JPH0738165A - Manufacture of superconducting josephson device - Google Patents
Manufacture of superconducting josephson deviceInfo
- Publication number
- JPH0738165A JPH0738165A JP5200098A JP20009893A JPH0738165A JP H0738165 A JPH0738165 A JP H0738165A JP 5200098 A JP5200098 A JP 5200098A JP 20009893 A JP20009893 A JP 20009893A JP H0738165 A JPH0738165 A JP H0738165A
- Authority
- JP
- Japan
- Prior art keywords
- thin film
- dielectric substrate
- superconducting thin
- josephson
- superconducting
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 13
- 239000000758 substrate Substances 0.000 claims abstract description 45
- 230000008878 coupling Effects 0.000 claims abstract description 11
- 238000010168 coupling process Methods 0.000 claims abstract description 11
- 238000005859 coupling reaction Methods 0.000 claims abstract description 11
- 238000000034 method Methods 0.000 claims description 11
- 239000002887 superconductor Substances 0.000 claims description 11
- 239000010409 thin film Substances 0.000 abstract description 39
- 239000013078 crystal Substances 0.000 abstract description 20
- 238000000059 patterning Methods 0.000 abstract description 2
- 230000008774 maternal effect Effects 0.000 abstract 1
- 238000010586 diagram Methods 0.000 description 4
- 239000010408 film Substances 0.000 description 3
- 229910002480 Cu-O Inorganic materials 0.000 description 2
- 230000010354 integration Effects 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 230000010365 information processing Effects 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 1
- 239000000395 magnesium oxide Substances 0.000 description 1
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 238000000206 photolithography Methods 0.000 description 1
- VEALVRVVWBQVSL-UHFFFAOYSA-N strontium titanate Chemical compound [Sr+2].[O-][Ti]([O-])=O VEALVRVVWBQVSL-UHFFFAOYSA-N 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Landscapes
- Superconductor Devices And Manufacturing Methods Thereof (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は通信や情報産業,天文観
測などの分野において用いられるジョセフソン素子の作
製方法に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a Josephson device used in the fields of communication, information industry, astronomical observation and the like.
【0002】[0002]
【従来の技術】ジョセフソン素子は、高感度な磁気およ
び電磁波センサーや高速で低消費電力な電子デバイスと
して用いられる。酸化物超伝導体は比較的高い温度で超
伝導状態が発現し、エネルギーギャップが大きいため遠
赤外領域の高い周波数を持つ電磁波にも使えると考えら
れている。このジョセフソン結合を安定に再現性良く実
現できると、従来の動作温度より70〜100Kも高い
温度で動作させることが可能になり、簡易な冷凍装置を
用いて低雑音で信号処理ができる。しかし、酸化物超伝
導体は、短コヒーレンス長,結晶異方性,含有酸素の不
安定さなど電子デバイス化にとって困難な特性をも併せ
持つ。そのため従来の金属系低温超伝導体で成功を収め
た絶縁体を超伝導で挟んだ構造を持つ積層型ジョセフソ
ン素子の作製が著しく困難である。そこで当初、酸化物
超伝導膜を熱処理した結果できる結晶の自然粒界を利用
した素子の作製が検討された。しかし、自然粒界は制御
性が悪くまた再現性に乏しいので、Bi−クリスタル(Bi
-crystal)基板や段差基板上に超伝導薄膜を成膜し、粒
界を人工的に作ることが試みられてきた。Bi−クリスタ
ル基板上に作製した接合は低雑音特性を示すが、集積化
には適さず、また融着部が熱膨張や衝撃で破損しやす
い。段差基板を用いた接合は比較的簡単なプロセスを通
じて1枚の基板上に多素子化が可能であるという利点が
あるが、素子の再現性に問題がある。情報処理や高速動
作を行うためにはジョセフソン接合の集積化や3端子動
作を含めた電子デバイスとしての機能性・信頼性を高め
ることが必要である。また、酸化物超伝導体は多元素な
ため劣化しやすい。そこで、高臨界電流密度を持ち、微
細加工法による劣化がないジョセフソン接合の作製技術
が求められている。2. Description of the Related Art Josephson devices are used as highly sensitive magnetic and electromagnetic wave sensors and high speed and low power consumption electronic devices. Oxide superconductors are considered to be applicable to electromagnetic waves having a high frequency in the far infrared region because they exhibit a superconducting state at a relatively high temperature and have a large energy gap. If this Josephson coupling can be stably realized with good reproducibility, it becomes possible to operate at a temperature 70 to 100 K higher than the conventional operating temperature, and signal processing can be performed with low noise using a simple refrigerating device. However, oxide superconductors also have characteristics such as short coherence length, crystal anisotropy, and instability of oxygen content, which are difficult to make into electronic devices. Therefore, it is extremely difficult to fabricate a stacked Josephson device having a structure in which an insulator, which has been successful in a conventional metal-based low-temperature superconductor, is sandwiched by superconductors. Therefore, initially, the fabrication of an element using the natural grain boundaries of the crystal formed as a result of heat treatment of the oxide superconducting film was examined. However, since natural grain boundaries are poorly controlled and poorly reproducible, Bi-crystal (Bi
It has been attempted to artificially create grain boundaries by depositing a superconducting thin film on a -crystal) substrate or a stepped substrate. The junction produced on the Bi-crystal substrate exhibits low noise characteristics, but is not suitable for integration, and the fused portion is easily damaged by thermal expansion or impact. Bonding using a stepped substrate has an advantage that multiple devices can be formed on one substrate through a relatively simple process, but there is a problem in reproducibility of devices. In order to perform information processing and high-speed operation, it is necessary to enhance the functionality and reliability of the electronic device including the integration of Josephson junctions and 3-terminal operation. In addition, since the oxide superconductor is a multi-element, it is easily deteriorated. Therefore, there is a demand for a technique for manufacturing a Josephson junction which has a high critical current density and is not deteriorated by a microfabrication method.
【0003】[0003]
【発明が解決しようとする課題】本発明は、上記の欠点
を改善するために提案されたもので、その目的は、超伝
導薄膜作製用の誘電体基板に傾斜を付けることにより、
格子整合の取れた、エピタキシャル超伝導薄膜を作製
し、傾斜端での結晶結合の違いをジョセフソン接合とし
て用いることにより、高臨界電流を示し、再現性に優れ
たジョセフソンデバイスを作製することにある。The present invention has been proposed in order to improve the above-mentioned drawbacks, and its purpose is to provide a dielectric substrate for producing a superconducting thin film with an inclination,
By making an epitaxial superconducting thin film with lattice matching and using the difference in crystal bond at the tilted edge as a Josephson junction, we show a highly critical reproducible Josephson device. is there.
【0004】[0004]
【課題を解決するための手段】上記の目的を達成するた
め、本発明は酸化物超伝導体よりも格子定数の小さい誘
電体基板の一部に傾斜面を形成し、両者の格子整合をは
かるとともに、前記傾斜面と前記誘電体基板の平面との
境界部に超伝導結合の弱いジョセフソン接合を形成する
ことを特徴とする超伝導ジョセフソン素子の作製方法を
発明の要旨とするものである。さらに、本発明は酸化物
超伝導体よりも格子定数の小さい誘電体基板に、2面以
上の傾斜面を形成し、両者の格子整合をはかるととも
に、前記傾斜面相互の境界部に超伝導結合の弱いジョセ
フソン接合を形成することを特徴とする超伝導ジョセフ
ソン素子の作製方法を発明の要旨とするものである。換
言すれば、本発明は格子整合を考慮した傾斜誘電体基板
を用い、その上に超伝導薄膜を形成し、傾斜端での結晶
構造の不整合を利用することによって、弱結合型のジョ
セフソン接合を形成するものである。In order to achieve the above object, the present invention forms an inclined surface on a part of a dielectric substrate having a lattice constant smaller than that of an oxide superconductor to achieve lattice matching between the two. At the same time, a gist of the invention is a method for manufacturing a superconducting Josephson device, characterized in that a Josephson junction having a weak superconducting coupling is formed at a boundary portion between the inclined surface and the plane of the dielectric substrate. . Further, according to the present invention, two or more inclined surfaces are formed on a dielectric substrate having a lattice constant smaller than that of an oxide superconductor, the lattice matching between the two surfaces is achieved, and the superconducting coupling is formed at the boundary between the inclined surfaces. The gist of the invention is a method for manufacturing a superconducting Josephson device, which is characterized by forming a weak Josephson junction. In other words, the present invention uses a graded dielectric substrate in which lattice matching is taken into consideration, forms a superconducting thin film on it, and utilizes the mismatch of the crystal structure at the graded edge to make the weak coupling Josephson substrate. It forms a bond.
【0005】[0005]
【作用】本発明の方法は、第1の発明に示すように、格
子整合を考慮した傾斜誘電体基板を用い、その傾斜端で
の結晶結合の違いをジョセフソン接合として用いる。ま
た、本発明による方法は成膜後も素子形状に加工するだ
けで、ジョセフソン接合素子を作製できることより、加
工劣化の少ない素子作製方法である。また、本発明によ
り作製された素子は基板自体に融着やエッチングなどの
前処理を行わないため、基板上の不純物が少なく、衝
撃,熱サイクルなどにも強い。また、第2の発明に示す
ように、従来の酸化物超伝導体を用いたジョセフソン接
合の作製方法に比べ、格子整合が取られている。また、
基板に対して配向した超伝導薄膜は、傾斜端でわずかに
c軸方向のずれた超伝導薄膜と結合する。この時、Cu
−O平面をわずかに横切るため、高い臨界電流を有する
ジョセフソン接合を作製することができる。According to the method of the present invention, as shown in the first aspect of the invention, a graded dielectric substrate in which lattice matching is taken into consideration is used, and the difference in crystal coupling at the graded edge is used as a Josephson junction. In addition, the method according to the present invention is a device manufacturing method with less processing deterioration because a Josephson junction device can be manufactured only by processing into a device shape after film formation. Further, since the element manufactured according to the present invention does not undergo pretreatment such as fusion bonding or etching on the substrate itself, it has few impurities on the substrate and is resistant to impact, heat cycle and the like. In addition, as shown in the second aspect of the present invention, lattice matching is achieved as compared with the conventional method of manufacturing a Josephson junction using an oxide superconductor. Also,
The superconducting thin film oriented with respect to the substrate is bonded to the superconducting thin film which is slightly shifted in the c-axis direction at the slanted end. At this time, Cu
Since it crosses the -O plane slightly, a Josephson junction with a high critical current can be made.
【0006】[0006]
【実施例】次に本発明の実施例について説明する。 〔実施例1〕酸化物超伝導薄膜作製用の基板として、そ
の膜と格子定数・膨張係数の近い酸化マグネシウムやチ
タン酸ストロンチウムなどの基板が用いられる。しか
し、EXAMPLES Next, examples of the present invention will be described. Example 1 As a substrate for producing an oxide superconducting thin film, a substrate made of magnesium oxide, strontium titanate or the like having a lattice constant / expansion coefficient close to that of the film is used. But,
【0007】[0007]
【化1】 [Chemical 1]
【0008】に示すように、相互の格子間にわずかばか
りの違いがあるため超伝導結晶格子がひずんだり、配向
の違う結晶が成長したり、マイクロクラックの原因にな
る。図1は超伝導薄膜作製用基板に傾斜を付けたことを
説明する図で、図において1は片方向に傾斜をもつ酸化
物超伝導薄膜作製用の誘電体基板、2は誘電体基板の傾
斜端を示す。この図1に示すように、格子定数が超伝導
薄膜より小さな基板に傾斜の角度を付けることによっ
て、結晶格子を超伝導体に近づける方法がある。このよ
うに、基板の片側だけに傾斜を付け、その後、図2のよ
うに酸化物超伝導薄膜を形成する。As shown in FIG. 3, there is a slight difference between the lattices, which causes distortion of the superconducting crystal lattice, growth of crystals with different orientations, and microcracking. FIG. 1 is a diagram for explaining that a substrate for superconducting thin film production is inclined. In the figure, 1 is a dielectric substrate for producing an oxide superconducting thin film having an inclination in one direction, and 2 is an inclination of a dielectric substrate. Indicates the edge. As shown in FIG. 1, there is a method of bringing a crystal lattice closer to a superconductor by giving a tilt angle to a substrate having a lattice constant smaller than that of the superconducting thin film. In this way, only one side of the substrate is inclined, and then the oxide superconducting thin film is formed as shown in FIG.
【0009】図2において、3は酸化物超伝導薄膜、4
は誘電体基板を示す。このように構成すると、傾斜の開
始端のところで、結晶構造の不整合ができ、図3に示す
ように超伝導結合の弱いジョセフソン接合(結晶不整合
部)5ができる。このようにして、形成した薄膜をパタ
ーニングし、ブリッジ形状の素子を作製すると高温で動
作するジョセフソン素子を作製することができる。In FIG. 2, 3 is an oxide superconducting thin film, 4
Indicates a dielectric substrate. According to this structure, the crystal structure is mismatched at the start end of the tilt, and the Josephson junction (crystal mismatching portion) 5 with weak superconducting coupling is formed as shown in FIG. By patterning the formed thin film in this manner to produce a bridge-shaped element, a Josephson element that operates at high temperature can be produced.
【0010】〔実施例2〕酸化物超伝導薄膜用基板と酸
化物超伝導結晶の格子整合をとるために、図4のように
両側に傾斜を付け、酸化物超伝導体との格子定数の整合
性を良くする。この基板6上に酸化物超伝導薄膜を成膜
すると中央部の傾斜開始端に格子の不整合部ができる。
この部分は、超伝導結合の弱いジョセフソン接合にな
る。この薄膜を通常のフォトリソグラフィーの手法を用
いて図5に示すようにブリッジ形状を持つパターンに加
工する。図5において、3は酸化物超伝導薄膜、4は誘
電体基板、6は結晶不整合部(ジョセフソン接合)を示
す。このようにして加工したブリッジ形状素子は、ジョ
セフソン接合素子となる。また、格子整合をとり、超伝
導電流の流れるCu−O平面がわずかばかりずれた構造
になっているので、高い臨界電流を持ち、素子の高速動
作の指標となる臨界電流と常伝導抵抗の積も大きくな
る。[Embodiment 2] In order to obtain a lattice matching between the oxide superconducting thin film substrate and the oxide superconducting crystal, both sides are inclined as shown in FIG. Improves consistency. When an oxide superconducting thin film is formed on this substrate 6, a lattice mismatching portion is formed at the inclination start end of the central portion.
This part becomes a Josephson junction with weak superconducting coupling. This thin film is processed into a bridge-shaped pattern as shown in FIG. 5 by using a usual photolithography technique. In FIG. 5, 3 is an oxide superconducting thin film, 4 is a dielectric substrate, and 6 is a crystal mismatch (Josephson junction). The bridge-shaped element processed in this way becomes a Josephson junction element. In addition, since the structure is lattice-matched and the Cu-O plane through which the superconducting current flows is slightly displaced, it has a high critical current and is the product of the critical current and the normal resistance, which is an index for high-speed operation of the device. Also grows.
【0011】〔実施例3〕格子定数が超伝導薄膜より大
きな基板の傾斜角度を調整することによって、斜面上に
通常のc軸配向の薄膜でない、a軸配向の薄膜を形成す
ることができる。通常、傾斜を付けてない基板面にはc
軸配向の超伝導薄膜が形成されることより、この格子整
合による結晶配向性の違いを利用して、傾斜基板上にc
軸面とa軸面の超伝導薄膜を作製すると、図6に示すよ
うに、境界に超伝導性の弱い部分ができ、この部分が、
超伝導結合の弱いジョセフソン接合になる。[Third Embodiment] By adjusting the tilt angle of a substrate having a lattice constant larger than that of a superconducting thin film, an a-axis oriented thin film, which is not a normal c-axis oriented thin film, can be formed on an inclined surface. Normally, c is applied to the substrate surface that is not inclined.
Since the axially oriented superconducting thin film is formed, the difference in crystal orientation due to the lattice matching is utilized to obtain c on the tilted substrate.
When a superconducting thin film having an axial plane and an a-axis plane is produced, a portion having weak superconductivity is formed at the boundary as shown in FIG.
It becomes a Josephson junction with weak superconducting coupling.
【0012】[0012]
【発明の効果】以上に述べたように、本発明によれば、
傾斜を持つ誘電体基板を用いて酸化物超伝導ジョセフソ
ン接合を作製すれば、効率的に再現性の良い接合ができ
る。このため酸化物超伝導薄膜デバイスの実用化におい
て有効である。As described above, according to the present invention,
If an oxide superconducting Josephson junction is produced using a dielectric substrate having a slope, an efficient and reproducible junction can be obtained. Therefore, it is effective in the practical application of the oxide superconducting thin film device.
【図1】超伝導薄膜作製用の誘電体基板上に傾斜(角度
θ)を付けたことを説明する図である。FIG. 1 is a diagram explaining that a tilt (angle θ) is provided on a dielectric substrate for producing a superconducting thin film.
【図2】傾斜(角度θ)を付けた超伝導薄膜作製用の誘
電体基板上に超伝導薄膜を形成したことを説明するため
の図である。FIG. 2 is a diagram for explaining that a superconducting thin film is formed on a dielectric substrate for producing a superconducting thin film having an inclination (angle θ).
【図3】図2で示した誘電体基板の傾斜端での超伝導薄
膜の構造を表したものである。この時、上部の水平線は
超伝導結晶のc軸に垂直なCu−O平面を表す。FIG. 3 shows a structure of a superconducting thin film at an inclined end of the dielectric substrate shown in FIG. At this time, the upper horizontal line represents the Cu-O plane perpendicular to the c-axis of the superconducting crystal.
【図4】超伝導薄膜作製用の誘電体基板の両方向に傾斜
(角度θ)を付けたことを説明する図である。FIG. 4 is a diagram illustrating that a dielectric substrate for producing a superconducting thin film is inclined (angle θ) in both directions.
【図5】ブリッジ型の素子形状に加工した超伝導ジョセ
フソン素子を示す図である。FIG. 5 is a view showing a superconducting Josephson element processed into a bridge type element shape.
【図6】傾斜基板上にc軸面とa軸面の超伝導薄膜を作
製し、その境界部をジョセフソン接合とすることを説明
する断面図である。FIG. 6 is a cross-sectional view illustrating that a c-axis plane and a-axis plane superconducting thin film is formed on a tilted substrate, and a boundary portion thereof is a Josephson junction.
1 片方向に傾斜をもつ酸化物超伝導薄膜作製用の誘電
体基板 2 誘電体基板の傾斜端 3 酸化物超伝導薄膜 4 酸化物超伝導薄膜作製用の誘電体基板 5 結晶不整合部(ジョセフソン接合) 6 両方向に傾斜をもつ酸化物超伝導薄膜作製用の誘電
体基板 7 a軸に配向した酸化物超伝導薄膜 8 c軸に配向した酸化物超伝導薄膜 9 結晶不整合部(ジョセフソン接合) 10 格子定数が超伝導薄膜より大きな誘電体基板1 Dielectric Substrate for Oxide Superconducting Thin Film with Gradient in One Direction 2 Inclined Edge of Dielectric Substrate 3 Oxide Superconducting Thin Film 4 Dielectric Substrate for Oxide Superconducting Thin Film 5 Crystal Mismatch (Joseph (Son junction) 6 Dielectric substrate for forming oxide superconducting thin film having a tilt in both directions 7 a-axis oriented oxide superconducting thin film 8 c-axis oriented oxide superconducting thin film 9 crystal mismatch (Josephson Bonding) 10 Dielectric substrate with lattice constant larger than that of superconducting thin film
Claims (2)
誘電体基板の一部に傾斜面を形成し、両者の格子整合を
はかるとともに、前記傾斜面と前記誘電体基板の平面と
の境界部に超伝導結合の弱いジョセフソン接合を形成す
ることを特徴とする超伝導ジョセフソン素子の作製方
法。1. A tilted surface is formed on a part of a dielectric substrate having a lattice constant smaller than that of an oxide superconductor so as to achieve lattice matching between them and a boundary between the tilted surface and a plane of the dielectric substrate. A method for manufacturing a superconducting Josephson device, characterized in that a Josephson junction having a weak superconducting coupling is formed in the portion.
誘電体基板に、2面以上の傾斜面を形成し、両者の格子
整合をはかるとともに、前記傾斜面相互の境界部に超伝
導結合の弱いジョセフソン接合を形成することを特徴と
する超伝導ジョセフソン素子の作製方法。2. A dielectric substrate having a lattice constant smaller than that of an oxide superconductor, is formed with two or more inclined planes, the lattice matching between the two is ensured, and the superconducting coupling is formed at the boundary between the inclined planes. A method of manufacturing a superconducting Josephson device, which comprises forming a weak Josephson junction.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5200098A JPH0738165A (en) | 1993-07-19 | 1993-07-19 | Manufacture of superconducting josephson device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5200098A JPH0738165A (en) | 1993-07-19 | 1993-07-19 | Manufacture of superconducting josephson device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0738165A true JPH0738165A (en) | 1995-02-07 |
Family
ID=16418817
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP5200098A Pending JPH0738165A (en) | 1993-07-19 | 1993-07-19 | Manufacture of superconducting josephson device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0738165A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006273699A (en) * | 2005-03-30 | 2006-10-12 | National Institute Of Advanced Industrial & Technology | METHOD OF MANUFACTURING HIGH QUALITY Bi-BASED OXIDE SUPERCONDUCTOR THIN FILM |
US7586528B2 (en) | 2004-03-22 | 2009-09-08 | Fujifilm Corporation | Color sensor and color image pickup method |
-
1993
- 1993-07-19 JP JP5200098A patent/JPH0738165A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7586528B2 (en) | 2004-03-22 | 2009-09-08 | Fujifilm Corporation | Color sensor and color image pickup method |
JP2006273699A (en) * | 2005-03-30 | 2006-10-12 | National Institute Of Advanced Industrial & Technology | METHOD OF MANUFACTURING HIGH QUALITY Bi-BASED OXIDE SUPERCONDUCTOR THIN FILM |
JP4572386B2 (en) * | 2005-03-30 | 2010-11-04 | 独立行政法人産業技術総合研究所 | Fabrication method of high quality Bi-based oxide superconducting thin film |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3275836B2 (en) | Superconducting device | |
US5750474A (en) | Method for manufacturing a superconductor-insulator-superconductor Josephson tunnel junction | |
JPH06504881A (en) | Device obtained by producing crystal boundary junction in superconducting thin film and method for producing it | |
JPH098368A (en) | High temperature superconducting jesephson element and fabrication thereof | |
JPH0745874A (en) | Anisotropic superconductive element and its manufacturing method and fluxon device using it | |
JP3568547B2 (en) | Josephson junction structure | |
JPH0738165A (en) | Manufacture of superconducting josephson device | |
JP3189403B2 (en) | Element having superconducting junction and method of manufacturing the same | |
JPH07235700A (en) | Superconductive super-lattice crystal device | |
JP2761504B2 (en) | Oxide superconducting device and manufacturing method thereof | |
US6839578B2 (en) | Method of forming high temperature superconducting Josephson junction | |
JP2002009353A (en) | Bicrystal oxide superconducting film and high temperature superconducting josephson junction element and superconducting quantum inteference element using it | |
JPH0563247A (en) | Superconducting joint structure and production thereof | |
JPH05291632A (en) | Superconductive junction structure | |
JPH04268774A (en) | Josephson junction | |
JP2004296677A (en) | Squid magnetic sensor and its manufacturing method | |
JP3570418B2 (en) | Superconducting device | |
JPH04332180A (en) | Josephson element | |
KR20030005600A (en) | Josephson junction device and manufacturing method for using the same | |
JPH04127484A (en) | Superconducting junction | |
JPH06302871A (en) | Formation of quantum interference element and josephson junction | |
JPH05267736A (en) | Element having superconductive junction and manufacturing method thereof | |
JPH0555651A (en) | Manufacture of josephson device | |
JPH06120577A (en) | Manufacture of artificial grain boundary | |
JPH05267735A (en) | Superconductive junction and element and manufacturing method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081031 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081031 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091031 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 7 Free format text: PAYMENT UNTIL: 20101031 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111031 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111031 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 9 Free format text: PAYMENT UNTIL: 20121031 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 10 Free format text: PAYMENT UNTIL: 20131031 |