JPH04127484A - Superconducting junction - Google Patents

Superconducting junction

Info

Publication number
JPH04127484A
JPH04127484A JP2248339A JP24833990A JPH04127484A JP H04127484 A JPH04127484 A JP H04127484A JP 2248339 A JP2248339 A JP 2248339A JP 24833990 A JP24833990 A JP 24833990A JP H04127484 A JPH04127484 A JP H04127484A
Authority
JP
Japan
Prior art keywords
superconducting
layer
oxide
crystal
superconducting layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2248339A
Other languages
Japanese (ja)
Inventor
Saburo Tanaka
三郎 田中
Takashi Matsuura
尚 松浦
Hideo Itozaki
糸崎 秀夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2248339A priority Critical patent/JPH04127484A/en
Publication of JPH04127484A publication Critical patent/JPH04127484A/en
Pending legal-status Critical Current

Links

Landscapes

  • Superconductor Devices And Manufacturing Methods Thereof (AREA)

Abstract

PURPOSE:To easily manufacture and to obtain excellent characteristics by providing a nonsuperconducting layer formed of crystal of a-axis orientation of oxide having less number of oxygens than that of an oxygen superconductor, and a second superconducting layer formed equally to a first conducting layer formed on the nonsuperconducting layer. CONSTITUTION:A superconducting junction is formed of a crystal of a-axis orientation of oxide having less number of oxygens than that of oxide superconductor, having a superconducting layer formed of oxide superconductor crystal of a-axis orientation and containing component elements equal to those of the oxide superconductor for forming the superconducting layer and equal crystal structure in the nonsuperconducting layer. A first superconducting layer 1 formed on a substrate 4, a nonsuperconducting layer 3 formed in the vicinity of a center on the layer 1, and a superconducting layer 2 formed on the layer 3 are provided. The layers 1, 2 are formed of thin film of about 200-300nm thick formed of the same oxide superconductor crystal of a-axis orientation. The layer 3 is a thin film of about 10nm thick formed of a-axis oriented crystal of the oxide having equal component elements to those of the oxide superconductor for forming the layers 1, 2 and equal crystal structure.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、超電導接合に関する。より詳細には、酸化物
超電導体を用いた新規な超電導接合に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to superconducting junctions. More specifically, the present invention relates to a novel superconducting junction using an oxide superconductor.

従来の技術 ジョセフソン接合に代表される超電導接合を実現する構
成は各種あるが、最も好ましい構造は、一対の超電導体
で薄い非超電導体をはさんだトンネル型の接合である。
Although there are various configurations for realizing a superconducting junction, such as the conventional Josephson junction, the most preferred structure is a tunnel-type junction in which a thin non-superconductor is sandwiched between a pair of superconductors.

一般に、このような超電導接合は非常に微細な構成であ
り、上記の一対の超電導体および非超電導体は、いわゆ
る薄膜となっている。
Generally, such a superconducting junction has a very fine structure, and the above-mentioned pair of superconductor and non-superconductor are so-called thin films.

例えば、超電導体に酸化物超電導体を使用してトンネル
型超電導接合を実現する場合には、基板上に第1の酸化
物超電導薄膜、非超電導体薄膜および第2の酸化物超電
導薄膜を順に積層する。
For example, when realizing a tunnel-type superconducting junction using an oxide superconductor as a superconductor, a first oxide superconducting thin film, a non-superconducting thin film, and a second oxide superconducting thin film are laminated in order on a substrate. do.

非超電導体には、用途により例えばMgO等の絶縁体、
81等の半導体、へ〇等の金属が使用され、それぞれ異
なる特性の超電導接合を構成する。
Depending on the purpose, non-superconductors include insulators such as MgO,
Semiconductors such as No. 81 and metals such as No. 81 are used to construct superconducting junctions with different characteristics.

トンネル型超電導接合における非超電導体の厚さは、超
電導体のコヒーレンス長によって決まる。
The thickness of the non-superconductor in a tunnel-type superconducting junction is determined by the coherence length of the superconductor.

酸化物超電導体は、コヒーレンス長が非常に短いため、
酸化物超電導体を使用したトンネル型超電導接合におい
ては、非超電導体の厚さは数nm程度に巳なければなら
ない。
Oxide superconductors have very short coherence lengths, so
In a tunnel-type superconducting junction using an oxide superconductor, the thickness of the non-superconductor must be on the order of several nanometers.

一方、超電導接合の動作特性を考慮すると、超電導接合
を構成する各層の結晶性がよく、単結晶または単結晶に
ごく近い配向性を有する多結晶でなければならない。
On the other hand, in consideration of the operating characteristics of a superconducting junction, each layer constituting the superconducting junction must have good crystallinity and be a single crystal or a polycrystal with an orientation very close to that of a single crystal.

発明が解決しようとする課題 上記のトンネル型超電導接合では、それぞれ結晶性のよ
い第1の酸化物超電導薄膜、非超電導体の薄膜および第
2の酸化物超電導薄膜を積層しなければならない。酸化
物超電導薄膜上にごく薄く、且つ結晶性のよい非超電導
体の薄膜を積層することは困難であり、この非超電導体
薄膜のさらに上に結晶性のよい酸化物超電導薄膜を形成
するのは酸化物超電導体の特性上非常に困難である。
Problems to be Solved by the Invention In the tunnel type superconducting junction described above, a first oxide superconducting thin film, a non-superconducting thin film, and a second oxide superconducting thin film each having good crystallinity must be laminated. It is difficult to stack a very thin non-superconducting thin film with good crystallinity on top of an oxide superconducting thin film, and it is difficult to form an oxide superconducting thin film with good crystallinity on top of this non-superconducting thin film. This is extremely difficult due to the characteristics of oxide superconductors.

また、上言己の積層構造が実現しても、従来は酸化物超
電導体と非超電導体との界面の状態が良好でなく所望の
特性が得られなかった。
Further, even if the above-described laminated structure was realized, the interface between the oxide superconductor and the non-superconductor was not in good condition, and desired characteristics could not be obtained.

そこで、本発明の目的は、上記従来技術の問題点を解決
した、酸化物超電導体を用いた新規な構成の超電導接合
を提供することにある。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide a superconducting junction with a novel configuration using an oxide superconductor, which solves the problems of the prior art described above.

課題を解決するための手段 本発明に従うと、基板上に形成された酸化物超電導体の
C軸配向の結晶で構成された第1の超電導層と、該超電
導層上に形成された前記酸化物超電導体と等しい構成元
素および結晶構造を有し、前記酸化物超電導体よりも酸
素数が小さい酸化物のC軸配向の結晶で構成された非超
電導層と、該非超電導層上に形成された前記第1の超電
導層と等しく構成された第2の超電導層とを具備するこ
とを特徴とする超電導接合が提供される。
Means for Solving the Problems According to the present invention, a first superconducting layer composed of C-axis oriented crystals of an oxide superconductor formed on a substrate, and the oxide superconductor formed on the superconducting layer. a non-superconducting layer formed of a C-axis oriented crystal of an oxide having the same constituent elements and crystal structure as the superconductor and having a smaller oxygen number than the oxide superconductor; A superconducting junction is provided, comprising a first superconducting layer and a second superconducting layer configured identically.

作用 本発明の超電導接合は、超電導層がC軸配向の酸化物超
電導体結晶で構成され、非超電導層が超電導層を構成す
る酸化物超電導体と等しい構成元素および等しい結晶構
造を有し、酸化物超電導体よりも酸素数が小さい酸化物
のC軸配向の結晶で構成されているところにその主要な
特徴がある。
Function The superconducting junction of the present invention is characterized in that the superconducting layer is composed of C-axis oriented oxide superconductor crystals, the non-superconducting layer has the same constituent elements and the same crystal structure as the oxide superconductor constituting the superconducting layer, and Its main feature is that it is composed of C-axis oriented crystals of oxides with a smaller number of oxygen atoms than physical superconductors.

酸化物超電導体は、一般にその超電導特性に異方性があ
る。即ち、結晶のC軸に対して垂直な方向の臨界電流密
度、コヒーレンス長は、いずれも結晶のC軸に平行な方
向のそれらよりも大きい。
Oxide superconductors generally have anisotropy in their superconducting properties. That is, the critical current density and coherence length in the direction perpendicular to the C-axis of the crystal are both larger than those in the direction parallel to the C-axis of the crystal.

本発明の超電導接合は、全ての層をC軸配向の酸化物超
電導体結晶またはそれと等しい結晶構造の酸化物超電導
体で構成しているので、主電流は結晶のC軸に垂直な方
向に流れる。
In the superconducting junction of the present invention, all layers are composed of oxide superconductor crystals with C-axis orientation or oxide superconductors with an equivalent crystal structure, so the main current flows in a direction perpendicular to the C-axis of the crystal. .

従って、C軸配向の結晶からなる酸化物超電導薄膜を使
用しているものよりも、非超電導層の厚さを大きくでき
、動作電流も大きいので、作製条件の制限が緩和され、
使用する際も有利である。
Therefore, the thickness of the non-superconducting layer can be made larger and the operating current is larger than that using an oxide superconducting thin film made of C-axis oriented crystals, so the restrictions on manufacturing conditions are relaxed.
It is also advantageous when used.

上記本発明の超電導接合は、スパッタリング法、MBE
法、真空蒸着法で作製することができる。
The above-mentioned superconducting bonding of the present invention can be performed by sputtering method, MBE
It can be manufactured using a vacuum evaporation method.

即ち、本発明の超電導接合を作製するには、以下の手順
による。
That is, the following procedure is used to produce the superconducting junction of the present invention.

まず、561〜580℃に加熱した基板上に、酸化物超
電導体の薄膜の作製に使用する原料を用いて薄膜を成膜
する。この基板温度で薄膜を作製すると、C軸配向の酸
化物超電導体結晶で構成された酸化物超電導薄膜が得ら
れる。
First, a thin film is formed on a substrate heated to 561 to 580° C. using raw materials used for producing a thin film of an oxide superconductor. When a thin film is produced at this substrate temperature, an oxide superconducting thin film composed of C-axis oriented oxide superconducting crystals can be obtained.

次に、基板温度を540〜560℃にし、上記の原料を
用いて、上記のC軸配向酸化物超電導薄膜上に薄膜を形
成する。この基板温度では、酸化物超電導体と等しい構
成元素および等しい結晶構造で、酸素数が小さい酸化物
のC軸配向の結晶が得られる。後述するように、この酸
化物は低温で半導体様の特性を示す。
Next, the substrate temperature is set to 540 to 560° C., and a thin film is formed on the C-axis oriented oxide superconducting thin film using the above raw materials. At this substrate temperature, a C-axis oriented crystal of an oxide having the same constituent elements and the same crystal structure as the oxide superconductor and having a small number of oxygen atoms can be obtained. As described below, this oxide exhibits semiconductor-like properties at low temperatures.

最後に、再び基板温度を561〜580℃にして、C軸
配向の酸化物超電導薄膜を作製して本発明の超電導接合
が完成する。
Finally, the substrate temperature is again raised to 561 to 580° C., and a C-axis oriented oxide superconducting thin film is produced to complete the superconducting junction of the present invention.

本発明の超電導接合を構成する各層は、同一の原料から
作製され、作製方法も基本的に等しい。
Each layer constituting the superconducting junction of the present invention is produced from the same raw material, and the production method is also basically the same.

同一の装置により、連続的に各層が形成されるので、作
製中の各段階で露出している各層間の界面が劣化するこ
とがない。また、本発明の超電導接合は超電導層も非超
電導層も結晶方向および酸素数が異なるだけで、基本的
には同一の酸化物で構成されているので、成分元素が拡
散しても互いに悪影響を及ぼすことがない。
Since each layer is successively formed using the same device, the interface between each layer exposed at each stage during fabrication will not deteriorate. In addition, in the superconducting junction of the present invention, both the superconducting layer and the non-superconducting layer differ only in the crystal direction and the number of oxygen atoms, but are basically composed of the same oxide, so even if the component elements diffuse, they will have an adverse effect on each other. It has no effect.

本発明の超電導接合の非超電導層は、前述のように、酸
化物超電導体と等しい構成元素および等しい結晶構造を
有し、酸化物超電導体よりも酸素数が少ない酸化物で構
成される。さらに、本発明の超電導接合では、超電導層
を構成する酸化物超電導体結晶も非超電導層を構成する
酸化物結晶も基板に対してa軸が垂直であるa軸配向性
を有する。
As described above, the non-superconducting layer of the superconducting junction of the present invention is composed of an oxide that has the same constituent elements and the same crystal structure as the oxide superconductor, and has a lower number of oxygen than the oxide superconductor. Furthermore, in the superconducting junction of the present invention, both the oxide superconductor crystal forming the superconducting layer and the oxide crystal forming the non-superconducting layer have an a-axis orientation in which the a-axis is perpendicular to the substrate.

さらに、本発明の超電導接合の非超電導層を構成する酸
化物は、冷却すると温度低下に伴い抵抗率が上昇する半
導体的な挙動を示す。
Furthermore, the oxide constituting the non-superconducting layer of the superconducting junction of the present invention exhibits semiconductor-like behavior in which the resistivity increases as the temperature decreases when cooled.

本発明の超電導接合では、酸化物超電導体には、任意の
ものが使用できるが、Y−8a−Cu−0系酸化物超電
導体は安定的に高品質の結晶性のよい薄膜が得られるの
で好ましい。また、B1−3r−Ca−Cu−0系酸化
物超電導体は、特にその超電導臨界温度Tcが高いので
好ましい。
In the superconducting junction of the present invention, any oxide superconductor can be used, but Y-8a-Cu-0-based oxide superconductors can stably yield high-quality thin films with good crystallinity. preferable. Further, B1-3r-Ca-Cu-0 based oxide superconductor is particularly preferable because its superconducting critical temperature Tc is high.

また、本発明の超電導接合は、MgO,5rTiO+、
YSZ等の酸化物基板上に作製することも好ましい。こ
れらの基板の特定の面上には、酸化物超電導体のa軸配
向の薄膜を形成し易いからである。
Further, the superconducting junction of the present invention includes MgO, 5rTiO+,
It is also preferable to fabricate on an oxide substrate such as YSZ. This is because it is easy to form an a-axis oriented thin film of an oxide superconductor on a specific surface of these substrates.

以下、本発明を実施例により、さらに詳しく説明するが
、以下の開示は本発明の単なる実施例に過ぎず、本発明
の技術的範囲をなんら制限するものではない。
EXAMPLES Hereinafter, the present invention will be explained in more detail with reference to Examples, but the following disclosure is merely an example of the present invention and does not limit the technical scope of the present invention in any way.

実施例 第1図に、本発明の超電導接合の一例の断面図を示す。Example FIG. 1 shows a cross-sectional view of an example of the superconducting junction of the present invention.

第1図の超電導接合は、基板4上に形成された第1の超
電導層1と、超電導層1上の中心付近に形成された非超
電導層3と、非超電導層3上に形成された第2の超電導
層2とを具備する。
The superconducting junction shown in FIG. 2 superconducting layers 2.

超電導層1および2は、同一のa軸配向の酸化物超電導
体結晶で構成された厚さ約200〜300 nmの薄膜
である。非超電導層3は、超電導層1および2を構成し
ている酸化物超電導体と等しい構成元素および等しい結
晶構造を有する酸化物のa軸配向結晶で構成された厚さ
約10nmの薄膜である。
Superconducting layers 1 and 2 are thin films with a thickness of about 200 to 300 nm and made of oxide superconductor crystals with the same a-axis orientation. The non-superconducting layer 3 is a thin film with a thickness of about 10 nm and made of an a-axis oriented crystal of an oxide having the same constituent elements and the same crystal structure as the oxide superconductors forming the superconducting layers 1 and 2.

例えば、超電導層1および2がa軸配向のY +Ba2
Cu307−x超電導薄膜である場合には、非超電導層
3はa軸配向のY1Ba2Cu3O7−Y (y> X
 )で示される酸化物薄膜で構成される。
For example, superconducting layers 1 and 2 are Y + Ba2 with a-axis orientation
In the case of a Cu307-x superconducting thin film, the non-superconducting layer 3 is a-axis oriented Y1Ba2Cu3O7-Y (y>
) is composed of an oxide thin film shown in

実施例1 第1図に示した構成の本発明の超電導接合を作製した。Example 1 A superconducting junction of the present invention having the configuration shown in FIG. 1 was fabricated.

まず、MgO基板の(100)面上に、スパッタリング
法により、第1の超電導層1となるa軸配向のYIBa
2CLl、C)r−x超電導薄膜を形成した。
First, on the (100) plane of an MgO substrate, YIBa with a-axis orientation, which will become the first superconducting layer 1, is deposited by sputtering.
2CLl, C) An r-x superconducting thin film was formed.

主な成膜条件を以下に示す。The main film forming conditions are shown below.

基板温度 570℃ スパッタリングガス Ar  8sccM024SCC
M 圧力   5×10 膜厚   300nm ’Torr 次に、この超電導薄膜上に非超電導層3となるa軸配向
のYIBa2CuaOt−y (V > X)薄膜をス
パッタリング法で形成した。主な成膜条件を以下に示す
Substrate temperature 570℃ Sputtering gas Ar 8sccM024SCC
M Pressure 5×10 Film thickness 300 nm Torr Next, an a-axis oriented YIBa2CuaOt-y (V > The main film forming conditions are shown below.

基板温度 550℃ スパッタリングガス Ar  8 SCCM024SC
CM 圧力   5 Xl0−’Torr 膜厚    10nm さらに、上記の如く形成された非超電導層3上に第2の
超電導層2となるa軸配向のY1Ba2Cu30t−x
超電導薄膜をやはりスパッタリング法で形成した。
Substrate temperature 550℃ Sputtering gas Ar 8 SCCM024SC
CM Pressure 5
The superconducting thin film was also formed using the sputtering method.

成膜条件は、第1の超電導層1を形成した条件と等しく
した。
The film forming conditions were the same as those under which the first superconducting layer 1 was formed.

上記のように作製した本発明の超電導接合を素子に加工
して特性を測定した。85Kに冷却し、周波数14GH
z、出力0.2mWのマイクロ波を印加しタトころ、2
8.9μVの倍数の電圧点でシャピロステップが観測さ
れ、ジョセフソン結合が実現していることが確認された
The superconducting junction of the present invention produced as described above was processed into a device and its characteristics were measured. Cooled to 85K, frequency 14GH
z, applying microwaves with an output of 0.2 mW to the Tato roller, 2
A Shapiro step was observed at a voltage point that is a multiple of 8.9 μV, confirming that Josephson coupling was realized.

実施例2 第1図に示した構成の本発明の超電導接合をB1Sr 
−Ca −Cu −0系酸化物超電導体を使用して作製
した。まず、MgO基板の(100)面上に、スパッタ
リング法により、第1の超電導層1となるa軸配向のB
i、Sr、Ca2Cu30)I超電導薄膜を形成した。
Example 2 A superconducting junction of the present invention having the configuration shown in FIG.
It was produced using a -Ca-Cu-0 based oxide superconductor. First, an a-axis oriented B layer, which will become the first superconducting layer 1, is deposited on the (100) plane of an MgO substrate by sputtering.
i, Sr, Ca2Cu30) I superconducting thin film was formed.

主な成膜条件を以下に示す。The main film forming conditions are shown below.

基板温度 580℃ スパッタリングガス Ar  8SCCMO□ 4 S
CCM 圧力   5×10 膜厚   300nm Torr 次に、この超電導薄膜上に非超電導層3となるa軸配向
のBl、Sr2Ca2Cu30wl−y  (y > 
0 )薄膜をスパッタリング法で形成した。主な成膜条
件を以下に示す。
Substrate temperature 580℃ Sputtering gas Ar 8SCCMO□ 4S
CCM Pressure 5×10 Film thickness 300 nm Torr Next, a-axis oriented Bl, Sr2Ca2Cu30wl-y (y >
0) A thin film was formed by sputtering method. The main film forming conditions are shown below.

基板温度 540℃ スパッタリングガス Ar  8 SCCM024SC
CM 圧力   5 Xl0−2Torr 膜厚    lQnm さらに、上記の如く形成された非超電導層3上に第2の
超電導層2となるa軸配向のBi25r2Ca2Cu3
08超電導薄膜をやはりスパッタリング法で形成した。
Substrate temperature 540℃ Sputtering gas Ar 8 SCCM024SC
CM Pressure: 5
The 08 superconducting thin film was also formed by the sputtering method.

成膜条件は、第1の超電導層1を形成した条件と等しく
した。
The film forming conditions were the same as those under which the first superconducting layer 1 was formed.

上記のように作製した本発明の超電導接合を素子に加工
して特性を測定した。90Kに冷却し、周波数9G&、
出力0.IWのマイクロ波を印加したところ、18.6
μVの倍数の電圧点でシャピロステップが観測され、ジ
ョセフソン結合が実現していることが確言忍された。
The superconducting junction of the present invention produced as described above was processed into a device and its characteristics were measured. Cooled to 90K, frequency 9G&,
Output 0. When IW microwave was applied, 18.6
A Shapiro step was observed at a voltage point that is a multiple of μV, confirming that Josephson coupling was realized.

発明の詳細 な説明したように、本発明に従うと、新規な構成のトン
ネル型の超電導接合を酸化物超電導体により実現できる
。本発明の超電導接合は、超電導層、非超電導層の両方
が等しい構成元素からなる等しい結晶構造の酸化物で構
成されているので作製が容易であり、特性の優れたもの
が得やすい。
As described in detail, according to the present invention, a tunnel-type superconducting junction with a novel configuration can be realized using an oxide superconductor. The superconducting junction of the present invention is easy to manufacture because both the superconducting layer and the non-superconducting layer are composed of oxides having the same crystal structure and consisting of the same constituent elements, and it is easy to obtain one with excellent characteristics.

また、特に全ての層が、a軸配向の酸化物超電導体結晶
またはそれと結晶構造が等しい酸化物結晶で構成されて
いるので、超電導臨界電流密度、コヒーレンス長が大き
く有利である。
In addition, especially since all the layers are composed of a-axis oriented oxide superconductor crystals or oxide crystals having the same crystal structure, superconducting critical current density and coherence length are greatly advantageous.

本発明により、超電導技術の電子デバイスへの応用がさ
らに促進される。
The present invention further promotes the application of superconducting technology to electronic devices.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の超電導接合の断面図である。 〔主な参照番号〕 1.2・・・超電導層、 3・・・非超電導層、 4・・・基板 特許出願人  住友電気工業株式会社 FIG. 1 is a cross-sectional view of the superconducting junction of the present invention. [Main reference number] 1.2... superconducting layer, 3...Non-superconducting layer, 4... Board Patent applicant: Sumitomo Electric Industries, Ltd.

Claims (1)

【特許請求の範囲】[Claims] 基板上に形成された酸化物超電導体のa軸配向の結晶で
構成された第1の超電導層と、該超電導層上に形成され
た前記酸化物超電導体と等しい構成元素および結晶構造
を有し、前記酸化物超電導体よりも酸素数が小さい酸化
物のa軸配向の結晶で構成された非超電導層と、該非超
電導層上に形成された前記第1の超電導層と等しく構成
された第2の超電導層とを具備することを特徴とする超
電導接合。
A first superconducting layer composed of a-axis oriented crystals of an oxide superconductor formed on a substrate, and having the same constituent elements and crystal structure as the oxide superconductor formed on the superconducting layer. , a non-superconducting layer made of an a-axis oriented crystal of an oxide having a smaller oxygen number than the oxide superconductor, and a second superconducting layer formed on the non-superconducting layer and made equal to the first superconducting layer. A superconducting junction characterized by comprising a superconducting layer and a superconducting layer.
JP2248339A 1990-09-18 1990-09-18 Superconducting junction Pending JPH04127484A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2248339A JPH04127484A (en) 1990-09-18 1990-09-18 Superconducting junction

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2248339A JPH04127484A (en) 1990-09-18 1990-09-18 Superconducting junction

Publications (1)

Publication Number Publication Date
JPH04127484A true JPH04127484A (en) 1992-04-28

Family

ID=17176617

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2248339A Pending JPH04127484A (en) 1990-09-18 1990-09-18 Superconducting junction

Country Status (1)

Country Link
JP (1) JPH04127484A (en)

Similar Documents

Publication Publication Date Title
JPH02260674A (en) Tunnel type josephson element and manufacture thereof
JPH05335638A (en) Josephson junction structure body and manufacture thereof
JPH03259576A (en) Josephson junction
JP3568547B2 (en) Josephson junction structure
JP3189403B2 (en) Element having superconducting junction and method of manufacturing the same
JPH04130679A (en) Superconducting junction
JPH04127484A (en) Superconducting junction
EP0476617B1 (en) Superconductor junction structure and process for fabricating the same
JPH04130678A (en) Superconducting junction
JPH04268774A (en) Josephson junction
JP2691065B2 (en) Superconducting element and fabrication method
JPH05291632A (en) Superconductive junction structure
JPH04332180A (en) Josephson element
JP2883493B2 (en) Superconducting element
JPH04152683A (en) Superconducting element
JP2663856B2 (en) Superconducting circuit using edge-type Josephson junction and method of manufacturing the same
JPH04151883A (en) Superconducting device
JPH05267736A (en) Element having superconductive junction and manufacturing method thereof
JPH04288885A (en) Tunnel-type josephson element
JPH0575171A (en) Superconducting joint
JPH05267735A (en) Superconductive junction and element and manufacturing method thereof
JPH04318984A (en) Josephson junction element and manufacture thereof
JPH04155875A (en) Superconductive element and manufacture thereof
JPH02264486A (en) Superconductive film weakly coupled element
JPH04147681A (en) Supedconducting junction