide high temperature superconductor single crystal thin film forming method
Speller et al. Buffer layers for Tl-2212 thin films on MgO and sapphire substrates
Catana et al. Domain growth of Dy2O3 buffer layers on SrTiO3
JP2716595B2 (en) Substrate for forming oxide superconductor single crystal thin film and method for producing the same
JP2561303B2 (en) Method for producing single crystal oxide superconducting thin film
JP2959290B2 (en) Superconducting laminated thin film and manufacturing method thereof
JP3024203B2 (en) Oxide superconducting thin film synthesis method
JP2852753B2 (en) Oxide superconductor element and method for producing oxide superconductor thin film
US7981840B2 (en) Method of manufacturing Bi-based oxide superconductor thin films
JP2006273699A (en) METHOD OF MANUFACTURING HIGH QUALITY Bi-BASED OXIDE SUPERCONDUCTOR THIN FILM
US5362709A (en) Superconducting device
JPH03275504A (en) Oxide superconductor thin film and its production
JP4326634B2 (en) Mercury-based cuprate superconducting thin film and manufacturing method
JP2844206B2 (en) Oxide superconductor element and method for producing oxide superconductor thin film
JP2958645B2 (en) Oxide superconductor element and method for producing oxide superconductor thin film
JP3045705B2 (en) Oxide-based superconducting material, method for producing the same, and apparatus using the same
JP2710870B2 (en) Method of laminating thin films of different materials on oxide superconducting thin film