JP2653003B2 - Oxide superconducting thin film synthesis method - Google Patents

Oxide superconducting thin film synthesis method

Info

Publication number
JP2653003B2
JP2653003B2 JP3184195A JP18419591A JP2653003B2 JP 2653003 B2 JP2653003 B2 JP 2653003B2 JP 3184195 A JP3184195 A JP 3184195A JP 18419591 A JP18419591 A JP 18419591A JP 2653003 B2 JP2653003 B2 JP 2653003B2
Authority
JP
Japan
Prior art keywords
substrate
film
thin film
srtio
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP3184195A
Other languages
Japanese (ja)
Other versions
JPH059100A (en
Inventor
淳一 藤田
務 吉武
哲朗 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP3184195A priority Critical patent/JP2653003B2/en
Publication of JPH059100A publication Critical patent/JPH059100A/en
Application granted granted Critical
Publication of JP2653003B2 publication Critical patent/JP2653003B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、酸化物超電導薄膜の合
成方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for synthesizing an oxide superconducting thin film.

【0002】[0002]

【従来の技術】超電導薄膜は、ジョセフソン接合による
量子磁気干渉素子や、超電導LSI配線、超電導能動素
子への応用上欠かせないものである。近年、1987年
2月米国ヒュ―ストン大学チュ―(Chu)らにより発見
された臨界温度90K級のY系酸化物超電導体をはじめ
とし、金属材料技術研究所の前田らによる臨界温度11
0K級のBi系酸化物超電導体、さらに米国ア―カンサ
ス大学のシェン(Z. Z.Sheng)らによる臨界温度120
K級のTl系酸化物超電導体と、液体窒素温度を越える
臨界温度をもつ酸化物超電導体が相次いで発見された。
このことより、従来液体ヘリウム(He)を用いなけれ
ばならなかった超電導応用デバイスが液体窒素で実現で
きることになり、特にこれら酸化物超電導体の薄膜化は
液体窒素温度以上で動くジョセフソン能動デバイスや超
電導LSI配線を実現し、その応用は広く利用され得
る。さて、この酸化物超電導体薄膜デバイス応用の見地
から成膜後に高温熱処理を必要としない、いわゆる“そ
の場”(in−situ)合成が重要である。またデバ
イス応用の見地から基板上に超電導薄膜をエピタキシャ
ル成長させ、かつその上に連続的にバリア層などもヘテ
ロエピタキシャル成長させる必要がある。そのためには
膜表面に島状成長や異相のない極めて平坦な薄膜を合成
する技術が不可欠となる。Bi系超電導薄膜のin−s
itu合成技術においては、レ―ザ―アブレ―ションに
よる方法、RFマグネトロンスパッタによる方法、真空
蒸着による方法、イオンビ―ムスパッタによる方法など
さまざまな成膜方法が報告されているが、特に成膜中の
酸素分圧の低い環境での成膜となる真空蒸着、イオンビ
―ムスパッタ方法では薄膜表面に発生する島状成長や異
相の発生がデバイス応用上重大な問題となっている。
2. Description of the Related Art Superconducting thin films are indispensable for applications to quantum magnetic interference devices based on Josephson junctions, superconducting LSI wiring, and superconducting active devices. In recent years, including a Y-type oxide superconductor with a critical temperature of 90 K class discovered by the University of Houston, Chu et al. In February 1987, a critical temperature of 11 by Maeda et al.
0K-class Bi-based oxide superconductors, and a critical temperature of 120 from ZZ Sheng et al.
K-class Tl-based oxide superconductors and oxide superconductors having a critical temperature exceeding liquid nitrogen temperature have been discovered one after another.
This means that superconducting applied devices which had to use liquid helium (He) in the past can be realized with liquid nitrogen. In particular, thinning of these oxide superconductors can be achieved by using a Josephson active device that operates at a temperature higher than the liquid nitrogen temperature, A superconducting LSI wiring is realized, and its application can be widely used. From the viewpoint of application of the oxide superconductor thin film device, what is called "in-situ" synthesis that does not require high-temperature heat treatment after film formation is important. In addition, from the viewpoint of device application, it is necessary to epitaxially grow a superconducting thin film on a substrate, and to continuously perform heteroepitaxial growth of a barrier layer and the like thereon. For that purpose, a technique for synthesizing an extremely flat thin film having no island-like growth or a different phase on the film surface is indispensable. In-s of Bi-based superconducting thin film
In the itu synthesis technology, various film formation methods such as a method using laser abrasion, a method using RF magnetron sputtering, a method using vacuum deposition, and a method using ion beam sputtering have been reported. In vacuum deposition or ion beam sputtering, which forms a film in an environment having a low oxygen partial pressure, island-like growth or generation of a heterogeneous phase on the surface of the thin film is a serious problem in device application.

【0003】[0003]

【発明が解決しようとする課題】酸化物高温超電導薄膜
におけるin−situ合成においては、as−gro
wnでの超電導性を有することと同時に、薄膜表面の平
坦性が良好であることが重要である。as−grown
膜での超電導特性を出すためには表面マイグレ―ション
が十分な程度の成膜温度が必要とされる。しかし、Sr
TiO3基板を用いた場合、この成膜温度において直接
成膜を開始した場合には初期の基板界面での膜成長過程
において基板との反応により異相の発生や島状成長が起
こり、この島状成長および異相の跡が最後まで膜表面の
モフォロジ―として残ってしまう。本発明の目的は、膜
表面の島状成長粒および異相の発生がなく、平坦性の良
好なBi系超電導薄膜をin−situに合成する方法
を提供することにある。
In the in-situ synthesis of an oxide high-temperature superconducting thin film, as-gro
It is important that the thin film surface has good flatness while having superconductivity at wn. as-grown
In order to obtain superconducting properties in the film, a film formation temperature at which surface migration is sufficient is required. However, Sr
When a TiO 3 substrate is used, if a film is directly formed at this film forming temperature, a heterogeneous phase or an island-like growth occurs due to a reaction with the substrate during the initial film growth process at the substrate interface. Traces of growth and different phases remain as morphologies on the film surface to the end. An object of the present invention is to provide a method for in-situ synthesizing a Bi-based superconducting thin film having good flatness without occurrence of island-like growth grains and foreign phases on the film surface.

【0004】[0004]

【課題を解決するための手段】本発明は、Bi系酸化物
超電導単結晶薄膜のチタン酸ストロンチウム(100)
基板上への“その場”(in−situ)合成方法にお
いて、膜成長初期の基板温度を550〜650℃に設定
し、BiSrCuOをバッファー層として基板上
にヘテロエピタキシャル成長させ、その後基板温度をB
SrCaCuの超電導薄膜合成温度まで上
げて超電導単結晶薄膜を成長させることを特徴とする酸
化物超電導薄膜合成方法である。本発明の方法におい
て、SrTiO(100)基板上に、まずSrTiO
を基板温度500〜600℃でホモエピタキシャル成
長させた後、BiSrCaCuを成長させる
ことを好適とし、また、SrTiO(100)単結晶
基板面に対し、その法線から(111)方向に傾けて研
磨することにより<1−10>方向にステップを形成し
た基板面をBi系酸化物超電導薄膜合成用基板として用
いることを好適とする。
SUMMARY OF THE INVENTION The present invention provides a strontium titanate (100) for a Bi-based oxide superconducting single crystal thin film.
In "in situ" (in-situ) synthesis of the substrate, the substrate temperature of film growth initially 550 to 650 ° C., the Bi 2 Sr 2 CuO x is hetero-epitaxially grown on the substrate as a buffer layer, then Substrate temperature B
A method for synthesizing an oxide superconducting thin film, which comprises growing a superconducting single crystal thin film by raising the temperature to a superconducting thin film synthesizing temperature of i 2 Sr 2 CaCu 2 O x . In the method of the present invention, first, SrTiO 3 (100)
3 is preferably homoepitaxially grown at a substrate temperature of 500 to 600 ° C., and then Bi 2 Sr 2 CaCu 2 O x is grown, and the SrTiO 3 (100) single crystal substrate surface has a normal line ( It is preferable to use the substrate surface on which steps are formed in the <1-10> direction by polishing while tilting in the 111) direction as a substrate for synthesizing a Bi-based oxide superconducting thin film.

【0005】[0005]

【作用】SrTiO3基板へのBi系超電導体のヘテロ
エピタキシャル成長では、<110>SrTiO3//
<100>Bi系超電導体の方位関係でエピタキシャル
成長し、その格子ミスマッチは0.1%以下となり、エ
ピタキシャル成長には極めて有効である。in−sit
uでのBi系酸化物超電導体合成は、600〜750℃
の基板温度の範囲で可能であるが、良好なas−gro
wn膜の超電導特性を得るためには、680℃程度以上
の基板温度であることが望ましい。しかしこの良好な超
電導特性の得られる基板温度でいきなり成膜を開始した
場合、成膜初期にSrTiO3基板と膜が反応して異相
の発生や島状成長が起こり、最後まで膜表面の凹凸とし
て残ってしまう。これに対し、成膜プロセスの初期成長
温度を550〜650℃、例えば600℃程度で、Bi
系超電導体の同族系であるBi2Sr2CuOx層を24
オングストロ―ム以上、例えば60オングストロ―ム程
度バッファ―層として基板界面の緩衝層を形成すること
で、基板と膜との反応を防ぐことが可能となり、このバ
ッファ―層形成後に、Bi2Sr2CaCu2xの80K
超電導層を基板温度700℃程度で成長させることによ
り、最終的に平坦性の極めて良好な、かつas−gro
wnで良好な超電導特性を示すBi系超電導薄膜を合成
することができる。
In the heteroepitaxial growth of a Bi-based superconductor on a SrTiO 3 substrate, <110> SrTiO 3 ///
The <100> Bi-based superconductor is epitaxially grown in an orientation relationship, and its lattice mismatch is 0.1% or less, which is extremely effective for epitaxial growth. in-sit
The synthesis of Bi-based oxide superconductor at u is performed at 600 to 750 ° C.
Although it is possible within the range of the substrate temperature, good as-gro
In order to obtain the superconducting properties of the wn film, it is desirable that the substrate temperature be about 680 ° C. or higher. However, when film formation is started immediately at a substrate temperature at which such good superconducting properties can be obtained, the SrTiO 3 substrate and the film react at the initial stage of film formation, and a heterogeneous phase or island-like growth occurs. Will remain. On the other hand, when the initial growth temperature of the film formation process is 550 to 650 ° C., for example, about 600 ° C.,
Bi 2 Sr 2 CuO x layer, which is a homologous system of
By forming a buffer layer at the interface of the substrate as a buffer layer of Å or more, for example, about 60 Å, it is possible to prevent a reaction between the substrate and the film. After the formation of the buffer layer, Bi 2 Sr 2 80K of CaCu 2 O x
By growing the superconducting layer at a substrate temperature of about 700 ° C., ultimately the flatness is extremely good and the as-gro
A Bi-based superconducting thin film exhibiting good superconducting properties at wn can be synthesized.

【0006】また、膜の表面平坦性は成膜初期の異相発
生の影響を強く受けることは、明白であるが、基板表面
の研磨状態もこの異相発生に大きくかかわっている。特
にミクロには研磨中の応力による基板表面の結晶欠陥等
は異相発生のサイトとなる。成膜前の前処理として、成
膜チャンバ―中の熱酸化処理の後に、基板温度500〜
600℃でSrTiO3のホモエピタキシャル成長を行
うことにより、このような結晶欠陥を減少させ、最終的
な超電導薄膜表面の膜平坦性を改善することができる。
Although it is obvious that the surface flatness of a film is strongly affected by the occurrence of a different phase in the initial stage of film formation, the polished state of the substrate surface is also greatly related to the occurrence of the different phase. In particular, microscopically, a crystal defect on the substrate surface due to stress during polishing becomes a site for generating a different phase. As a pre-treatment before film formation, after a thermal oxidation treatment in a film formation chamber, a substrate temperature of 500 to
By performing homoepitaxial growth of SrTiO 3 at 600 ° C., such crystal defects can be reduced and the film flatness of the surface of the final superconducting thin film can be improved.

【0007】さらにBi系超電導体ではb軸方向に基本
格子の約5倍周期のインコメンシュレ―トな変調構造を
有している。通常のSrTiO3(100)基板面を用
いた成膜では、膜はドメイン構造を形成し、膜のRHE
EDにおいてこの変調構造は基板の<110>および<
1 -1 0>方向の両方向から観察される。つまり膜は互い
に直行する2種類のドメインからなっている。これに対
し(100)SrTiO3基板を(111)方向に1°
〜7°傾けた傾斜研磨基板上に膜を成長させた場合、膜
のb軸は<110>方向に揃い、さらに膜のc軸は基板
の<001>方向に一致するようにエピタキシャル成長
する。即ちSrTiO3基板上には傾斜させた角度に対
応してステップ構造が形成され、膜のc軸は基板面上の
テラス面に垂直にエピタキシャル成長するために、基板
面に対しc軸が基板の傾斜角度分<1 -1 0>方向に傾い
ている。この傾斜基板上の膜は実質的に膜のa,b,c
軸の方向がすべて揃ったいわゆる単結晶膜となり、高温
酸化物超電導体特有の電気電導異方性を利用したデバイ
スを作成するうえで極めて重要である。
[0007] Further, the Bi-based superconductor has an incommensurate modulation structure with a period about 5 times the period of the basic lattice in the b-axis direction. In film formation using a normal SrTiO 3 (100) substrate surface, the film forms a domain structure, and the RHE
In the ED, this modulation structure is based on the <110> and <
1-10> Observed from both directions. That is, the film is composed of two types of domains that are orthogonal to each other. On the other hand, the (100) SrTiO 3 substrate was shifted by 1 ° in the (111) direction.
When a film is grown on an inclined polished substrate inclined by about 7 °, epitaxial growth is performed so that the b-axis of the film is aligned with the <110> direction and the c-axis of the film is aligned with the <001> direction of the substrate. That is, a step structure is formed on the SrTiO 3 substrate corresponding to the inclined angle, and the c axis of the film is epitaxially grown perpendicular to the terrace surface on the substrate surface. It is tilted in the angle <1 -10> direction. The film on the inclined substrate is substantially a, b, c of the film.
It becomes a so-called single crystal film in which the directions of the axes are all aligned, and is extremely important in producing a device utilizing the electrical conductivity anisotropy peculiar to a high-temperature oxide superconductor.

【0008】[0008]

【実施例】以下にその具体的実施例を示す。Bi系酸化
物超電導薄膜合成にはイオンビ―ムスパッタ装置を用い
た。この装置ではマイクロ波励起による原子酸素を酸化
源としており、基板付近の酸素分圧が約10-3Torr
であった。この時の活性酸素の基板付近での到達量は2
×1015個/cm2・s程度である。また膜成長速度は
約400オングストロ―ム/Hであり、Bi23、Bi
2Sr2CuOxおよびSr2CaCu2xのタ―ゲットを
備え、3つのスパッタソ―スを独立に制御することによ
り成膜プロセス中におけるBi組成のコントロ―ル、お
よびバッファ―層Bi2Sr2CuOxと超電導層Bi2
2CaCu2xとの切り替えを行っている。
EXAMPLES Specific examples are shown below. An ion beam sputtering apparatus was used for synthesizing the Bi-based oxide superconducting thin film. In this apparatus, atomic oxygen generated by microwave excitation is used as an oxidation source, and the oxygen partial pressure near the substrate is about 10 −3 Torr.
Met. At this time, the amount of active oxygen reached near the substrate is 2
× 10 15 / cm 2 · s. The film growth rate is about 400 Å / H, and Bi 2 O 3 , Bi
A target of 2 Sr 2 CuO x and a target of Sr 2 CaCu 2 O x is provided, and by controlling three sputter sources independently, control of a Bi composition during a film forming process and a buffer layer Bi 2 Sr 2 CuO x and superconducting layer Bi 2 S
Switching to r 2 CaCu 2 O x is performed.

【0009】図2は本発明を適応したBi2Sr2CaC
2x膜合成時の代表的な基板温度制御例である。基板
として(100)SrTiO3を用い、初期成膜温度を
600℃とした。バッファ―層としてBi2Sr2CuO
x膜を約60オングストロ―ム成長させ、次に基板温度
を700℃まで上げる。基板温度が700℃に達した
後、Bi2Sr2CaCu2xをバッファ―上に成長させ
る。図1に本発明にかかるBi2Sr2CuOxバッファ
―層2を有する(100)SrTiO3基板1上のBi2
Sr2CaCu2x膜3の構造を示す。このバッファ―
層2を導入することにより、Bi系超電導層は異相発生
の極めて少ない平坦性の良好なエピタキシャル成長をす
る。このバッファ―層の厚さは最低24オングストロ―
ム以上であれば基板との反応を抑える効果が確認でき
た。またバッファ―層は約400℃以上かつ約750℃
以下で成長するが、低温で成長させたバッファ―層は結
晶性が悪く、この上の超電導の結晶性にも影響を及ぼ
す。このため少なくとも550℃以上での成長温度が望
ましい。また650℃以上の温度ではバッファ―層自体
が基板と反応するようになり、本来目的とする所からは
ずれてしまう。このためバッファ―層の成長条件として
550℃以上650℃以下が適当である。
FIG. 2 shows Bi 2 Sr 2 CaC to which the present invention is applied.
It is a typical example of substrate temperature control at the time of synthesizing a u 2 O x film. (100) SrTiO 3 was used as the substrate, and the initial film formation temperature was 600 ° C. Bi 2 Sr 2 CuO as buffer layer
The x film is grown to about 60 angstroms, then the substrate temperature is raised to 700 ° C. After the substrate temperature reaches 700 ° C., Bi 2 Sr 2 CaCu 2 O x is grown on the buffer. According to the present invention Bi 2 Sr 2 CuO x buffer 1 - has a layer 2 (100) SrTiO 3 Bi 2 on the substrate 1
The structure of the Sr 2 CaCu 2 O x film 3 is shown. This buffer
By introducing the layer 2, the Bi-based superconducting layer performs epitaxial growth with very little flatness and good flatness. The thickness of this buffer layer should be at least 24 Å
The effect of suppressing the reaction with the substrate could be confirmed if it was not less than the threshold. The buffer layer is about 400 ° C or more and about 750 ° C.
Although grown below, the buffer layer grown at low temperature has poor crystallinity and affects the superconductivity crystallinity thereon. Therefore, a growth temperature of at least 550 ° C. is desirable. At a temperature of 650 ° C. or higher, the buffer layer itself reacts with the substrate, deviating from the originally intended place. Therefore, the growth condition of the buffer layer is preferably 550 ° C. or more and 650 ° C. or less.

【0010】このバッファ―層を介したSrTiO3
板上の薄膜の平坦性は極めて良好である。例えば、AF
M(アトム・フォ―ス・マイクロスコ―ピィ)による観
察では、10μm2の範囲内における表面の段差は最大
15オングストロ―ム程度であることが確認された。こ
れはBi系超電導体のハ―フユニットセルの段差に相当
し、膜厚として制御でき得る限界値であり、膜の平坦性
は極めて良好である。また、この膜のRHEEDはc軸
の回りに4回対称を示し、膜面内でマクロにインコメン
シュレ―ト変調方向が直交するドメイン構造を取ってい
ることがわかっている。この(100)SrTiO3
バッファ―を介して作成したBi2Sr2CaCu2x
膜は良好な超電導特性を示し、例えば、500オングス
トロ―ムの膜厚で超電導転移温度80Kを示した。Bi
系超電導体の結晶構造は、この変調構造の方向にわずか
に伸びて立方晶となっている。(100)面SrTiO
3単結晶基板上へ合成した薄膜においてもRHEEDな
どによりこの変調構造が明瞭に観測されるが、多くの場
合変調構造が膜面内で4回対称に観測される。これは厳
密な意味で膜が完全なエピタキシャル成長をしているの
ではなく、ミクロにドメイン構造をとり、それぞれのド
メインにおいて変調構造の方位が<110>または<1
-1 0>の2通りをバラバラに取り得ることを示してい
る。
The flatness of the thin film on the SrTiO 3 substrate via the buffer layer is extremely good. For example, AF
Observation with M (Atom Force Microscopy) confirmed that the maximum surface step in the range of 10 μm 2 was about 15 Å at the maximum. This corresponds to the step of the half unit cell of the Bi-based superconductor, and is a limit value that can be controlled as the film thickness, and the film flatness is extremely good. In addition, it is known that the RHEED of this film exhibits four-fold symmetry around the c-axis, and has a domain structure in which the incommensurate modulation directions are orthogonal to each other macroscopically within the film plane. The Bi 2 Sr 2 CaCu 2 O x thin film formed on this (100) SrTiO 3 via a buffer exhibited good superconducting properties, for example, a superconducting transition temperature of 80 K at a thickness of 500 Å. Bi
The crystal structure of the system superconductor slightly extends in the direction of the modulation structure and is cubic. (100) plane SrTiO
3 Even in a thin film synthesized on a single crystal substrate, this modulation structure is clearly observed by RHEED or the like, but in many cases, the modulation structure is observed four times symmetrically in the film plane. In a strict sense, the film is not completely epitaxially grown, but has a microscopic domain structure, and the orientation of the modulation structure in each domain is <110> or <1.
−10> can be taken separately.

【0011】これに対し、(100)SrTiO3単結
晶基板面の<001>軸から1°〜8°<111>方向
に傾けて研磨した基板面をBi系酸化物超電導薄膜合成
用基板として用いることによって、この変調構造が<1
10>方向に揃ったBi系単結晶薄膜を合成できること
をRHEEDパタ―ンおよびX線回折により確認でき
た。この膜構造を図3に示す。膜は前述のようにBi2
Sr2CuOxをバッファ―として用いて、基板と超電導
層との反応を抑えている。Bi2Sr2CuOx結晶はB
2Sr2CaCu2x結晶と同様に、b軸方向にインコ
メンシュレ―トな変調構造を持つ。傾斜基板表面上には
傾斜角度に従いステップが形成されていて、これは<1
-1 0>方向にほぼ等間隔に形成される。このステップが
結晶成長の時のニュ―クリエイションサイトとなる。ス
テップに沿って結晶成長が進むとき、変調構造はステッ
プと直行する方向に形成されるために、膜(バッファ
―)はステップと平行方向にa軸が、またステップと直
行方向にb軸が揃い、単結晶膜として成長する。さらに
膜はc軸がテラス垂直に成長するため、基板面に対して
基板面に対するc軸は基板の傾斜分だけ傾いている。こ
のバッファ―層上のBi2Sr2CaCu2x膜はバッフ
ァ―に完全にエピタキシャル成長するために、単結晶B
2Sr2CaCu2x膜が成長する。もちろんこのBi
2Sr2CaCu2x膜のc軸ももとのSrTiO3基板
面から傾斜角度分傾いている。
On the other hand, the (100) SrTiO 3 single crystal substrate surface polished while being tilted in the direction of 1 ° to 8 ° <111> from the <001> axis is used as a substrate for synthesizing a Bi-based oxide superconducting thin film. This allows the modulation structure to be <1
It was confirmed by RHEED pattern and X-ray diffraction that a Bi-based single crystal thin film aligned in the 10> direction could be synthesized. This film structure is shown in FIG. The membrane is made of Bi 2
Using Sr 2 CuO x as a buffer, the reaction between the substrate and the superconducting layer is suppressed. Bi 2 Sr 2 CuO x crystal is B
Like the i 2 Sr 2 CaCu 2 O x crystal, it has an incommensurate modulation structure in the b-axis direction. Steps are formed on the surface of the inclined substrate according to the inclination angle, which is <1.
It is formed at substantially equal intervals in the −10> direction. This step becomes a new creation site for crystal growth. When crystal growth proceeds along the step, the modulation structure is formed in a direction perpendicular to the step, so that the film (buffer) has an a-axis in the direction parallel to the step and a b-axis in the direction perpendicular to the step. Grow as a single crystal film. Further, since the c-axis of the film grows perpendicular to the terrace, the c-axis with respect to the substrate surface is inclined by the inclination of the substrate with respect to the substrate surface. The Bi 2 Sr 2 CaCu 2 O x film on the buffer layer is made of a single crystal B
An i 2 Sr 2 CaCu 2 O x film grows. Of course this Bi
The c-axis of the 2 Sr 2 CaCu 2 O x film is also inclined from the original SrTiO 3 substrate surface by the inclination angle.

【0012】この傾いた単結晶膜の電気的特性は極めて
特異的である。膜のa軸方向(<110>SrTiO3
方向)は、通常の金属的電気電導特性を示し、80K程
度の良好な超電導転移を示す。これに対し、b軸方向
(<1 -1 0>SrTiO3方向)では半導体的電気電導
特性を示し、同様に80K程度の超電導転移を示す。こ
の電気電導特性は、バルク単結晶のc軸方向の電気電導
特性と同様である。これは膜のb軸方向の異方性を反映
したものではない。バルク単結晶の電導度測定からab
面内の比抵抗に対し、c軸方向の比抵抗は4桁以上高
い。傾斜基板を用いていることで<1 -1 0>方向の電気
電導ではc軸が傾いていることにより、その電導パスに
c軸が含まれる。このためにc軸の電気電導の異方性が
エピタキシャル膜の基板面内の電気電導異方性として観
測されたと解釈できる。このようなc軸の電気電導異方
性が傾斜基板上のエピタキシャル膜面内で現れているこ
とはデバイス応用上極めて有用である。
The electrical characteristics of the tilted single crystal film are very specific. A-axis direction of the film (<110> SrTiO 3
Direction) shows normal metallic electrical conductivity, and shows a good superconducting transition of about 80K. On the other hand, in the b-axis direction (<1−10> SrTiO 3 direction), it exhibits semiconducting electric conduction characteristics, and similarly exhibits a superconducting transition of about 80K. This electric conductivity is similar to the electric conductivity in the c-axis direction of the bulk single crystal. This does not reflect the anisotropy in the b-axis direction of the film. Ab from conductivity measurement of bulk single crystal
The resistivity in the c-axis direction is higher than the in-plane resistivity by four digits or more. Since the c-axis is inclined in the electric conduction in the <1−10> direction by using the inclined substrate, the c-axis is included in the conduction path. For this reason, it can be interpreted that the anisotropy of c-axis electric conductivity was observed as the electric conductivity anisotropy in the substrate surface of the epitaxial film. The fact that such c-axis electric conductivity anisotropy appears in the plane of the epitaxial film on the inclined substrate is extremely useful for device application.

【0013】次にSrTiO3基板は鏡面研磨を施した
としても基板表面は荒れている。SrTiO3上へのS
rTiO3のホモエピタキシャル成長は基板温度400
〜700℃程度で可能であるが、特に500〜600℃
でホモエピタキシャル成長させた場合、約100オング
ストロ―ム以上のSrTiO3ホモエピタキシャル成長
により基板表面の平坦性が改善される。例えば、RHE
EDで幾分ディフュ―ズなパタ―ンが見えるSrTiO
3を基板に対して、基板温度550℃、酸素分圧10-4
TorrにおいてSrTiO3を100オングストロ―
ム、ホモエピタキシャル成長させることにより、ストリ
―クなRHEEDパタ―ンの見える基板表面に改質する
ことができた。この基板を用いたBi系超電導薄膜の表
面平坦性は広い面積において極めて良好であり、デバイ
ス応用上重要である膜面積の大面積化に十分に応用可能
である。
Next, the surface of the SrTiO 3 substrate is rough even if it is mirror-polished. S on SrTiO 3
The homoepitaxial growth of rTiO 3 is performed at a substrate temperature of 400.
About 700 ° C., but especially about 500 ° C. to 600 ° C.
In the case of homoepitaxial growth of SrTiO 3 of about 100 Å or more, the flatness of the substrate surface is improved. For example, RHE
SrTiO with ED showing a somewhat diffuse pattern
3 with respect to the substrate, substrate temperature 550 ° C., oxygen partial pressure 10 −4
100 Å of SrTiO 3 at Torr
By homo-epitaxial growth, it was possible to modify the substrate surface into a steep RHEED pattern. The surface flatness of the Bi-based superconducting thin film using this substrate is extremely good over a large area, and can be sufficiently applied to increase the film area, which is important for device application.

【0014】[0014]

【発明の効果】以上のように、本発明を適応することに
より平坦性および超電導特性の良好なBi系のエピタキ
シャル超電導膜を容易にin−situ合成することが
できる。また傾斜基板上の単結晶薄膜は、その電気的異
方性を用いたデバイス応用上極めて有用である。また本
発明の適応は、イオンビ―ムスパッタ装置に限らず、真
空蒸着装置においても酸化物超電導薄膜合成に有効であ
る。
As described above, by applying the present invention, a Bi-based epitaxial superconducting film having good flatness and superconducting characteristics can be easily synthesized in-situ. Also, a single crystal thin film on a tilted substrate is extremely useful for device application using its electrical anisotropy. Further, the application of the present invention is effective not only for the ion beam sputtering apparatus but also for the synthesis of the oxide superconducting thin film in a vacuum deposition apparatus.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の方法によって得られる超電導薄膜の一
例の斜視断面図である。
FIG. 1 is a perspective sectional view of an example of a superconducting thin film obtained by a method of the present invention.

【図2】バッファ―層を導入する際の基板温度制御例を
示す図である。
FIG. 2 is a diagram illustrating an example of substrate temperature control when a buffer layer is introduced.

【図3】本発明に係る傾斜基板を用いたBi系超電導薄
膜の一例の断面図である。
FIG. 3 is a cross-sectional view of an example of a Bi-based superconducting thin film using an inclined substrate according to the present invention.

【符号の説明】[Explanation of symbols]

1 SrTiO3基板 2 Bi2Sr2CuOxバッファ―層 3 Bi2Sr2CaCu2x層 4 ステップReference Signs List 1 SrTiO 3 substrate 2 Bi 2 Sr 2 CuO x buffer layer 3 Bi 2 Sr 2 CaCu 2 O x layer 4 step

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H01L 39/24 ZAA H01L 39/24 ZAAC (56)参考文献 特開 平1−252534(JP,A) 特開 平1−145397(JP,A) 特開 昭64−27131(JP,A) 特開 昭64−100820(JP,A) 特開 平1−167912(JP,A)──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 6 Identification code Agency reference number FI Technical indication location H01L 39/24 ZAA H01L 39/24 ZAAC (56) References JP-A-1-252534 (JP, A JP-A-1-145397 (JP, A) JP-A-64-27131 (JP, A) JP-A-64-100820 (JP, A) JP-A-1-167912 (JP, A)

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 Bi系酸化物超電導単結晶薄膜のチタン
酸ストロンチウム(100)基板上への“その場”(i
n−situ)合成方法において、膜成長初期の基板温
度を550〜650℃に設定し、BiSrCuO
をバッファー層として基板上にヘテロエピタキシャル成
長させ、その後基板温度をBiSrCaCu
の超電導薄膜合成温度まで上げて超電導単結晶薄膜を成
長させることを特徴とする酸化物超電導薄膜合成方法。
1. An in-situ (i) film of a Bi-based oxide superconducting single crystal thin film on a strontium titanate (100) substrate
In the n-situ synthesis method, the substrate temperature at the initial stage of film growth was set at 550 to 650 ° C., and Bi 2 Sr 2 CuO x was used.
Is heteroepitaxially grown on the substrate as a buffer layer, and then the substrate temperature is set to Bi 2 Sr 2 CaCu 2 O x
A method for synthesizing an oxide superconducting thin film, comprising raising the superconducting thin film synthesizing temperature to grow a superconducting single crystal thin film .
【請求項2】 SrTiO(100)基板上に、まず
SrTiOを基板温度500〜600℃でホモエピタ
キシャル成長させた後、BiSrCaCu
成長させる請求項1記載の酸化物超電導薄膜合成方法。
2. The oxide superconducting material according to claim 1, wherein SrTiO 3 is first homoepitaxially grown on the SrTiO 3 (100) substrate at a substrate temperature of 500 to 600 ° C., and then Bi 2 Sr 2 CaCu 2 O x is grown. Thin film synthesis method.
【請求項3】 SrTiO(100)単結晶基板面に
対し、その法線から(111)方向に傾けて研磨するこ
とにより<1−10>方向にステップを形成した基板面
をBi系酸化物超電導薄膜合成用基板として用いる請求
項1または2記載の酸化物超電導薄膜合成方法。
3. An SrTiO 3 (100) single crystal substrate surface is polished while being tilted in the (111) direction from its normal line to form a substrate surface having steps formed in the <1-10> direction. 3. The method for synthesizing an oxide superconducting thin film according to claim 1, which is used as a substrate for synthesizing a superconducting thin film.
JP3184195A 1991-06-28 1991-06-28 Oxide superconducting thin film synthesis method Expired - Fee Related JP2653003B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3184195A JP2653003B2 (en) 1991-06-28 1991-06-28 Oxide superconducting thin film synthesis method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3184195A JP2653003B2 (en) 1991-06-28 1991-06-28 Oxide superconducting thin film synthesis method

Publications (2)

Publication Number Publication Date
JPH059100A JPH059100A (en) 1993-01-19
JP2653003B2 true JP2653003B2 (en) 1997-09-10

Family

ID=16149021

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3184195A Expired - Fee Related JP2653003B2 (en) 1991-06-28 1991-06-28 Oxide superconducting thin film synthesis method

Country Status (1)

Country Link
JP (1) JP2653003B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2606025B2 (en) * 1991-10-02 1997-04-30 財団法人国際超電導産業技術研究センター Bi-Sr-Ca-Cu-O-based superconducting thin film and method for producing the same
JP2958455B1 (en) * 1998-03-27 1999-10-06 工業技術院長 Crystal growth method of oxide thin film
JP4572386B2 (en) * 2005-03-30 2010-11-04 独立行政法人産業技術総合研究所 Fabrication method of high quality Bi-based oxide superconducting thin film
JP5514221B2 (en) 2010-02-23 2014-06-04 パナソニック株式会社 Piezoelectric acoustic transducer
JP5810328B2 (en) * 2010-03-29 2015-11-11 パナソニックIpマネジメント株式会社 Piezoelectric acoustic transducer

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6427131A (en) * 1987-07-21 1989-01-30 Nissin Electric Co Ltd Manufacture of superconductive thin film
JPH01145397A (en) * 1987-12-01 1989-06-07 Nippon Telegr & Teleph Corp <Ntt> Production of oxide superconducting thin film
JPH01167912A (en) * 1987-12-24 1989-07-03 Sumitomo Metal Ind Ltd Sheathing material of superconducting material and manufacture thereof
JP2532914B2 (en) * 1988-03-31 1996-09-11 三井金属鉱業株式会社 Superconducting ceramic laminate and its manufacturing method

Also Published As

Publication number Publication date
JPH059100A (en) 1993-01-19

Similar Documents

Publication Publication Date Title
Bozovic et al. Epitaxial Strain and Superconductivity in L a 2-x S rx C u O 4 Thin Films
US6921741B2 (en) Substrate structure for growth of highly oriented and/or epitaxial layers thereon
JPH02186683A (en) Formation of weakly combined josephson junction and superconductive element provided therewith
Zegenhagen et al. Microscopic structure and structuring of perovskite surfaces and interfaces: SrTiO3, RBa2Cu3O7-δ
JP2653003B2 (en) Oxide superconducting thin film synthesis method
JPH04300292A (en) Film forming method for multicomponent oxide film superconducting film
JP4139855B2 (en) Oxide high-temperature superconductor and method for producing the same
Tiwari et al. Synthesis of epitaxial Pt on (100) Si using TiN buffer layer by pulsed laser deposition
JPH05279192A (en) Synthesis of oxide superconductor thin film
Cantoni et al. Investigation of TiN seed layers for RABiTS architectures with a single-crystal-like out-of-plane texture
JP2747173B2 (en) Oxide high temperature superconductor single crystal thin film forming method
JP3024203B2 (en) Oxide superconducting thin film synthesis method
Speller et al. Buffer layers for Tl-2212 thin films on MgO and sapphire substrates
JP2716595B2 (en) Substrate for forming oxide superconductor single crystal thin film and method for producing the same
Sakai et al. Homoepitaxy of thin films using YBa2Cu3O7− x single-crystal substrates
JP4155796B2 (en) Monocrystalline thin film
Catana et al. Domain growth of Dy2O3 buffer layers on SrTiO3
JP2715667B2 (en) Apparatus for producing oxide superconducting thin film and method for producing oxide superconducting single crystal thin film
JP2959290B2 (en) Superconducting laminated thin film and manufacturing method thereof
JP2546730B2 (en) Substrate for oxide thin film formation
US7150788B2 (en) Method for manufacturing in-plane lattice constant adjusting substrate and in-plane lattice constant adjusting substrate
JP2000502042A (en) Layer arrangement having at least one non-c-axis oriented epitaxial HTSL thin film or a crystallographically comparable layer of HTSL
Brazdeikis et al. Molecular beam epitaxy growth and microstructure of thin superconducting Bi2Sr2CaCu2Ox films
JPH04265222A (en) Method for production of superconducting layer
JP3485601B2 (en) Manufacturing method of superconducting composite thin film

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees