JPH0769788A - Method for forming oxide superconductor thin film - Google Patents

Method for forming oxide superconductor thin film

Info

Publication number
JPH0769788A
JPH0769788A JP5217263A JP21726393A JPH0769788A JP H0769788 A JPH0769788 A JP H0769788A JP 5217263 A JP5217263 A JP 5217263A JP 21726393 A JP21726393 A JP 21726393A JP H0769788 A JPH0769788 A JP H0769788A
Authority
JP
Japan
Prior art keywords
substrate
thin film
oxide superconductor
inclined surface
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5217263A
Other languages
Japanese (ja)
Inventor
Tomoyuki Yamada
朋幸 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP5217263A priority Critical patent/JPH0769788A/en
Publication of JPH0769788A publication Critical patent/JPH0769788A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Abstract

PURPOSE:To provide a new method capable of expecting formation of a thin film of a YBaCuO oxide superconductor having C axis inclined to substrate face and excellent in crystal quality in forming the thin film on a substrate. CONSTITUTION:Stepped parts 17 constituted of the first inclined surface 17a and the second inclined surface perpendicular to the first inclined surface 17a are successively formed on an SrTiO3 substrate having a crystal face inclined by a prescribed angle theta from (001) face to a direction of [100] or [010] as a main face to provide a substrate 19 for formation of thin film. A YBaCuO superconductor thin film 21 is formed on this substrate 19 so that the first inclined face 17a of each stepped part 17 becomes (001) face and the length L is integral times longer than that of lattice interval of (a) axis or (b) axis of YBaCuO and the length (d) of the second inclined surface 17b is interlaminar distance in laminar structure of YBaCuO or dimensions close to the interlaminar distance.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、酸化物超電導体薄膜
の形成方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for forming an oxide superconductor thin film.

【0002】[0002]

【従来の技術】基板上に酸化物超電導体薄膜を形成する
ための方法として、真空蒸着法、CVD法、スパッタリ
ング法などの各種の成膜法を用いたものが知られてい
る。いずれの場合も、良質な高温超電導体薄膜は、基板
面にc軸が垂直なものであった。この点について、例え
ば文献I(ジャパニーズ ジャーナル オブ アプライ
ドフィジックス(JJAP),Vol.27,No.
1,(1988),pp.L91−L93)には、真空
蒸着法を用いた場合の結果が示されている。
2. Description of the Related Art As a method for forming an oxide superconductor thin film on a substrate, there is known a method using various film forming methods such as a vacuum vapor deposition method, a CVD method and a sputtering method. In each case, the good high temperature superconductor thin film had the c-axis perpendicular to the substrate surface. Regarding this point, for example, Reference I (Japanese Journal of Applied Physics (JJAP), Vol. 27, No.
1, (1988), pp. L91-L93) show the results when the vacuum evaporation method was used.

【0003】ところで、層状構造を有する酸化物超電導
体の薄膜では、該薄膜の結晶性が完全になるにしたがい
該薄膜のc軸方向の電気電導性が失われてゆくと考えら
れている。したがって、酸化物超電導体の薄膜の形成時
にそのc軸が基板に垂直になるように該薄膜を形成した
場合その結晶性が優れる程基板の厚さ方向の電気電導性
が失われることになる。これは酸化物超電導体薄膜を用
いる際に問題となる場合がある。なぜなら、基板上に形
成された酸化物超電導薄膜を用い何らかの素子を構成す
る場合、該薄膜上に電極を形成し該薄膜の厚さ方向に電
気信号を流す場合が多いと考えられるが、このような場
合に該薄膜の厚さ方向の電気電導性が得られないか極め
て低いと、所望の素子が形成できないからである。
By the way, it is considered that in the oxide superconductor thin film having a layered structure, the electric conductivity in the c-axis direction of the thin film is lost as the crystallinity of the thin film becomes complete. Therefore, when the thin film of the oxide superconductor is formed such that its c-axis is perpendicular to the substrate, the more excellent the crystallinity, the more the electric conductivity in the thickness direction of the substrate is lost. This can be a problem when using oxide superconductor thin films. This is because when an element is formed using an oxide superconducting thin film formed on a substrate, it is considered that an electrode is formed on the thin film and an electric signal is passed in the thickness direction of the thin film in many cases. In such a case, if the electrical conductivity in the thickness direction of the thin film cannot be obtained or is extremely low, a desired element cannot be formed.

【0004】そこで、酸化物超電導体薄膜の厚さ方向の
電気伝導性を確保するため、例えば文献II(アプライド
フィジックス レターズ(Appl.Phys.Le
tt.53(22),(1988)2232)には、Y
BaCuO系の高温超電導体薄膜のC軸が基板面に対し
傾くか平行となるように該薄膜を形成する方法が開示さ
れている。また、文献III (アイ イー イー イー
(IEEE),Magn.,27(1991)100
9)には、用いる基板の面方位を違えたり、薄膜の成長
条件(基板温度など)を違えた場合の、YBaCuO系
高温超電導体薄膜薄膜の配向具合に関する研究が開示さ
れている。そして、この文献III には、基板としてSr
TiO3 (100)基板を用いた場合、基板温度が比較
的低温(475℃〜550程度)であると形成される薄
膜はa軸配向であり、さらに基板温度を上げるとa/c
混合の配向となり、基板温度が700℃程度でc軸配向
になる旨開示されている。
Therefore, in order to secure the electric conductivity in the thickness direction of the oxide superconductor thin film, for example, reference II (Applied Physics Letters (Appl. Phys. Le.
tt. 53 (22), (1988) 2232), Y
A method of forming a BaCuO-based high-temperature superconductor thin film so that the C-axis is inclined or parallel to the substrate surface is disclosed. In addition, in Document III (IEE, Magn., 27 (1991) 100.
9) discloses a study on the orientation of a YBaCuO-based high-temperature superconductor thin film when the plane orientation of the substrate used is different or the thin film growth conditions (substrate temperature, etc.) are different. And in this document III, Sr is used as a substrate.
When a TiO 3 (100) substrate is used, the thin film formed when the substrate temperature is relatively low (475 ° C. to 550 ° C.) has a-axis orientation, and when the substrate temperature is further increased, a / c
It is disclosed that mixed orientation is achieved and c-axis orientation is achieved at a substrate temperature of about 700 ° C.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、上述の
文献III に開示の方法では、基板温度が低いなどのため
に良質な薄膜が得られないという問題点があり、また、
文献IIに開示の方法では基板温度が高い場合でも結晶方
位が複雑となるため品質の良い薄膜は得られないという
問題点があった。
However, the method disclosed in the above-mentioned Document III has a problem that a high-quality thin film cannot be obtained due to a low substrate temperature and the like.
The method disclosed in Document II has a problem that a high-quality thin film cannot be obtained because the crystal orientation becomes complicated even when the substrate temperature is high.

【0006】この発明はこのような点に鑑みなされたも
のであり、従ってこの発明の目的は基板上に酸化物超電
導体の薄膜を形成するに当たり、c軸が基板面に対し傾
いている薄膜でかつ結晶品質に優れる薄膜の形成が期待
できる新規な方法を提供することにある。
The present invention has been made in view of the above circumstances. Therefore, the object of the present invention is to form a thin film of an oxide superconductor on a substrate by using a thin film having a c-axis tilted with respect to the substrate surface. Another object of the present invention is to provide a novel method which can be expected to form a thin film having excellent crystal quality.

【0007】[0007]

【課題を解決するための手段】この目的の達成を図るた
め、この発明によれば、基板上に層状構造を有する酸化
物超電導体の薄膜を形成するに当たり、表面に第1の傾
斜面と該第1の傾斜面に接する第2の傾斜面とで構成さ
れる段差を次々と連続して有する基板であって、以下の
(a)及び(b)を満たす基板を、酸化物超電導体薄膜
形成用の基板として用いることを特徴する。
To achieve this object, according to the present invention, when a thin film of an oxide superconductor having a layered structure is formed on a substrate, a first inclined surface and An oxide superconductor thin film is formed by forming a substrate which has a step formed of a second inclined surface in contact with a first inclined surface and which continuously has a step and which satisfies the following (a) and (b). It is characterized in that it is used as a substrate.

【0008】(a)前記基板として前記酸化物超電導体
の層状構造における層内の格子定数と等しいか近似の格
子定数を持つ結晶面を有する基板を用い、前記第1の傾
斜面を該結晶面をもって構成する。
(A) As the substrate, a substrate having a crystal plane having a lattice constant equal to or close to the lattice constant in the layer in the layered structure of the oxide superconductor is used, and the first inclined plane is the crystal plane. With.

【0009】(b)前記第2の傾斜面の長さdを、前記
酸化物超電導体の層状構造における層間距離若しくはそ
れに近い値としてある。
(B) The length d of the second inclined surface is set to an interlayer distance in the layered structure of the oxide superconductor or a value close thereto.

【0010】この発明の実施に当たり、前記基板の第1
の傾斜面の長さLを、前記酸化物超電導体の層状構造に
おける層内の格子定数の整数倍(1も含む)の値若しく
はそれに近い値とするのが好適である。
In carrying out the present invention, the first substrate
It is preferable to set the length L of the inclined surface to a value that is an integer multiple (including 1) of the lattice constant in the layer in the layered structure of the oxide superconductor or a value close thereto.

【0011】なお、このような酸化物超電導体薄膜形成
用基板の具体例として、これに限られないが、ペロブス
カイト構造を有する酸化物の基板であって表面に前記段
差を有する基板を挙げることができ、より具体的な例と
して、SrTiO3 基板であって(001)面から[1
00]又は[010]方位へ所定角度θ傾いた結晶面を
主面としかつ前記第1傾斜面を(001)面で構成した
SrTiO3 基板を挙げることができる。
A specific example of such a substrate for forming an oxide superconductor thin film is not limited to this, but is an oxide substrate having a perovskite structure and having the above-mentioned step on the surface. As a more specific example, as a SrTiO 3 substrate, from the (001) plane to [1
An example is a SrTiO 3 substrate having a crystal plane tilted by a predetermined angle θ in the [00] or [010] direction as a main surface and the first tilted surface as a (001) plane.

【0012】また、この発明の対象である層状構造を有
する酸化物超電導体とはこのような構造を有する種々の
ものであることができる。その例として、例えば、YB
aCuO系、BiSrCaCuO系及びTlBaCaC
uO系などから選ばれたものを挙げることができる。
The oxide superconductor having a layered structure, which is the subject of the present invention, can be various oxide superconductors having such a structure. As an example, for example, YB
aCuO type, BiSrCaCuO type and TlBaCaC
Examples thereof include those selected from uO type.

【0013】[0013]

【作用】この発明の構成によれば、酸化物超電導体の薄
膜は第1の傾斜面に垂直な方向がc軸となるように成長
するので、得られる酸化物超電導体薄膜のc軸は第1の
傾斜面の傾斜角分だけ基板面の垂線に対して傾くことに
なる。なお、ここでいう基板面とは、段差がないとした
場合の平坦な基板面をいうものとし、例えば実施例で示
している予備基板11での主面15(図1(A)参照)
である。以下、説明の都合上、このような基板面を基板
の主面と称する。さらに、第2の傾斜面の長さdを酸化
物超電導体の層状構造における層間距離を考慮した長さ
にしてあるので、ある1つの第1の傾斜面に成長する薄
膜とそれ以外の第1の傾斜面に成長する薄膜との境界で
の両者の格子整合(薄膜の厚さ方向の格子整合)は、第
2の傾斜面の長さを考慮しない場合に比べ良好になるか
ら良質な薄膜が得られる。
According to the structure of the present invention, since the thin film of the oxide superconductor grows so that the direction perpendicular to the first inclined surface becomes the c-axis, the c-axis of the obtained oxide superconductor thin film has the c-axis. The inclination angle of the inclined surface is 1 with respect to the vertical line of the substrate surface. The term "substrate surface" as used herein means a flat substrate surface when there is no step, and for example, the main surface 15 of the preliminary substrate 11 shown in the embodiment (see FIG. 1A).
Is. Hereinafter, for convenience of description, such a substrate surface is referred to as a main surface of the substrate. Further, since the length d of the second inclined surface is set in consideration of the interlayer distance in the layered structure of the oxide superconductor, the thin film growing on one certain first inclined surface and the other first thin film. Since the lattice matching between the two at the boundary with the thin film growing on the inclined surface (the lattice matching in the thickness direction of the thin film) is better than when the length of the second inclined surface is not considered, a good quality thin film is obtained. can get.

【0014】また、第1の傾斜面の長さLを、前記酸化
物超電導体の層状構造の層内の格子定数の整数倍(1も
含む)の値若しくはそれに近い値とする構成では、薄膜
の厚さ方向と直交する方向における、ある1つの第1の
傾斜面に成長する薄膜とそれ以外の第1の傾斜面に成長
する薄膜との境界での両者の格子整合が良好に行える。
Further, in the structure in which the length L of the first inclined surface is set to a value that is an integer multiple (including 1) of the lattice constant in the layer of the layered structure of the oxide superconductor or a value close thereto, Good lattice matching can be achieved between the thin film growing on one of the first inclined surfaces and the thin film growing on the other first inclined surface in the direction orthogonal to the thickness direction.

【0015】[0015]

【実施例】以下、この発明の酸化物超電導体薄膜の形成
方法の実施例について説明する。図1及び図2はその説
明に供する図である。特に、図1(A)及び(B)はこ
の発明の方法で用いる基板の説明に供する断面図、図1
(C)はその基板に酸化物超電導体の薄膜を形成した後
の様子の説明に供する断面図、図2はYBaCuO系の
高温酸化物超電導体の構造説明に供する図である。
EXAMPLES Examples of the method for forming an oxide superconductor thin film of the present invention will be described below. 1 and 2 are diagrams used for the description. In particular, FIGS. 1A and 1B are sectional views for explaining the substrate used in the method of the present invention.
(C) is a cross-sectional view for explaining a state after forming a thin film of an oxide superconductor on the substrate, and FIG. 2 is a view for explaining a structure of a YBaCuO-based high-temperature oxide superconductor.

【0016】この実施例では、図1(A)に示すよう
に、SrTiO3 基板11であって、所定の結晶面この
例では(001)面(図中仮想線13で示すもの。)か
ら[100]又は[010]方位に角度θ傾いた結晶面
15を主面とするSrTiO3基板11(以下、これを
「予備基板」という。)を用意する。ここでは、角度θ
を11.3°とした予備基板11を用いる。次に、この
予備基板11の主面15に、長さLの第1の傾斜面17
aと、該第1の傾斜面17aに接する第2の傾斜面17
bとで構成される段差17を連続して形成して、酸化物
超電導体薄膜形成用基板19とする。ただし、各段差1
7は、ある段差17の第2の傾斜面17bに次の段差1
7の第1の傾斜面17aが連なるようにすることによ
り、連続させてある。また、この実施例では、各段差1
7は、その第1の傾斜面17aがSrTiO3 の(00
1)面で構成されるように、形成する(理由は後述す
る)。さらに、各段差17は、第1の傾斜面17aと第
2の傾斜面17bとが直交するように形成する(理由は
後述する)。ここで直交するとは、両傾斜面のなす角が
直角の場合およびこの発明の目的の範囲内でその近傍の
角度であっても良い意味である。さらに、各段差17の
第2の傾斜面の長さdを、この実施例では、約3.9オ
ングストローム(以下、「A°」で示す。)としてあ
り、また、第1の傾斜面17aの長さLを、この実施例
では、約19.5A°としている(理由は後述す
る。)。
In this embodiment, as shown in FIG. 1A, the SrTiO 3 substrate 11 has a predetermined crystal plane, and in this example, the (001) plane (shown by an imaginary line 13 in the figure) is used. A SrTiO 3 substrate 11 (hereinafter, referred to as a “preliminary substrate”) having a crystal plane 15 tilted by an angle θ in the [100] or [010] direction is prepared. Here, the angle θ
The preliminary substrate 11 whose angle is 11.3 ° is used. Next, on the main surface 15 of the preliminary substrate 11, a first inclined surface 17 having a length L is formed.
a and the second inclined surface 17 that is in contact with the first inclined surface 17a
A step 17 composed of b and b is continuously formed to form a substrate 19 for forming an oxide superconductor thin film. However, each step 1
7 is the next step 1 on the second inclined surface 17b of the step 17.
The first slanted surfaces 17a of No. 7 are connected to each other so as to be continuous. Further, in this embodiment, each step 1
In No. 7, the first inclined surface 17a is made of SrTiO 3 (00
1) Formed so as to be composed of faces (the reason will be described later). Further, each step 17 is formed so that the first inclined surface 17a and the second inclined surface 17b are orthogonal to each other (the reason will be described later). The term “perpendicular” here means that the angles formed by the two inclined surfaces are right angles, and may be angles in the vicinity thereof within the scope of the object of the present invention. Further, the length d of the second inclined surface of each step 17 is about 3.9 angstroms (hereinafter referred to as "A °") in this embodiment, and the length of the first inclined surface 17a is set. In this embodiment, the length L is about 19.5 A ° (the reason will be described later).

【0017】このような段差17が連続している表面を
有する基板19は、先ず、上記のSrTiO3 (00
1)基板を例えば研磨・加工することにより(001)
面からθ傾いた面15を主面とする予備基板11を作製
し、次いで、この予備基板11を適当に洗浄処理、エッ
チング処理、加熱処理することにより上記段差17をそ
れぞれ形成することで得られると考えられる。こうする
ことで基板19が得られる可能性は、SrTiO3 (1
00)表面は通常Ti面が現れ易いことからも伺える。
The substrate 19 having a surface where the steps 17 are continuous is first of all the above-mentioned SrTiO 3 (00
1) For example, by polishing and processing the substrate (001)
It is obtained by forming the preliminary substrate 11 whose main surface is the surface 15 inclined by θ from the surface, and then forming the step 17 by appropriately performing cleaning treatment, etching treatment, and heat treatment on the preliminary substrate 11. it is conceivable that. By doing so, the possibility of obtaining the substrate 19 is SrTiO 3 (1
This can also be inferred from the fact that a Ti surface usually appears on the (00) surface.

【0018】次に、第1の傾斜面17aをSrTiO3
の(001)面で構成する理由、第1の傾斜面17aと
第2の傾斜面とが直交するように各段差を形成する理
由、各傾斜面17a,17bのそれぞれの長さL及びd
を上記の各値としている理由についてそれぞれ説明す
る。
Next, the first inclined surface 17a is covered with SrTiO 3
(001) plane, the reason why each step is formed so that the first inclined surface 17a and the second inclined surface are orthogonal to each other, and the respective lengths L and d of the inclined surfaces 17a and 17b.
The reason why is set to each of the above values will be described.

【0019】この理由は、簡単にいえば、:層状構造
を有する酸化物超電導体の層間距離をcと表し、さら
に、該酸化物超電導体の層内の格子定数をaと表すとし
た場合、この発明で用いる酸化物超電導体薄膜形成用基
板19表面の段差17の第2の傾斜面17bの長さdは
d=cが理想であり、また、第1の傾斜面17aの長さ
LはL=naが理想であり(ただし、nは正の整数であ
る。)、:酸化物超電導体としてYBaCuOを用い
る場合に上記のd=c及びL=naという条件をほぼ満
足できる一例は、格子定数が3.905A°であるSr
TiO3 を本実施例のように使用すると良いからであ
る。以下に詳述する。
The reason is as follows: When the interlayer distance of an oxide superconductor having a layered structure is represented by c and the lattice constant in the layer of the oxide superconductor is represented by a, The length d of the second inclined surface 17b of the step 17 on the surface of the oxide superconductor thin film forming substrate 19 used in the present invention is ideally d = c, and the length L of the first inclined surface 17a is L = na is ideal (where n is a positive integer): When YBaCuO is used as an oxide superconductor, one example that can substantially satisfy the above conditions of d = c and L = na is a lattice. Sr whose constant is 3.905 A °
This is because it is preferable to use TiO 3 as in this embodiment. The details will be described below.

【0020】図2は、YBa2 Cu3 7 の構造を模式
的に示した図である。YBa2 Cu3 7 の構造におい
て、2つのBa層に挟まれたCu層と、そのCu層の上
側又は下側の他のCu層との間の距離cは、3.9A°
に近い値であり、また、近接する2つのBa層間距離も
3.9A°に近い値であることが、例えば文献IV(JJ
AP,26,L1144(1987))に開示されてい
る。すなわち、層状構造を有するYBa2 Cu3 7
おいて、層間距離は3.9A°程度であるのである。し
たがって、基板19の各段差17の第2の傾斜面17b
の長さdを約3.9A°にすると、ある第1の傾斜面1
7aに成長したYBa2 Cu3 7 薄膜と、この第1の
傾斜面17aの隣りの他の第1の傾斜面17aに成長し
たYBa2 Cu3 7 薄膜とは、良好に格子整合すると
考えられる(薄膜の厚さ方向の格子整合が確保できると
考えられる。)。
FIG. 2 is a diagram schematically showing the structure of YBa 2 Cu 3 O 7 . In the structure of YBa 2 Cu 3 O 7 , the distance c between a Cu layer sandwiched between two Ba layers and another Cu layer above or below the Cu layer is 3.9 A °.
And the distance between two adjacent Ba layers is also close to 3.9 A °, for example, in Document IV (JJ
AP, 26, L1144 (1987)). That is, in YBa 2 Cu 3 O 7 having a layered structure, the interlayer distance is about 3.9 A °. Therefore, the second inclined surface 17b of each step 17 of the substrate 19 is
When the length d of the first inclined surface 1 is about 3.9 A °,
And YBa 2 Cu 3 O 7 films grown in 7a, and the other of the YBa 2 Cu 3 O 7 films grown on the first inclined surface 17a next to the first inclined surface 17a, when good lattice matching considered (It is considered that lattice matching in the thickness direction of the thin film can be secured.).

【0021】また、YBaCuO系酸化物高温超電導体
の層状構造における層内の格子定数すなわちa軸方向の
格子間隔又はb軸方向の格子間隔は、前者にあっては
3.892A°であり後者にあっては3.826A°で
あり、いずれも3.9A°に近い値であることが知られ
ている。したがって、第1の傾斜面17aの長さLが上
記のごとく19.5A°であるということは、19.5
/3.9=5であるから、第1の傾斜面17aの長さL
はYBaCuO系酸化物高温超電導体のa軸方向又はb
軸方向の格子間隔の整数倍(この場合5倍)になってい
ることを意味する。このようにしておくと、各段差の第
1傾斜面17a上に形成されたYBa2 Cu3 7 薄膜
同士の厚さ方向と直交する方向の格子整合が確保できる
と考えられる。
In the layered structure of the YBaCuO-based high-temperature oxide superconductor, the lattice constant in the layer, that is, the lattice spacing in the a-axis direction or the lattice spacing in the b-axis direction is 3.892 A ° in the former case, and the latter. Then, it is 3.826 A °, and it is known that all are values close to 3.9 A °. Therefore, the fact that the length L of the first inclined surface 17a is 19.5 A ° as described above means 19.5 A °.
Since /3.9=5, the length L of the first inclined surface 17a is L.
Is the Y-axis direction of the YBaCuO-based oxide high-temperature superconductor or b
This means that it is an integral multiple (five times in this case) of the lattice spacing in the axial direction. By doing so, it is considered that the lattice matching in the direction orthogonal to the thickness direction of the YBa 2 Cu 3 O 7 thin films formed on the first inclined surface 17a of each step can be secured.

【0022】また、各段差の第1の傾斜面17aがSr
TiO3 の(001)面となるようにすると、SrTi
3 (001)面の格子定数が3.9A°であるので、
この結晶面とこの上に形成されるYBaCuO系薄膜と
の格子整合が確保されると考えられるから、c軸配向膜
でかつ良質なYBaCO薄膜が得られる。このような理
由から、この実施例では段差17の条件を上述のように
している。
Further, the first inclined surface 17a of each step is Sr.
If the (001) plane of TiO 3 is used, SrTi
Since the lattice constant of the O 3 (001) plane is 3.9 A °,
It is considered that the lattice matching between this crystal plane and the YBaCuO-based thin film formed on the crystal plane is ensured, so that a good YBaCO thin film that is a c-axis oriented film can be obtained. For this reason, the condition of the step 17 is set as described above in this embodiment.

【0023】なお、上述においては、第1の傾斜面17
aの長さLを、YBaCuOのa軸又はb軸の格子定数
(格子間隔)の5倍としているが、倍数n(ただし整
数)は他の値でも良い。この場合は、SrTiO3 基板
の所定の結晶面この例では(001)面(図1中仮想線
13で示すもの。)から[100]又は[010]方位
に角度θ傾いた結晶面15を得るための角度θは、θ≒
tan-1(aS /naS)を満たすように選べば良い。
ここで、nは上記倍数であり、aS はSrTiO3 結晶
の格子定数である。
In the above description, the first inclined surface 17
The length L of a is set to 5 times the lattice constant (lattice spacing) of the a-axis or the b-axis of YBaCuO, but the multiple n (however, an integer) may be another value. In this case, a predetermined crystal plane of the SrTiO 3 substrate, in this example, a crystal plane 15 tilted at an angle θ from the (001) plane (shown by the phantom line 13 in FIG. 1) to the [100] or [010] direction is obtained. Angle θ for
It may be selected so as to satisfy tan −1 (a S / na S ).
Here, n is the above multiple and a S is the lattice constant of the SrTiO 3 crystal.

【0024】上述のように得た酸化物超電導体薄膜形成
用基板19上に、図1(C)に示したように、YBaC
uO薄膜21をc軸配向膜を形成し得る条件により成長
させる。そうすると、この実施例では薄膜21はそのc
軸が第1傾斜面に垂直な方向となるように即ち基板19
の主面(図1(A)の主面15)の垂線に対しθ傾いた
方向となるように成長する。ここで、YBaCuO薄膜
21の成長方法としては、真空蒸着法、スパッタリング
法、CVD法などを用いた公知の方法を用いれば良い。
その際、この発明の方法では基板加熱温度を低くする必
要もないと考えられるので基板加熱温度に起因する結晶
品質低下の恐れはないと考えることができる。このよう
に形成された薄膜21ではその表面と直交する結晶方位
は薄膜のc軸からθ傾いたに方位になるので、この薄膜
21の表面と直交する方向での電気伝導性が確保され
る。
On the oxide superconductor thin film forming substrate 19 obtained as described above, as shown in FIG. 1C, YBaC is formed.
The uO thin film 21 is grown under the conditions capable of forming a c-axis oriented film. Then, in this embodiment, the thin film 21 is c
The axis is perpendicular to the first inclined surface, that is, the substrate 19
The main surface (main surface 15 of FIG. 1A) is inclined by θ. Here, as a method for growing the YBaCuO thin film 21, a known method using a vacuum vapor deposition method, a sputtering method, a CVD method or the like may be used.
In that case, it is considered that there is no need to lower the substrate heating temperature in the method of the present invention, and therefore it can be considered that there is no fear of deterioration of crystal quality due to the substrate heating temperature. In the thin film 21 formed in this way, the crystal orientation orthogonal to the surface thereof is tilted by θ with respect to the c-axis of the thin film, so that electric conductivity in the direction orthogonal to the surface of the thin film 21 is secured.

【0025】上述においては、この発明の酸化物超電導
体薄膜の形成方法の実施例について説明したがこの発明
は上述の実施例に限られない。例えば、上述の実施例で
用いたSrTiO3 基板をNbドープのSrTiO3
板とすることもできる。こうすると基板の電気伝導性が
高められるので好適である。また、SrTiO3 基板の
代わりに、YBaCuO酸化物超電導体の格子定数に近
い格子定数を有する他の基板を用いても良い。また、層
状構造を有する他の酸化物超電導体であればYBaCu
O系以外のものの薄膜形成にもこの発明は適用できる。
層状構造を有する他の酸化物超電導体としては例えばB
iSrCaCuO系及びTlBaCaCuO系などを挙
げることができる。
Although the embodiment of the method for forming an oxide superconductor thin film of the present invention has been described above, the present invention is not limited to the above embodiment. For example, the SrTiO 3 substrate used in the above-mentioned embodiment may be an Nb-doped SrTiO 3 substrate. This is preferable because the electrical conductivity of the substrate is enhanced. Further, instead of the SrTiO 3 substrate, another substrate having a lattice constant close to that of the YBaCuO oxide superconductor may be used. If another oxide superconductor having a layered structure is used, YBaCu
The present invention can also be applied to the formation of thin films other than those based on O.
As another oxide superconductor having a layered structure, for example, B
Examples thereof include iSrCaCuO type and TlBaCaCuO type.

【0026】[0026]

【発明の効果】上述した説明から明らかなように、この
発明の酸化物超電導体薄膜の形成方法によれば、当該薄
膜形成用の基板として基板表面に所定段差を連続して有
する所定の基板を用いるので、c軸が基板主面の垂線に
対しわずかに傾いた薄膜が得られる。したがって、形成
した薄膜は、基板主面(薄膜表面)に垂直な方向におい
ても導電性を示すものとなる。このため、素子作製等に
おいて有用である。さらに、例えば、この酸化物超電導
体薄膜の上に引き続き他の種類の薄膜を形成できるた
め、この他の種類の薄膜と酸化物超電導体薄膜との接合
も、薄膜に垂直な方向に導電性を持つ接合として利用で
きる。したがって、例えば、酸化物超電導体薄膜の利用
範囲の拡大などが図れると考えられる。
As is apparent from the above description, according to the method for forming an oxide superconductor thin film of the present invention, a predetermined substrate having a predetermined step continuously on the substrate surface is used as the thin film forming substrate. Since it is used, a thin film in which the c-axis is slightly inclined with respect to the vertical line of the main surface of the substrate can be obtained. Therefore, the formed thin film exhibits conductivity even in the direction perpendicular to the main surface of the substrate (thin film surface). Therefore, it is useful in device fabrication and the like. Furthermore, for example, since another type of thin film can be continuously formed on the oxide superconductor thin film, the bonding between the other type thin film and the oxide superconductor thin film also has conductivity in the direction perpendicular to the thin film. It can be used as a joint to have. Therefore, for example, it is considered that the utilization range of the oxide superconductor thin film can be expanded.

【図面の簡単な説明】[Brief description of drawings]

【図1】(A)〜(C)は、実施例の説明に供する図で
あり、特に(A)及び(B)は酸化物超電導体薄膜形成
用基板の説明図、(C)は薄膜形成後の様子の説明図で
ある。
FIG. 1A to FIG. 1C are diagrams for explaining an embodiment, in particular, FIGS. 1A and 1B are explanatory views of a substrate for forming an oxide superconductor thin film, and FIG. 1C is a thin film formation. It is an explanatory view of the situation after.

【図2】実施例の説明に供する図であり、YBaCuO
系酸化物超電導体の構造説明に供する図である。
FIG. 2 is a diagram for explaining an example, showing YBaCuO.
It is a figure with which a structure explanation of a system oxide superconductor is carried out.

【符号の説明】 11:予備基板 13:所定の結晶面(例えば(001)面 15:所定の結晶面をθ傾けた面(主面) 17:段差 17a:第1の傾斜面 17b:第2の傾斜面 19:酸化物超電導体薄膜形成用基板 21:酸化物超電導体薄膜[Description of Reference Signs] 11: Preliminary substrate 13: Predetermined crystal plane (for example, (001) plane 15: Surface in which a predetermined crystal plane is inclined by θ (main surface) 17: Step 17a: First inclined surface 17b: Second Inclined surface 19: Substrate for forming oxide superconductor thin film 21: Oxide superconductor thin film

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 基板上に層状構造を有する酸化物超電導
体の薄膜を形成するに当たり、 表面に第1の傾斜面と該第1の傾斜面に接する第2の傾
斜面とで構成される段差を次々と連続して有する基板で
あって、以下の(a)及び(b)を満たす基板を、酸化
物超電導体薄膜形成用の基板として用いることを特徴す
る酸化物超電導体薄膜の形成方法。 (a)前記基板として前記酸化物超電導体の層状構造に
おける層内の格子定数と等しいか近似の格子定数を持つ
結晶面を有する基板を用い、前記第1の傾斜面を該結晶
面をもって構成する。 (b)前記第2の傾斜面の長さdを、前記酸化物超電導
体の層状構造における層間距離若しくはそれに近い値と
してある。
1. When forming a thin film of an oxide superconductor having a layered structure on a substrate, a step formed on the surface by a first inclined surface and a second inclined surface in contact with the first inclined surface. A method for forming an oxide superconducting thin film, characterized in that a substrate having the following (a) and (b) is satisfied as a substrate for forming an oxide superconducting thin film. (A) As the substrate, a substrate having a crystal plane having a lattice constant equal to or close to the lattice constant in the layer in the layered structure of the oxide superconductor is used, and the first inclined plane is constituted by the crystal plane. . (B) The length d of the second inclined surface is set to an interlayer distance in the layered structure of the oxide superconductor or a value close thereto.
【請求項2】 請求項1に記載の酸化物超電導体薄膜の
形成方法において、前記基板の第1の傾斜面の長さL
を、前記酸化物超電導体の層状構造における層内の格子
定数の整数倍(1も含む)の値若しくはそれに近い値と
してあることを特徴とする酸化物超電導体薄膜の形成方
法。
2. The method for forming an oxide superconductor thin film according to claim 1, wherein the length L of the first inclined surface of the substrate is L.
Is a value that is an integer multiple (including 1) of the lattice constant in the layer in the layered structure of the oxide superconductor, or a value close thereto.
【請求項3】 請求項1又は2に記載の酸化物超電導体
薄膜の形成方法において、 前記基板として、ペロブスカイト構造を有する酸化物の
基板であって表面に前記段差を有する基板を用いること
を特徴とする酸化物超電導体薄膜の形成方法。
3. The method for forming an oxide superconductor thin film according to claim 1, wherein the substrate is an oxide substrate having a perovskite structure and having the step on the surface. A method for forming an oxide superconductor thin film.
【請求項4】 請求項1〜3のいずれか1項に記載の酸
化物超電導体薄膜の形成方法において、 前記基板として、SrTiO3 基板であって(001)
面から[100]又は[010]方位へ所定角度傾いた
結晶面を主面としかつ前記第1傾斜面を(001)面で
構成したSrTiO3 基板、を用いることを特徴とする
酸化物超電導体薄膜の形成方法。
4. The method for forming an oxide superconductor thin film according to claim 1, wherein the substrate is a SrTiO 3 substrate (001).
An SrTiO 3 substrate having a crystal plane tilted at a predetermined angle from the plane to a [100] or [010] direction as a main surface and the first tilted surface being a (001) plane is used. Method of forming thin film.
【請求項5】 請求項1〜4のいずれか1項に記載の酸
化物超電導体薄膜の形成方法において、 前記酸化物超電導体を、YBaCuO系、BiSrCa
CuO系及びTlBaCaCuO系から選ばれたものと
したことを特徴とする酸化物超電導体薄膜の形成方法。
5. The method for forming an oxide superconductor thin film according to claim 1, wherein the oxide superconductor is YBaCuO-based or BiSrCa.
A method for forming an oxide superconductor thin film, which is selected from CuO-based and TlBaCaCuO-based.
JP5217263A 1993-09-01 1993-09-01 Method for forming oxide superconductor thin film Pending JPH0769788A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5217263A JPH0769788A (en) 1993-09-01 1993-09-01 Method for forming oxide superconductor thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5217263A JPH0769788A (en) 1993-09-01 1993-09-01 Method for forming oxide superconductor thin film

Publications (1)

Publication Number Publication Date
JPH0769788A true JPH0769788A (en) 1995-03-14

Family

ID=16701404

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5217263A Pending JPH0769788A (en) 1993-09-01 1993-09-01 Method for forming oxide superconductor thin film

Country Status (1)

Country Link
JP (1) JPH0769788A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006273699A (en) * 2005-03-30 2006-10-12 National Institute Of Advanced Industrial & Technology METHOD OF MANUFACTURING HIGH QUALITY Bi-BASED OXIDE SUPERCONDUCTOR THIN FILM
JP2008251564A (en) * 2007-03-29 2008-10-16 Kyushu Univ High-temperature superconducting current lead and method for increasing critical current density
WO2012165504A1 (en) * 2011-05-31 2012-12-06 古河電気工業株式会社 Oxide superconductor thin film, superconducting fault current limiter, and method for manufacturing oxide superconductor thin film
JP2016222467A (en) * 2015-05-27 2016-12-28 国立研究開発法人物質・材料研究機構 METHOD FOR MANUFACTURING Bi BASED OXIDE SUPERCONDUCTING THIN FILM AND Bi BASED OXIDE SUPERCONDUCTING THIN FILM STRUCTURE
CN106350773A (en) * 2016-09-09 2017-01-25 昆明理工大学 Method for increasing high-temperature thermoelectric potential of layered cobalt-based oxide films
JP2022018623A (en) * 2020-07-16 2022-01-27 日本電信電話株式会社 Hetero structure and method for manufacturing the same

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006273699A (en) * 2005-03-30 2006-10-12 National Institute Of Advanced Industrial & Technology METHOD OF MANUFACTURING HIGH QUALITY Bi-BASED OXIDE SUPERCONDUCTOR THIN FILM
JP4572386B2 (en) * 2005-03-30 2010-11-04 独立行政法人産業技術総合研究所 Fabrication method of high quality Bi-based oxide superconducting thin film
JP2008251564A (en) * 2007-03-29 2008-10-16 Kyushu Univ High-temperature superconducting current lead and method for increasing critical current density
WO2012165504A1 (en) * 2011-05-31 2012-12-06 古河電気工業株式会社 Oxide superconductor thin film, superconducting fault current limiter, and method for manufacturing oxide superconductor thin film
JPWO2012165504A1 (en) * 2011-05-31 2015-02-23 古河電気工業株式会社 Oxide superconducting thin film, superconducting fault current limiter, and oxide superconducting thin film manufacturing method
US9105794B2 (en) 2011-05-31 2015-08-11 Furukawa Electric Co., Ltd. Oxide superconductor thin film, superconducting fault current limiter, and method for manufacturing oxide superconductor thin film
JP2016222467A (en) * 2015-05-27 2016-12-28 国立研究開発法人物質・材料研究機構 METHOD FOR MANUFACTURING Bi BASED OXIDE SUPERCONDUCTING THIN FILM AND Bi BASED OXIDE SUPERCONDUCTING THIN FILM STRUCTURE
CN106350773A (en) * 2016-09-09 2017-01-25 昆明理工大学 Method for increasing high-temperature thermoelectric potential of layered cobalt-based oxide films
CN106350773B (en) * 2016-09-09 2018-08-10 昆明理工大学 A method of increasing layered cobalt base oxide thin film high temperature thermoelectrical potential
JP2022018623A (en) * 2020-07-16 2022-01-27 日本電信電話株式会社 Hetero structure and method for manufacturing the same

Similar Documents

Publication Publication Date Title
JPH05160449A (en) Josephson junction structure
US20090197770A1 (en) Bismuth based oxide superconductor thin films and method of manufacturing the same
JPH0769788A (en) Method for forming oxide superconductor thin film
JPH05894A (en) Compound oxide superconducting thin film
JPH07267791A (en) Production of oxide superconductor thin film and oxide superconductor thin film laminate
EP0546904B1 (en) Method for manufacturing an artificial grain boundary type Josephson junction device
JP3189403B2 (en) Element having superconducting junction and method of manufacturing the same
KR0163747B1 (en) Fabrication method of superconductor junction oriented perpendicular to a-axis and composed of oxide superconductor thin film/normal conductor thin film structure
EP0973208B1 (en) Lattice matching device and method for fabricating the same
JP2902939B2 (en) Oxide thin film, method of manufacturing the same, and superconducting element using the same
US5292718A (en) Process for preparing superconducting junction of oxide superconductor
JP3096050B2 (en) Method for manufacturing semiconductor device
KR100235799B1 (en) Process for preparing superconducting junction of oxide superconductor
US6156706A (en) Layer structure with an epitaxial, non-c-axis oriented HTSC thin film
JPH01101677A (en) Electronic device
JP2959290B2 (en) Superconducting laminated thin film and manufacturing method thereof
JP2730336B2 (en) Manufacturing method of superconducting device
JP2708671B2 (en) A method for manufacturing a superconducting thin film grain boundary junction device.
JP2931779B2 (en) Superconducting element
JP2883464B2 (en) Method of laminating thin films of different materials on oxide superconducting thin film
JP3485601B2 (en) Manufacturing method of superconducting composite thin film
JP2819743B2 (en) Preparation method of high temperature superconducting thin film
JPH06196762A (en) Oxide superconductor junction and formation thereof
JP2809557B2 (en) Copper oxide material
JP2819871B2 (en) Manufacturing method of superconducting device

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20010918