JP4572386B2 - Fabrication method of high quality Bi-based oxide superconducting thin film - Google Patents

Fabrication method of high quality Bi-based oxide superconducting thin film Download PDF

Info

Publication number
JP4572386B2
JP4572386B2 JP2005099504A JP2005099504A JP4572386B2 JP 4572386 B2 JP4572386 B2 JP 4572386B2 JP 2005099504 A JP2005099504 A JP 2005099504A JP 2005099504 A JP2005099504 A JP 2005099504A JP 4572386 B2 JP4572386 B2 JP 4572386B2
Authority
JP
Japan
Prior art keywords
thin film
based oxide
substrate
oxide superconducting
axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005099504A
Other languages
Japanese (ja)
Other versions
JP2006273699A (en
Inventor
和弘 遠藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2005099504A priority Critical patent/JP4572386B2/en
Priority to US11/363,653 priority patent/US7981840B2/en
Publication of JP2006273699A publication Critical patent/JP2006273699A/en
Application granted granted Critical
Publication of JP4572386B2 publication Critical patent/JP4572386B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Description

本願発明は、酸化物超電導体、特に、ビスマス系(以下「Bi系」という。)酸化物超電導体を用いて高性能な積層型ジョセフソン接合を得るためのc軸が基板面に対して平行であり、a軸(又はb軸)が基板面に対して垂直に配向した酸化物超電導体、特に、Bi系酸化物超電導薄膜、具体的には、Bi2Sr2Ca2Cu3O10±X(Xは、1より小さい正の数、以下「Bi-2223」という。)又はBi2Sr2CuO6±Y(Yは、1より小さい正の数、以下「Bi-2201」という。)酸化物超電導薄膜及びその製造方法に関する。 In the present invention, the c-axis for obtaining a high-performance multilayer Josephson junction using an oxide superconductor, particularly a bismuth (hereinafter referred to as “Bi-based”) oxide superconductor, is parallel to the substrate surface. And an oxide superconductor in which the a-axis (or b-axis) is oriented perpendicular to the substrate surface, in particular a Bi-based oxide superconducting thin film, specifically, Bi 2 Sr 2 Ca 2 Cu 3 O 10 ± X (X is a positive number smaller than 1, hereinafter referred to as “Bi-2223”) or Bi 2 Sr 2 CuO 6 ± Y (Y is a positive number smaller than 1, hereinafter referred to as “Bi-2201”) The present invention relates to an oxide superconducting thin film and a manufacturing method thereof.

超電導体を用いたジョセフソン素子の特長は、その高速動作と低消費電力性にある。集積回路に応用すると、小さな電力で高速スイッチ動作が行えるので、半導体で問題になっている高密度集積回路に生ずる発熱も小さいうえ、半導体に比べ、高速な演算性能が期待できる。   The features of Josephson elements using superconductors are their high-speed operation and low power consumption. When applied to an integrated circuit, a high-speed switching operation can be performed with a small amount of electric power. Therefore, heat generated in a high-density integrated circuit which is a problem in a semiconductor is small, and high-speed computing performance can be expected compared with a semiconductor.

従来、ジョセフソン素子に用いる超電導体として、Nb金属やNbNが用いられていたが、超電導転移温度が低いため、通常、ジョセフソン素子の動作は液体ヘリウム温度4.2Kで行われている。これに比べ、酸化物超電導体は、より高い超電導転移温度を持つため、これを用いたジョセフソン素子は、液体窒素温度で動作することが可能と考えられ、省資源・省電力の視点から有望であると期待できる。   Conventionally, Nb metal or NbN has been used as a superconductor used in the Josephson element. However, since the superconducting transition temperature is low, the operation of the Josephson element is normally performed at a liquid helium temperature of 4.2K. In comparison, oxide superconductors have a higher superconducting transition temperature, so Josephson devices using them can be operated at liquid nitrogen temperatures, which is promising from the viewpoint of resource and power savings. Can be expected.

ジョセフソン効果を示す超電導素子は、ジョセフソン接合と呼ばれる。超電導素子を用いた集積回路に適したジョセフソン接合は、精密に寸法が制御でき、数多くの接合が作製できることから、図1に示すように、超電導体薄膜の間に常電導体や絶縁体の極薄膜のバリア層を挟んだ積層接合が有望である。実際、Nb金属を用いた超電導集積回路では、ジョセフソン接合として、積層接合が使われている。   A superconducting element exhibiting the Josephson effect is called a Josephson junction. Josephson junctions suitable for integrated circuits using superconducting elements can be precisely controlled in dimensions and can produce a large number of junctions. As shown in FIG. 1, normal conductors and insulators are interposed between superconductor thin films. Laminated bonding with an ultra-thin barrier layer is promising. In fact, in a superconducting integrated circuit using Nb metal, a laminated junction is used as a Josephson junction.

酸化物超電導体を用いて積層型ジョセフソン接合を作製するための、ブレークスルーすべき問題点は、酸化物超電導体の結晶構造に密接に係わっている。イットリウム系(以下「Y系」という。)酸化物超電導体やBi系酸化物超電導体は、Nb等の従来の超電導体に比べて、コヒーレンス長、磁束侵入深さ及び臨界電流密度等の超電導特性の異方性が顕著である。   The problem to be broken through in order to fabricate a stacked Josephson junction using an oxide superconductor is closely related to the crystal structure of the oxide superconductor. Yttrium-based (hereinafter “Y-based”) oxide superconductors and Bi-based oxide superconductors have superconducting properties such as coherence length, magnetic flux penetration depth, and critical current density compared to conventional superconductors such as Nb. The anisotropy of is remarkable.

これらの結晶は、斜方格子又は正方格子であるが、c軸方向の超電導的なカップリングの強さは、c軸に垂直な面内のカップリングより弱い。酸化物超電導体においては、超電導は銅(Cu)原子と酸素原子(O)のなすCuO面で起こっていると考えられている。   These crystals are an orthorhombic lattice or a tetragonal lattice, but the strength of superconducting coupling in the c-axis direction is weaker than in-plane coupling perpendicular to the c-axis. In oxide superconductors, superconductivity is considered to occur on the CuO surface formed by copper (Cu) atoms and oxygen atoms (O).

したがって、これらの超電導カップリングの異方性は、CuO面がc軸に垂直な方向(即ちa又はb軸方向)にあり、c軸方向にはないことに起因している。このため、ジョセフソン接合に密接に係わるコヒーレンス長(超電導電子対が形成できる電子間距離)は、c軸方向では、a軸方向に比べ、著しく小さい。この傾向は、Y系超電導体に比べて結晶構造の異方性の大きいBi系超電導体のほうが顕著であり、c軸方向のコヒーレンス長は0.2nmと極めて短い。   Therefore, the anisotropy of these superconducting couplings is due to the fact that the CuO plane is in the direction perpendicular to the c-axis (that is, the a or b-axis direction) and not in the c-axis direction. For this reason, the coherence length closely related to the Josephson junction (the distance between electrons that can form a superconductor pair) is significantly smaller in the c-axis direction than in the a-axis direction. This tendency is more remarkable in the Bi-based superconductor having a larger crystal structure anisotropy than the Y-based superconductor, and the coherence length in the c-axis direction is as extremely short as 0.2 nm.

このように、酸化物超電導体、特に、Bi-2223又はBi-2201等のBi系超電導体においては、c軸方向のコヒーレンス長は、極端に短い。このため、c軸配向膜を用いて、c軸方向に積層型のジョセフソン接合を作製するためには、平坦で、極めて薄いバリア層を形成することが不可欠となる。しかし、バリア層を薄くすると、析出物等による凹凸が問題になり、一様な極薄バリア層の形成が難しく、バリア層を挟んだ上下の超電導体間で電流のリークが起こるため、ジョセフソン接合は得られていない。また、ジョセフソン接合が作製できたとしても、ジョセフソン臨界電流密度Jc及びジョセフソン特性パラメータIcRnも小さく良い特性が得られない。   Thus, in an oxide superconductor, in particular, a Bi-based superconductor such as Bi-2223 or Bi-2201, the coherence length in the c-axis direction is extremely short. For this reason, in order to produce a laminated Josephson junction in the c-axis direction using the c-axis alignment film, it is indispensable to form a flat and extremely thin barrier layer. However, if the barrier layer is thin, unevenness due to precipitates or the like becomes a problem, and it is difficult to form a uniform ultrathin barrier layer, and current leakage occurs between the upper and lower superconductors sandwiching the barrier layer. Bonding has not been achieved. Even if a Josephson junction can be fabricated, the Josephson critical current density Jc and the Josephson characteristic parameter IcRn are small and good characteristics cannot be obtained.

そこで、Bi酸化物超電導体を用いて高性能な積層型ジョセフソン接合を得るためには、c軸方向より長いコヒーレンス長を持つ非c軸方向に接合を作製することが不可欠である。この中で、最もコヒーレンス長が長い方向が、a軸(又はb軸)方向である。したがって、Bi系酸化物超電導体を用いて高性能な積層型ジョセフソン接合を得るためには、c軸が基板面に対して平行で、a軸(又はb軸)が基板面に対して垂直に配向したBi系酸化物超電導薄膜を作製することが望まれる。   Therefore, in order to obtain a high-performance multilayer Josephson junction using a Bi oxide superconductor, it is indispensable to produce a junction in the non-c-axis direction having a coherence length longer than the c-axis direction. Among these, the direction with the longest coherence length is the a-axis (or b-axis) direction. Therefore, to obtain a high-performance multilayer Josephson junction using Bi-based oxide superconductors, the c-axis is parallel to the substrate surface and the a-axis (or b-axis) is perpendicular to the substrate surface. It is desired to produce a Bi-based oxide superconducting thin film oriented in the direction.

これを達成する一つの方法として、基板上に、活性酸素と、Bi系酸化物を構成する一部の金属成分を供給して、前記基板上に酸化物からなる組成変調膜を形成する工程と、活性酸素と、Bi系酸化物を構成する全部の金属成分を供給して、前記組成変調膜上に酸化物超電導薄膜を形成する工程とを具備したことを特徴とする酸化物超電導薄膜の製造方法が知られている(下記特許文献1参照)。しかし、この方法においては、条件次第においては、基板面に対して平行c軸の割合が変化するものであり、良質なBi系酸化物超電導薄膜が得られているとは言えない。   As one method for achieving this, a step of supplying active oxygen and a part of metal components constituting the Bi-based oxide on the substrate to form a composition modulation film made of the oxide on the substrate; And a step of supplying an active oxygen and all metal components constituting the Bi-based oxide to form an oxide superconducting thin film on the composition-modulated film. A method is known (see Patent Document 1 below). However, in this method, depending on conditions, the ratio of the parallel c-axis to the substrate surface changes, and it cannot be said that a good Bi-based oxide superconducting thin film is obtained.

また、c軸が基板面に対して平行で、a軸(又はb軸)が基板面に対して垂直に配向したBi系酸化物超電導薄膜を用いて作製したジョセフソン素子の性能が優れていることを示した文献はあるが(下記特許文献2参照)、具体的にどのようにしたら、良質な上記c軸が基板面に対して平行で、a軸(又はb軸)が基板面に対して垂直に配向したBi系酸化物超電導薄膜が得られるかは示されていない。
特開平5−7027号公報 特開平9−246611号公報
In addition, the performance of a Josephson element manufactured using a Bi-based oxide superconducting thin film with the c-axis parallel to the substrate surface and the a-axis (or b-axis) oriented perpendicular to the substrate surface is excellent. Although there is a document showing that (see Patent Document 2 below), specifically, the good c-axis is parallel to the substrate surface and the a-axis (or b-axis) is relative to the substrate surface. However, it is not shown whether a Bi-based oxide superconducting thin film that is vertically oriented can be obtained.
Japanese Patent Laid-Open No. 5-7027 Japanese Patent Laid-Open No. 9-246611

したがって、本願発明は、Bi酸化物超電導体を用いて高性能な積層型ジョセフソン接合を得るために、高品質なa軸(又はb軸)配向したBi系酸化物超電導薄膜を作製することを目的とする。   Therefore, the present invention is intended to produce a high-quality a-axis (or b-axis) oriented Bi-based oxide superconducting thin film in order to obtain a high-performance multilayer Josephson junction using a Bi oxide superconductor. Objective.

Bi-2223薄膜は、(110)面のLaSrAlO4単結晶基板、(110)面のLaSrGaO4単結晶基板、(10-10)面(a面)のα-Al2O3単結晶基板又は(10-10)面(a面)のNdAlO3単結晶基板の3ユニットに整合してa軸配向したBi-2223薄膜が成長する。 Bi-2223 thin film is (110) plane LaSrAlO 4 single crystal substrate, (110) plane LaSrGaO 4 single crystal substrate, (10-10) plane (a plane) α-Al 2 O 3 single crystal substrate or ( An a-axis oriented Bi-2223 thin film grows in alignment with 3 units of the NdAlO 3 single crystal substrate on the 10-10) plane (a plane).

Bi-2201薄膜は、(110)面のLaSrAlO4単結晶基板、(110)面のLaSrGaO4単結晶基板、(10-10)面(a面)のα-Al2O3単結晶基板又は(10-10)面(a面)のNdAlO3単結晶基板の2ユニットに整合してa軸配向したBi-2201薄膜が成長する。 Bi-2201 thin film is (110) plane LaSrAlO 4 single crystal substrate, (110) plane LaSrGaO 4 single crystal substrate, (10-10) plane (a plane) α-Al 2 O 3 single crystal substrate or ( An a-axis oriented Bi-2201 thin film grows in alignment with two units of the 10-10) plane (a plane) NdAlO 3 single crystal substrate.

高品質なa軸配向したBi系酸化物超電導薄膜は、LaSrAlO4あるいはLaSrGaO4等の単結晶の(110)面から[001]方向に有限な角度θを持って切断した傾斜基板、α-Al2O3あるいはNdAlO3の単結晶の(10-10)面(a面)から[0001]方向に有限な角度θを持って切断した傾斜基板を使用し、基板上に低い成膜温度T1(500〜600℃)でa軸配向したBi-2223薄膜をヘテロエピタキシャル成長させ、次にその成長した膜の上に高い成膜温度T2(650〜750℃)でホモエピタキシャル成長させる(二温度成長法)ことにより製作することができる。 A high-quality a-axis oriented Bi-based oxide superconducting thin film is a tilted substrate cut at a finite angle θ in the [001] direction from the (110) plane of a single crystal such as LaSrAlO4 or LaSrGaO4, α-Al 2 O 3 or NdAlO 3 single-crystal (10-10) plane (a-plane) using a tilted substrate cut with a finite angle θ in the [0001] direction, low deposition temperature T1 (500 ~ Bi-2223 thin film with a-axis orientation at 600 ° C) is heteroepitaxially grown, and then homoepitaxially grown on the grown film at a high deposition temperature T2 (650-750 ° C) (two temperature growth method) can do.

本願発明の方法により作製した高品質なa軸配向したBi系酸化物超電導薄膜を用いてジョセフソン素子を作製すると、きわめて性能の優れたジョセフソン素子を得ることができる。   When a Josephson device is manufactured using a high-quality a-axis-oriented Bi-based oxide superconducting thin film manufactured by the method of the present invention, a Josephson device with extremely excellent performance can be obtained.

以下に、本願発明のもっとも好ましい実施形態を示す。   Below, the most preferable embodiment of this invention is shown.

図2に、a軸配向したBi-2223に対するLaSrAlO4単結晶基板の(110)面の格子定数の整合性を示す。図に示すように、Bi-2223の1ユニットセルがLaSrAlO4の3ユニットセルに極めてよく整合していることが判る。a軸長(又はb軸長)、c軸長の格子定数のミスフィットは、−1.48%及び1.61%であり、極めて小さい。 FIG. 2 shows the consistency of the lattice constant of the (110) plane of a LaSrAlO4 single crystal substrate with respect to a-2 oriented Bi-2223. As shown in the figure, it can be seen that one unit cell of Bi-2223 is very well aligned with a three unit cell of LaSrAlO 4 . Misfits of lattice constants of the a-axis length (or b-axis length) and c-axis length are −1.48% and 1.61%, which are extremely small.

このため、(110) LaSrAlO4単結晶基板上にc軸が基板に平行に、a軸(又はb軸)が基板に垂直に配向したBi-2223薄膜をエピタキシャル成長させることができる。しかしフラットな基板を使用すると図3に示すように、基板上に2次元核成長をし、グレインが多数できて、連続的で平坦な膜が得られにくく、グレイン間の弱結合により超電導特性が悪くなる。また、二温度成長法だけでも一つ一つのグレインが大きくなるだけで、連続的で一様な薄膜は得られにくく、超電導特性が悪い。 Therefore, a Bi-2223 thin film with the c-axis parallel to the substrate and the a-axis (or b-axis) oriented perpendicular to the substrate can be epitaxially grown on the (110) LaSrAlO 4 single crystal substrate. However, when a flat substrate is used, as shown in FIG. 3, two-dimensional nuclei grow on the substrate, a large number of grains are formed, and it is difficult to obtain a continuous and flat film. Deteriorate. Further, even if the two-temperature growth method alone is used, the size of each grain is increased, and it is difficult to obtain a continuous and uniform thin film, resulting in poor superconducting properties.

そこで、LaSrAlO4あるいはLaSrGaO4等の単結晶の(110)面から[001]方向に有限な角度θを持って切断した傾斜基板、α-Al2O3あるいはNdAlO3の単結晶の(10-10)面(a面)から[0001]方向に有限な角度θを持って切断した傾斜基板を使用し、尚且つ、二温度成長法をすることで、図4に示すような基板のステップを始点とするステップフロー成長で薄膜が基板上に形成され、超電導特性の良い、高品質なa軸配向Bi-2223薄膜を得ることができる。 Therefore, a tilted substrate cut from the (110) plane of a single crystal such as LaSrAlO4 or LaSrGaO4 with a finite angle θ in the [001] direction, a (10-10) of a single crystal of α-Al 2 O 3 or NdAlO 3 By using a tilted substrate cut at a finite angle θ in the [0001] direction from the plane (a-plane), and using the two-temperature growth method, the substrate step as shown in FIG. A thin film is formed on the substrate by step flow growth, and a high-quality a-axis oriented Bi-2223 thin film with good superconducting properties can be obtained.

LaSrAlO4単結晶の(110)面から[001]方向に有限な角度θを持って切断した傾斜基板を用いて、有機金属化学気相成長法(MOCVD)によりBi-2223超電導薄膜を作製した。今回用いたMOCVD装置の概観図を図5に示す。成膜条件は、有機金属原料にBi(C6H5)3、Sr(DPM)2、Ca(DPM)2及びCu(DPM)2(DPM:dipivaloylmethan)を用い、それぞれ72℃、176℃、161℃及び80℃に保ち、Arキャリヤガス流量100、300、300及び70sccm、全圧50torr、酸素分圧23torr、基板温度は553℃でa軸(又はb軸)配向したBi−2223薄膜をヘテロエピタキシャル成長させ、その後、ガス雰囲気を変えることなく連続的に、基板温度680℃の高温でホモエピタキシャル成長させて行った。今回の成膜には傾斜角度θ=5°、10°、15°の基板を使用した。 A Bi-2223 superconducting thin film was fabricated by metal organic chemical vapor deposition (MOCVD) using a tilted substrate cut at a finite angle θ in the [001] direction from the (110) plane of LaSrAlO4 single crystal. An overview of the MOCVD system used this time is shown in FIG. Film formation conditions are Bi (C 6 H 5 ) 3 , Sr (DPM) 2 , Ca (DPM) 2 and Cu (DPM) 2 (DPM: dipivaloylmethan) as organic metal raw materials, 72 ° C, 176 ° C, Maintained at 161 ° C and 80 ° C, Ar carrier gas flow rate 100, 300, 300 and 70 sccm, total pressure 50 torr, oxygen partial pressure 23 torr, substrate temperature 553 ° C, Bi-2223 thin film with a-axis (or b-axis) orientation heterogeneous Epitaxial growth was performed, and then homoepitaxial growth was performed continuously at a high substrate temperature of 680 ° C. without changing the gas atmosphere. For this film formation, substrates with inclination angles θ = 5 °, 10 °, and 15 ° were used.

図6に、フラット基板及び傾斜基板において二温度成長させたa軸配向Bi-2223薄膜表面の原子間力顕微鏡(AFM)像を示す。
図7に、それらの断面図を示す。これらより、傾斜基板に二温度成長させたa軸配向Bi-2223薄膜は、ステップフロー成長しており、一様で連続的に形成されていることを確認することができる。
FIG. 6 shows an atomic force microscope (AFM) image of the surface of an a-axis oriented Bi-2223 thin film grown at two temperatures on a flat substrate and an inclined substrate.
FIG. 7 shows a cross-sectional view thereof. From these, it can be confirmed that the a-axis oriented Bi-2223 thin film grown on the inclined substrate at two temperatures is step-flow grown and is formed uniformly and continuously.

図8に、フラット基板及び傾斜基板において二温度成長させたa軸配向Bi-2223薄膜の抵抗の温度依存性をそれぞれ示す。測定は、標準的な4端子法により行なった。今回成膜した中においては、傾斜角度θが15℃において超電導特性が最も良好であった。   FIG. 8 shows the temperature dependence of the resistance of the a-axis oriented Bi-2223 thin film grown at two temperatures on the flat substrate and the inclined substrate, respectively. The measurement was performed by the standard 4-terminal method. Among the films formed this time, the superconducting characteristics were the best when the inclination angle θ was 15 ° C.

以上述べたように、a軸配向Bi-2223酸化物超電導薄膜を成膜する際、傾斜基板と二温度成長法で成長させた方が、ステップフロー成長で薄膜が形成されるため、結晶流がなく、表面が一様で、平坦で、超電導特性が非常に良い高品質なa軸配向したBi-2223薄膜を作製することができる。   As described above, when the a-axis oriented Bi-2223 oxide superconducting thin film is formed, the thin film is formed by step flow growth with the inclined substrate and the two-temperature growth method. In addition, a high-quality a-axis oriented Bi-2223 thin film having a uniform surface, flat surface, and very good superconducting properties can be produced.

有望なジョセフソン接合の例Example of a promising Josephson junction 整合状況を説明する図Diagram explaining the alignment status 二次元核成長モデル図Two-dimensional nuclear growth model diagram ステップフロー成長モデル図Step flow growth model diagram MOCVD薄膜作製装置の概観図Overview of MOCVD thin film production equipment Bi-2223薄膜表面の原子間力顕微鏡(AFM)像Atomic force microscope (AFM) image of Bi-2223 thin film surface Bi-2223薄膜の原子間力顕微鏡(AFM)像の断面図Cross section of Bi-2223 thin film atomic force microscope (AFM) image Bi-2223薄膜の抵抗の温度依存性Temperature dependence of resistance of Bi-2223 thin film

Claims (8)

基板上にBi系酸化物超電導薄膜を作製する方法において、該薄膜の単結晶の格子定数は、該基板の単結晶の格子定数の整数倍(但し1倍を除く)であるようにして、該薄膜のc軸が基板面に対して平行で、a軸又はb軸が基板面に対して垂直に配向したBi系酸化物超電導薄膜を成長させる際に、該基板面から有限な角度をもって切断したステップを有する傾斜基板を用いることを特徴とするBi系酸化物超電導薄膜の作製方法。 In the method for producing a Bi-based oxide superconducting thin film on a substrate, the lattice constant of the single crystal of the thin film is an integral multiple of the single crystal lattice constant of the substrate (excluding 1 time), When growing a Bi-based oxide superconducting thin film with the c-axis of the thin film parallel to the substrate surface and the a-axis or b-axis oriented perpendicular to the substrate surface, the thin film was cut from the substrate surface at a finite angle. A method for producing a Bi-based oxide superconducting thin film, comprising using an inclined substrate having steps . 第1の温度において、上記薄膜のヘテロエピタキシャル成長を行い、次に、該薄膜の上に、該第1の温度よりも高い第2の温度において、該薄膜のホモエピタキシャル成長を行うことを特徴とする請求項1に記載のBi系酸化物超電導薄膜の作製方法。   The thin film is heteroepitaxially grown at a first temperature, and then the thin film is homoepitaxially grown on the thin film at a second temperature higher than the first temperature. Item 2. A method for producing a Bi-based oxide superconducting thin film according to Item 1. 上記Bi系酸化物超電導薄膜は、BiSrCaCu10±X(Xは、1より小さい正の数)又はBiSrCuO6±Y(Yは、1より小さい正の数)薄膜であることを特徴とする請求項1又は2に記載のBi系酸化物超電導薄膜の作製方法。 The Bi-based oxide superconducting thin film has Bi 2 Sr 2 Ca 2 Cu 3 O 10 ± X (X is a positive number smaller than 1) or Bi 2 Sr 2 CuO 6 ± Y (Y is a positive smaller than 1). The method for producing a Bi-based oxide superconducting thin film according to claim 1 or 2, wherein the method is a thin film. 上記単結晶基板は、LaSrAlO、LaSrGaO、α−Al又はNdAlOであることを特徴とする請求項1ないし3のいずれかに記載のBi系酸化物超電導薄膜の作製方法。 The single crystal substrate, LaSrAlO 4, LaSrGaO 4, α -Al 2 O 3 or the method for manufacturing a Bi-based oxide superconducting thin film according to any one of claims 1 to 3, characterized in that NdAlO 3. 基板上に堆積されたBi系酸化物超電導薄膜であって、該薄膜の単結晶の格子定数は、該基板の単結晶の格子定数の整数倍(但し1倍を除く)であり、該薄膜は、c軸が基板面に対して平行で、a軸又はb軸が基板面に対して垂直に配向し、該基板は該基板面から有限な角度をもって切断したステップを有する傾斜基板であることを特徴とするBi系酸化物超電導薄膜。 A Bi-based oxide superconducting thin film deposited on a substrate, the lattice constant of the single crystal of the thin film being an integral multiple of the single crystal lattice constant of the substrate (excluding 1 time), The c-axis is parallel to the substrate surface, the a-axis or b-axis is oriented perpendicular to the substrate surface, and the substrate is an inclined substrate having steps cut from the substrate surface at a finite angle. A Bi-based oxide superconducting thin film characterized. 上記Bi系酸化物超電導薄膜は、BiSrCaCu10±X(Xは、1より小さい正の数)又はBiSrCuO6±Y(Yは、1より小さい正の数)薄膜であることを特徴とする請求項5に記載のBi系酸化物超電導薄膜。 The Bi-based oxide superconducting thin film has Bi 2 Sr 2 Ca 2 Cu 3 O 10 ± X (X is a positive number smaller than 1) or Bi 2 Sr 2 CuO 6 ± Y (Y is a positive smaller than 1). The Bi-based oxide superconducting thin film according to claim 5, wherein the Bi-based oxide superconducting thin film is a thin film. 上記単結晶基板は、LaSrAlO、LaSrGaO、α−Al又はNdAlOであることを特徴とする請求項5又は6のいずれかに記載のBi系酸化物超電導薄膜。 7. The Bi-based oxide superconducting thin film according to claim 5, wherein the single crystal substrate is LaSrAlO 4 , LaSrGaO 4 , α-Al 2 O 3, or NdAlO 3 . ジョセフソン素子であって、請求項5ないし7のいずれかに記載のBi系酸化物超電導薄膜を用いて作製したことを特徴とするジョセフソン素子。   A Josephson element, which is manufactured using the Bi-based oxide superconducting thin film according to any one of claims 5 to 7.
JP2005099504A 2005-03-02 2005-03-30 Fabrication method of high quality Bi-based oxide superconducting thin film Expired - Fee Related JP4572386B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2005099504A JP4572386B2 (en) 2005-03-30 2005-03-30 Fabrication method of high quality Bi-based oxide superconducting thin film
US11/363,653 US7981840B2 (en) 2005-03-02 2006-02-28 Method of manufacturing Bi-based oxide superconductor thin films

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005099504A JP4572386B2 (en) 2005-03-30 2005-03-30 Fabrication method of high quality Bi-based oxide superconducting thin film

Publications (2)

Publication Number Publication Date
JP2006273699A JP2006273699A (en) 2006-10-12
JP4572386B2 true JP4572386B2 (en) 2010-11-04

Family

ID=37208795

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005099504A Expired - Fee Related JP4572386B2 (en) 2005-03-02 2005-03-30 Fabrication method of high quality Bi-based oxide superconducting thin film

Country Status (1)

Country Link
JP (1) JP4572386B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102127437A (en) * 2010-12-15 2011-07-20 中国科学院安徽光学精密机械研究所 Doped group IIA rare earth oxide luminescent material and melt-process growing method thereof
JP5939648B2 (en) * 2011-05-31 2016-06-22 古河電気工業株式会社 Oxide superconducting thin film, superconducting fault current limiter, and oxide superconducting thin film manufacturing method

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03265599A (en) * 1990-03-16 1991-11-26 Nippon Telegr & Teleph Corp <Ntt> Substrate for thin film of oxide superconductor
JPH059100A (en) * 1991-06-28 1993-01-19 Nec Corp Synthesis of oxide superconducting thin film
JPH0738165A (en) * 1993-07-19 1995-02-07 Nippon Telegr & Teleph Corp <Ntt> Manufacture of superconducting josephson device
JPH0769788A (en) * 1993-09-01 1995-03-14 Oki Electric Ind Co Ltd Method for forming oxide superconductor thin film
JP2000502042A (en) * 1995-12-22 2000-02-22 フォルシュングスツェントルム・ユーリッヒ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング Layer arrangement having at least one non-c-axis oriented epitaxial HTSL thin film or a crystallographically comparable layer of HTSL
JP2003273417A (en) * 2002-03-15 2003-09-26 Japan Science & Technology Corp (100)-oriented copper oxide high temperature superconducting thin film and method of manufacturing the same
JP2006117505A (en) * 2004-09-21 2006-05-11 National Institute Of Advanced Industrial & Technology Bismuth-based oxide superconductor thin film and method of manufacturing the same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03265599A (en) * 1990-03-16 1991-11-26 Nippon Telegr & Teleph Corp <Ntt> Substrate for thin film of oxide superconductor
JPH059100A (en) * 1991-06-28 1993-01-19 Nec Corp Synthesis of oxide superconducting thin film
JPH0738165A (en) * 1993-07-19 1995-02-07 Nippon Telegr & Teleph Corp <Ntt> Manufacture of superconducting josephson device
JPH0769788A (en) * 1993-09-01 1995-03-14 Oki Electric Ind Co Ltd Method for forming oxide superconductor thin film
JP2000502042A (en) * 1995-12-22 2000-02-22 フォルシュングスツェントルム・ユーリッヒ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング Layer arrangement having at least one non-c-axis oriented epitaxial HTSL thin film or a crystallographically comparable layer of HTSL
JP2003273417A (en) * 2002-03-15 2003-09-26 Japan Science & Technology Corp (100)-oriented copper oxide high temperature superconducting thin film and method of manufacturing the same
JP2006117505A (en) * 2004-09-21 2006-05-11 National Institute Of Advanced Industrial & Technology Bismuth-based oxide superconductor thin film and method of manufacturing the same

Also Published As

Publication number Publication date
JP2006273699A (en) 2006-10-12

Similar Documents

Publication Publication Date Title
JP4452805B2 (en) Bismuth oxide superconducting thin film and method for producing the same
KR101289999B1 (en) Process for producing superconducting thin-film material and superconducting equipment
JP6507173B2 (en) Integrated superconductor device and method for manufacturing the same
JP2013535778A (en) High temperature superconducting tape conductor with high critical current capacity.
US10158061B2 (en) Integrated superconductor device and method of fabrication
JP4572386B2 (en) Fabrication method of high quality Bi-based oxide superconducting thin film
JP2009289666A (en) Y system oxide superconductive wire rod
JP4448934B2 (en) Preparation method of Bi-based oxide superconducting thin film
US7981840B2 (en) Method of manufacturing Bi-based oxide superconductor thin films
Takahashi et al. Thickness dependence of Ic and Jc of LTG-SmBCO coated-conductor on IBAD-MgO tapes
JP2004155647A (en) Manufacturing method for high-temperature superconducting layer
EP0459906A2 (en) Process for preparing superconducting junction of oxide superconductor
KR20060019444A (en) Superconducting article and its manufacturing method
CA2264724A1 (en) Series of layers and component containing such
JPH059100A (en) Synthesis of oxide superconducting thin film
JP3696158B2 (en) Superconducting element and manufacturing method thereof
JP4571789B2 (en) High critical current superconducting element
JPH01101677A (en) Electronic device
JP2004303846A (en) Buffer layer for oxide superconductive thin film
US5362709A (en) Superconducting device
JP2004149380A (en) Single crystalline thin film
JP6359328B2 (en) RE123 crystal film production method.
JP2544760B2 (en) Preparation method of superconducting thin film
JP2011073926A (en) Superconductor structure, production process therefor, and electronic device
Song et al. The Magnetic Properties of SmBCO Coated Conductors Fabricated by Evaporation Using Drum in Dual Chamber (EDDC) Processing

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090512

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090519

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090717

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A132

Effective date: 20100105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100305

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100727

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100728

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130827

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130827

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130827

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees