JPH04151883A - Superconducting device - Google Patents

Superconducting device

Info

Publication number
JPH04151883A
JPH04151883A JP2275961A JP27596190A JPH04151883A JP H04151883 A JPH04151883 A JP H04151883A JP 2275961 A JP2275961 A JP 2275961A JP 27596190 A JP27596190 A JP 27596190A JP H04151883 A JPH04151883 A JP H04151883A
Authority
JP
Japan
Prior art keywords
superconducting
layer
oxide
substrate
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2275961A
Other languages
Japanese (ja)
Inventor
Ryuki Nagaishi
竜起 永石
Saburo Tanaka
三郎 田中
Hideo Itozaki
糸崎 秀夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2275961A priority Critical patent/JPH04151883A/en
Publication of JPH04151883A publication Critical patent/JPH04151883A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To make it possible to prepare a superconducting junction which is stabilized in performance and excellent in reproducibility by installing a specific junction layer which forces an oxide superconductor to produce a superconducting junction between a first superconducting layer and a second superconducting layer. CONSTITUTION:This device comprises an oxide superconducting thin film 10 formed on a substrate 4 having a PrO2 layer 40 on the surface as a material which deteriorates a crystalline orientation performance of an oxide superconducting thin film. The thin oxide superconducting film on such part which excludes the PrO2 layer 40 on the surface of the substrate 4, are turned in superconducting layers 1 and 2 consisting with c axial-oriented crystal while the thin oxide superconducting film on the PrO2 layer 40 on the surface of the substrate 4 is poor in terms of crystalline orientation performance and forms a junction layer 3. This construction makes it possible to form the whole device in one piece, facilitates the preparation and stabilizes its characteristics as well.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、超電導素子に関する。より詳細には、酸化物
超電導体による第1および第2の超電導層とこれらの超
電導層の間に配置された接合層を具備する超電導素子の
新規な構成に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to superconducting elements. More specifically, the present invention relates to a novel configuration of a superconducting element comprising first and second superconducting layers made of oxide superconductors and a bonding layer disposed between these superconducting layers.

従来の技術 ジョセフソン素子は、ジョセフソン接合による強い非線
型の電流−電圧特性を利用した超電導素子の中でも最も
代表的なものである。ジョセフソン接合は、一般に一対
の超電導体を超電導接合が実現するような接合部で接合
したものである。最も好ましい構造のジョセフソン接合
は、一対の超電導体で薄い非超電導体をはさんだトンネ
ル型の接合である。この場合、接合部は薄い絶縁体層で
構成されている。しかしながら、接合部が微小な点であ
る点接触型弱結合の超電導接合、接合部が断面積の小さ
い超電導体電流路であるマイクロブリッジ型弱結合の超
電導接合等、一対の超電導体を弱く結合した超電導接合
も、特性は異なるもののジョセフソン効果を発揮する。
BACKGROUND OF THE INVENTION Josephson devices are the most typical type of superconducting devices that utilize strong nonlinear current-voltage characteristics due to Josephson junctions. A Josephson junction is generally a pair of superconductors joined at a junction where a superconducting junction is realized. The most preferred structure of the Josephson junction is a tunnel-type junction in which a thin non-superconductor is sandwiched between a pair of superconductors. In this case, the joint consists of a thin insulator layer. However, there are weakly coupled superconducting junctions in which a pair of superconductors are weakly coupled, such as point-contact weakly coupled superconducting junctions where the junction is a tiny point, and microbridge-type weakly coupled superconducting junctions where the junction is a superconducting current path with a small cross-sectional area. Superconducting junctions also exhibit the Josephson effect, although the characteristics are different.

一般に、このような超電導接合は非常に微細な構成であ
り、上記の超電導体および絶縁体は、いわゆる薄膜で構
成されている。
Generally, such a superconducting junction has a very fine structure, and the above-mentioned superconductor and insulator are composed of so-called thin films.

上記のトンネル型ジョセフソン接合のジョセフソン素子
を酸化物超電導体を使用して実現する場合、第1の酸化
物超電導体層、トンネル障壁の絶縁体層および第2の酸
化物超電導体層が順に積層された構成としなければなら
ない。
When realizing the Josephson device of the tunnel type Josephson junction described above using an oxide superconductor, the first oxide superconductor layer, the tunnel barrier insulator layer, and the second oxide superconductor layer are sequentially formed. It shall be of laminated construction.

上記のジョセフソン素子において、絶縁体層の厚さは、
超電導体のコヒーレンス長によって決まる。酸化物超電
導体は、コヒーレンス長が非常に短いた必、酸化物超電
導体を使用したトンネル型ジョセフソン素子では、絶縁
体層の厚さを数nm程度にしなければならない。
In the above Josephson element, the thickness of the insulator layer is
Determined by the coherence length of the superconductor. Since oxide superconductors have a very short coherence length, in tunnel-type Josephson devices using oxide superconductors, the thickness of the insulator layer must be approximately several nm.

また、点接触型超電導接合、マイクロブリッジ型超電導
接合は、いずれも一対の超電導体の弱結合が実現するよ
うな非常に微細な加工を必要とする。
Furthermore, both point-contact type superconducting junctions and microbridge type superconducting junctions require very fine processing to achieve weak coupling between a pair of superconductors.

一方、素子としての特性を考慮すると、上記の各層の結
晶性がよくなければならない。即ち、全ての層が単結晶
で形成されていることが好ましく、多結晶またはアモル
ファスの層がある場合には、ジョセフソン素子の性能は
安定しない。
On the other hand, in consideration of the characteristics as an element, each of the above layers must have good crystallinity. That is, it is preferable that all layers be formed of single crystal, and if there is a polycrystalline or amorphous layer, the performance of the Josephson element will not be stable.

上記のトンネル型ジョセフソン素子だけでなく、酸化物
超電導体と半導体を組み合わせた超電導トランジスタ等
の素子でも同様に各層が単結晶で構成されていることが
要求される。
Not only the above-mentioned tunnel-type Josephson device, but also devices such as superconducting transistors that combine oxide superconductors and semiconductors are similarly required to have each layer composed of a single crystal.

発明が解決しようとする課題 従来の酸化物超電導体を用いたトンネル型ジョセフソン
素子は、適当な基板上に第1の酸化物超電導薄膜、絶縁
体薄膜、第2の酸化物超電導薄膜を順に積層することで
実現されていた。従って、優れた特性の素子を作製する
には、酸化物超電導薄膜上に数nmの厚さの単結晶の絶
縁体薄膜を形成することが必要であった。
Problems to be Solved by the Invention A conventional tunnel-type Josephson device using an oxide superconductor consists of sequentially laminating a first oxide superconducting thin film, an insulating thin film, and a second oxide superconducting thin film on a suitable substrate. This was accomplished by doing so. Therefore, in order to produce a device with excellent characteristics, it is necessary to form a single crystal insulator thin film several nanometers thick on the oxide superconducting thin film.

しかしながら、酸化物超電導薄膜上に結晶性のよい他の
材料の薄膜を作製することは困難であり、そのため、そ
の上に積層する第2の酸化物超電導薄膜の結晶性も悪か
った。
However, it is difficult to produce a thin film of another material with good crystallinity on the oxide superconducting thin film, and therefore the crystallinity of the second oxide superconducting thin film laminated thereon is also poor.

また、上記従来の方法で作製した従来の構成のトンネル
型ジョセフソン接合では、酸化物超電導薄膜と絶縁体薄
膜との界面の状態が良好でなく所望の特性が得られなか
った。
Further, in the tunnel type Josephson junction of the conventional configuration produced by the above-mentioned conventional method, the interface between the oxide superconducting thin film and the insulating thin film was not in good condition, and desired characteristics could not be obtained.

一方、点接触型超電導接合、マイクロブリッジ型超電導
接合を実現するような、微細な加工も非常に困難であり
、安定した性能の超電導接合を再現性よく作製すること
ができなかった。
On the other hand, the fine processing required to realize point-contact type superconducting junctions and micro-bridge type superconducting junctions is extremely difficult, and it has not been possible to produce superconducting junctions with stable performance with good reproducibility.

そこで、本発明の目的は、上記従来技術の問題点を解決
した、新規な構成の超電導素子を提供することにある。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide a superconducting element with a novel configuration that solves the problems of the prior art described above.

課題を解決するための手段 本発明に従うと、基板上に形成された酸化物超電導体で
構成された第1および第2の超電導層と、前記第1およ
び第2の超電導層が超電導接合を構成するよう前記第1
および第2の超電導層の間に配置された接合層とを有す
る超電導素子において、前記接合層が基板上に形成され
た酸化物超電導体の結晶配向性を悪化させる物質の層上
に配置された前記酸化物超電導体と構成元素が等しい、
前記酸化物超電導体より結晶配向性が悪い酸化物で構成
されていることを特徴とする超電導素子が提供される。
Means for Solving the Problems According to the present invention, first and second superconducting layers made of an oxide superconductor formed on a substrate, and the first and second superconducting layers constitute a superconducting junction. The first
and a bonding layer disposed between the second superconducting layer, wherein the bonding layer is disposed on a layer of a substance that deteriorates the crystal orientation of the oxide superconductor formed on the substrate. The constituent elements are the same as the oxide superconductor,
A superconducting element is provided, characterized in that it is made of an oxide having poorer crystal orientation than the oxide superconductor.

作用 本発明の超電導素子は、酸化物超電導体による第1およ
び第2の超電導層と、第1および第2の超電導層の間に
超電導接合を生じさせる接合層が同一の基板上に隣接し
て配置されている。また、接合層は、超電導層を構成し
ている酸化物超電導体と構成元素が等しく、酸化物超電
導体よりも且つ結晶配向性が悪い酸化物で構成されてい
る。特に作製方法の面から換言すれば、本発明の超電導
素子は、一部に酸化物超電導体の結晶配向性を悪化させ
る物質の層が形成された基板上に酸化物超電導薄膜を形
成し、前記物質の層により結晶配向性が乱れて超電導性
を失った接合層を具備する。
Function The superconducting element of the present invention is characterized in that the first and second superconducting layers made of oxide superconductors and the bonding layer that produces a superconducting bond between the first and second superconducting layers are adjacent to each other on the same substrate. It is located. Further, the bonding layer is composed of an oxide having the same constituent elements as the oxide superconductor constituting the superconducting layer, and having a worse crystal orientation than the oxide superconductor. Specifically, in terms of the manufacturing method, the superconducting element of the present invention is produced by forming an oxide superconducting thin film on a substrate partially formed with a layer of a substance that deteriorates the crystal orientation of the oxide superconductor. It has a bonding layer whose crystal orientation is disturbed by the material layer and which has lost superconductivity.

上記のような構成を有する本発明の超電導素子は、もと
もと一体に形成した酸化物超電導薄膜で構成されており
、また、構成元素は、どの部分も等しい。また、超電導
層と接合層との界面は結晶粒界であり、接合層は、弱結
合層として形成されている。
The superconducting element of the present invention having the above structure is originally composed of an oxide superconducting thin film formed integrally, and the constituent elements are the same in all parts. Further, the interface between the superconducting layer and the bonding layer is a grain boundary, and the bonding layer is formed as a weak bonding layer.

上記の本発明の超電導素子は、一部に酸化物超電導体の
結晶配向性を悪化させる物質の層が形成された基板上に
酸化物超電導薄膜を形成することにより作製できる。酸
化物超電導体の薄膜の結晶状態は、下地の基板に大きく
影響を受ける。例えば、MgO、SrTiO3の(10
0)基板上には、C軸配向の単結晶からなる酸化物超電
導薄膜を容易に成長させることができる。しかしながら
、例えばPtO2、ZrO2、Y2O3等の上には同じ
条件で成膜を行っても結晶配向性の悪い酸化物超電導薄
膜が成長する。
The superconducting element of the present invention described above can be manufactured by forming an oxide superconducting thin film on a substrate partially formed with a layer of a substance that deteriorates the crystal orientation of the oxide superconductor. The crystalline state of a thin film of an oxide superconductor is greatly influenced by the underlying substrate. For example, MgO, SrTiO3 (10
0) An oxide superconducting thin film consisting of a C-axis oriented single crystal can be easily grown on a substrate. However, even if films are formed under the same conditions, an oxide superconducting thin film with poor crystal orientation grows on, for example, PtO2, ZrO2, Y2O3, etc.

従って、本発明の素子は、表面の一部にpro2、Zr
O2、Y2O3等の層が形成された基板上に酸化物超電
導薄膜を成膜することにより作製することができる。
Therefore, the element of the present invention has pro2, Zr on a part of the surface.
It can be produced by forming an oxide superconducting thin film on a substrate on which a layer of O2, Y2O3, etc. is formed.

酸化物超電導薄膜の結晶配向性を悪化させる物質として
は、上記のPtO2、ZrO2、Y2O3の他に、Ba
F2、CaF2、MgF2等が使用可能である。
In addition to the above-mentioned PtO2, ZrO2, and Y2O3, substances that deteriorate the crystal orientation of the oxide superconducting thin film include Ba.
F2, CaF2, MgF2, etc. can be used.

上記の物質の層は、例えばジョセフソン素子を作製する
場合には、幅1μm程度の線状であることが好ましい。
For example, when manufacturing a Josephson device, the layer of the above-mentioned substance is preferably in the form of a line with a width of about 1 μm.

また、層の厚さは50nm程度であることが好ましく、
接合層の厚さは数百nm程度である。
Further, the thickness of the layer is preferably about 50 nm,
The thickness of the bonding layer is approximately several hundred nm.

基板上に成長した酸化物超電導薄膜の基板の直ぐ上の部
分は基板の影響を大きく受けるが、成長するに従い薄膜
の他の部分からの影響が大きくなる。
The part of an oxide superconducting thin film grown on a substrate directly above the substrate is greatly influenced by the substrate, but as it grows, the influence from other parts of the thin film increases.

従って、酸化物超電導薄膜中に数百nmの厚さの接合層
を形成する場合、基板表面に1μm程度の幅の上記物質
の層を形成しておく必要がある。
Therefore, when forming a bonding layer several hundred nm thick in an oxide superconducting thin film, it is necessary to form a layer of the above-mentioned substance with a width of about 1 μm on the substrate surface.

本発明の超電導素子には、任意の酸化物超電導体が使用
できるが、y 、 ea2cu307−X系酸化物超電
導体は安定的に高品質の結晶性のよい薄膜が得られるの
で好ましい。また、Bi25r2Ca2Cu308系酸
化物超電導体は、特にその超電導臨界温度Tcが高いの
で好ましい。
Although any oxide superconductor can be used in the superconducting element of the present invention, y, ea2cu307-X-based oxide superconductors are preferred because they can stably yield high-quality thin films with good crystallinity. Furthermore, Bi25r2Ca2Cu308-based oxide superconductors are particularly preferred because their superconducting critical temperature Tc is high.

以下、本発明を実施例により、さらに詳しく説明するが
、以下の開示は本発明の単なる実施例に過ぎず、本発明
の技術的範囲をなんら制限するものではない。
EXAMPLES Hereinafter, the present invention will be explained in more detail with reference to Examples, but the following disclosure is merely an example of the present invention and does not limit the technical scope of the present invention in any way.

実施例 第1図に、本発明の超電導素子の一例の概略断面図を示
す。第1図の超電導素子は、ジョセフソン素子であり、
表面にpr02層40を有する基板4上に形成された酸
化物超電導薄膜10て構成されている。基板4の表面の
2102層40以外の部分の上の酸化物超電導薄膜は、
C軸配向の結晶で構成された超電導層1.2となってい
る。また、基板4の表面のPr02層40の上の酸化物
超電導薄膜は結晶配向性が悪く、接合層3になっている
Embodiment FIG. 1 shows a schematic cross-sectional view of an example of a superconducting element of the present invention. The superconducting element in Figure 1 is a Josephson element,
It consists of an oxide superconducting thin film 10 formed on a substrate 4 having a pr02 layer 40 on its surface. The oxide superconducting thin film on the surface of the substrate 4 other than the 2102 layer 40 is
The superconducting layer 1.2 is composed of C-axis oriented crystals. Further, the oxide superconducting thin film on the Pr02 layer 40 on the surface of the substrate 4 has poor crystal orientation and becomes the bonding layer 3.

作製例1 本発明の超電導素子を作製した。基板にはMgO単結晶
基板を用い、酸化物超電導体にはYIBa2CII30
i−xを使用した。第2図(a)〜(C)ヲ参照して、
作製手順を説明する。
Production Example 1 A superconducting element of the present invention was produced. An MgO single crystal substrate is used as the substrate, and YIBa2CII30 is used as the oxide superconductor.
i-x was used. Referring to FIGS. 2(a) to (C),
The manufacturing procedure will be explained.

まず、第2図(a)に示すようMg0(100)基板4
の表面に第2図(b)に示すよう素子の全幅にわたる長
さで、幅1μm、厚さ5QnmのPr02層40を真空
蒸着法で形成する。このとき、蒸着速度を低くしてエピ
タキシャル成長させることが必要である。
First, as shown in FIG. 2(a), a Mg0 (100) substrate 4
As shown in FIG. 2(b), a Pr02 layer 40 having a width of 1 μm and a thickness of 5 Qnm is formed by vacuum evaporation over the entire width of the device. At this time, it is necessary to perform epitaxial growth at a low deposition rate.

蒸着条件を以下に示す。The vapor deposition conditions are shown below.

基板温度     800℃ 圧   力    5 X10−’Torr  (02
)蒸着速度      IA/秒 第2図(C)に示すよう、表面にPr02層40を具備
する基板4上に酸化物超電導薄膜を形成した。Y、Ba
およびCuを原子比1:2:4.5で含む焼結体をター
ゲットに用いて、スパッタリング法により、基板4表面
のPr02層40以外の部分上にC軸配向の酸化物超電
導薄膜が成長するように成膜を行った。以下にスパッタ
リングの条件を示す。
Substrate temperature 800℃ Pressure 5 X10-'Torr (02
) Vapor deposition rate IA/sec As shown in FIG. 2(C), an oxide superconducting thin film was formed on a substrate 4 having a Pr02 layer 40 on its surface. Y, Ba
Using a sintered body containing Cu and Cu in an atomic ratio of 1:2:4.5 as a target, a C-axis oriented oxide superconducting thin film is grown on the surface of the substrate 4 other than the Pr02 layer 40 by sputtering. The film was formed as follows. The sputtering conditions are shown below.

基板温度 630℃ スバ・ツタリングガス 八r  3SCCU024SC
CM 圧力   5 Xl0−2Torr 上記の条件で形成した酸化物超電導薄膜は、基板4表面
の2102層40以外の部分上はC軸配向の結晶で構成
され、基板4のPr02層40上は、多結晶で構成され
ていた。また、85■(に冷却し、周波数10GHz、
出力0.1mWのマイクロ波を印加したところ、20.
7μVの倍数の電圧点でシャピロステップが観測され、
ジョセフソン結合が実現していることが確認された。
Substrate temperature 630℃ Suba Tsutaring gas 8r 3SCCU024SC
CM Pressure 5 It consisted of In addition, it is cooled to 85■ (frequency 10GHz,
When microwaves with an output of 0.1 mW were applied, 20.
A Shapiro step is observed at voltage points that are multiples of 7 μV,
It was confirmed that Josephson coupling was realized.

作製例2 B]2Sr2Ca2CI+3011超電導体を使用し、
作製例1と同様の方法により第1図に示す本発明の超電
導素子を作製した。基板には、5rTi03  (10
0)基板を使用した。作製例1同様に基板の表面に素子
の全幅にわたる長さで、幅1μm、厚さ50nmのPr
Ch層を真空蒸着法で形成する。このとき、蒸着速度を
低くしてエピタキシャル成長させることが必要である。
Preparation Example 2 B] Using 2Sr2Ca2CI+3011 superconductor,
A superconducting element of the present invention shown in FIG. 1 was produced by the same method as in Production Example 1. The substrate contains 5rTi03 (10
0) A substrate was used. Similarly to Preparation Example 1, Pr with a width of 1 μm and a thickness of 50 nm is placed on the surface of the substrate over the entire width of the device.
A Ch layer is formed by vacuum evaporation. At this time, it is necessary to perform epitaxial growth at a low deposition rate.

蒸着条件を以下に示す。The vapor deposition conditions are shown below.

基板温度     800℃ 圧力5 XIO’Torr  (02)蒸着速度   
   1人/秒 P r O2層を形成した基板上に、B1、Sr、 C
aおよびCuを原子比2:2:2:3で含む焼結体をタ
ーゲットに用いたスパッタリング法で Bi25r2Ca2Cu3Ch酸化物超電導薄膜を形成
した。
Substrate temperature 800℃ Pressure 5 XIO'Torr (02) Vapor deposition rate
B1, Sr, C
A Bi25r2Ca2Cu3Ch oxide superconducting thin film was formed by sputtering using a sintered body containing a and Cu in an atomic ratio of 2:2:2:3 as a target.

スパッタリング条件を以下に示す。The sputtering conditions are shown below.

基板温度 650℃ スパッタリングガス 八r  83CCMo24SCC
M 圧力   5 X 1O−2Torr 上記の条件で形成した酸化物超電導薄膜は、基板表面の
Pr02層以外の部分上はC軸配向の結晶で構成され、
基板のPr02層上は、多結晶で構成されていた。また
、90Kに冷却し、周波数150I(z。
Substrate temperature 650℃ Sputtering gas 83CCMo24SCC
M Pressure 5
The Pr02 layer of the substrate was composed of polycrystals. Also, it was cooled to 90K and the frequency was 150I (z.

出力0.1mWのマイクロ波を印加したところ、31μ
Vの倍数の電圧点でシャピロステップが観測され、ジョ
セフソン結合が実現していることが確認された。
When microwaves with an output of 0.1 mW were applied, 31μ
A Shapiro step was observed at a voltage point that is a multiple of V, confirming that Josephson coupling was realized.

発明の詳細 な説明したように、本発明の超電導素子は、酸化物超電
導薄膜の一部を接合層に変えた構成となっている。従っ
て、従来のように酸化物超電導薄膜上に絶縁体薄膜等を
積層することなく作製可能である。本発明の方法に従っ
て、本発明の超電導素子を作製すると、全体を一体に形
成するので、作製が容易であるだけでなく、特性も安定
している。さらに、接合層は、酸化物超電導体と等しい
構成元素からなる酸化物で構成されているので、各種特
性に悪影響を与えることもない。
As described in detail, the superconducting element of the present invention has a structure in which a part of the oxide superconducting thin film is replaced with a bonding layer. Therefore, it can be manufactured without stacking an insulator thin film or the like on an oxide superconducting thin film as in the conventional case. When the superconducting element of the present invention is manufactured according to the method of the present invention, the entire element is integrally formed, so that it is not only easy to manufacture, but also has stable characteristics. Furthermore, since the bonding layer is made of an oxide having the same constituent elements as the oxide superconductor, it does not adversely affect various properties.

本発明により、超電導技術の電子デバイスへの応用がさ
らに促進される。
The present invention further promotes the application of superconducting technology to electronic devices.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の超電導素子の概略断面図であり、 第2図は、本発明の超電導素子を作製する場合の工程の
一例を示す概略図である。 C主な参照番号〕 1.2・・・超電導層、 3・・・接合層、 4・・・基板
FIG. 1 is a schematic cross-sectional view of a superconducting element of the present invention, and FIG. 2 is a schematic diagram showing an example of a process for producing a superconducting element of the present invention. C Main reference numbers] 1.2...Superconducting layer, 3...Joining layer, 4...Substrate

Claims (1)

【特許請求の範囲】[Claims]  基板上に形成された酸化物超電導体で構成された第1
および第2の超電導層と、前記第1および第2の超電導
層が超電導接合を構成するよう前記第1および第2の超
電導層の間に配置された接合層とを有する超電導素子に
おいて、前記接合層が基板上に形成された酸化物超電導
体の結晶配向性を悪化させる物質の層上に配置された前
記酸化物超電導体と構成元素が等しい、前記酸化物超電
導体より結晶配向性が悪い酸化物で構成されていること
を特徴とする超電導素子。
The first layer is made of an oxide superconductor formed on a substrate.
and a superconducting element having a second superconducting layer and a bonding layer disposed between the first and second superconducting layers such that the first and second superconducting layers constitute a superconducting bond, An oxide having the same constituent elements as the oxide superconductor and having a worse crystal orientation than the oxide superconductor, the layer being disposed on a layer of a substance that deteriorates the crystal orientation of the oxide superconductor formed on the substrate. A superconducting element characterized by being composed of a material.
JP2275961A 1990-10-15 1990-10-15 Superconducting device Pending JPH04151883A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2275961A JPH04151883A (en) 1990-10-15 1990-10-15 Superconducting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2275961A JPH04151883A (en) 1990-10-15 1990-10-15 Superconducting device

Publications (1)

Publication Number Publication Date
JPH04151883A true JPH04151883A (en) 1992-05-25

Family

ID=17562834

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2275961A Pending JPH04151883A (en) 1990-10-15 1990-10-15 Superconducting device

Country Status (1)

Country Link
JP (1) JPH04151883A (en)

Similar Documents

Publication Publication Date Title
US5552375A (en) Method for forming high Tc superconducting devices
JPH01241874A (en) Josephson junction element
JPH05335638A (en) Josephson junction structure body and manufacture thereof
JPH03259576A (en) Josephson junction
JP3189403B2 (en) Element having superconducting junction and method of manufacturing the same
JPH05335637A (en) Josephson junction structure body
US5480859A (en) Bi-Sr-Ca-Cu-O superconductor junction through a Bi-Sr-Cu-O barrier layer
JPH04151883A (en) Superconducting device
EP0476617B1 (en) Superconductor junction structure and process for fabricating the same
JPH04152683A (en) Superconducting element
JPH01101677A (en) Electronic device
JPH04332180A (en) Josephson element
JPH04268774A (en) Josephson junction
JP2861235B2 (en) Superconducting element
JPH04155875A (en) Superconductive element and manufacture thereof
JPH05267735A (en) Superconductive junction and element and manufacturing method thereof
JPH05267736A (en) Element having superconductive junction and manufacturing method thereof
US5362709A (en) Superconducting device
JP2883493B2 (en) Superconducting element
JPH03296283A (en) Josephson junction
JPH03242320A (en) Oxide superconductor thin film
JPH05291632A (en) Superconductive junction structure
JPH04127484A (en) Superconducting junction
JPH04288885A (en) Tunnel-type josephson element
JPH04130678A (en) Superconducting junction